Lecture #7 Exercises

Distributed Lab
September 3, 2024

Z

Exercises 1-5. In search of correct Schnorr’s Identification Protocol. ..

You are given the protocol and five ways to implement it. Most of them lack the crucial
properties. For each attempt, you need to determine whether the protocol is correct and,
if not, specify which of the properties are violated.

Recall, that given the cyclic group G of order g, the prover wants to convince the verifier
that he knows the discrete logarithm a of h € G with respect to the generator g € G (so
that g = h).

Here are five attempts to construct the protocol:

Attempt 1. Prover sends witness a to the verifier. Verifier checks whether h = g®.
Attempt 2. Prover chooses random r & Zq and sends a < o+ r to the verifier. Verifier
checks whether h = g°.

Attempt 3. Prover chooses random r yal Zq, calculates a <— a+ r and sends both (a, r)
to the verifier. Verifier checks whether g"h = g°.

Attempt 4. Prover chooses random r <* Zgq, calculates a <- g",z <= a + r and sends
(a, z) to the verifier. Verifier checks whether a- h = g*.

Attempt 5. Prover chooses random r <5 Zq, calculates a < g', and sends a to the

verifier. Verifier chooses e & Z4 and sends to the prover. Prover calculates z <— ae +r
and sends to the prover. Verifier checks whether a- h® = g~.

Below, mark whether the properties of completeness, soundness, and zero-knowledge
hold for each attempt.

Attempt # 1 2 3 4 5

Completeness holds? VIXK|\ VX | VX | /XX
Soundness holds? VIXK|V/X |\ VX | /]X| /X
Zero-Knowledge holds? | /' /X | V/X |/ /X | /X | /X

Distributed Lab ZKDL Camp

Exercises 6-10. Non-Interactive Chaum-Pedersen Protocol.

This section explores how to make the previously considered Chaum-Pedersen protocol
non-interactive. Fill in the gaps in the following text with the correct statements.

Recall that the Chaum-Pedersen protocol allows the prover P to convince the skeptical
verifier V that the given triplet (u, v, w) € G* is a Diffie-Hellman (DH) triplet in the cyclic
group G of prime order g with a generator g € G, meaning that v = g%, v = ¢, w = g°P
for some a, B € Z,. However, instead of making (o, 3) as a witness, observe that 3 is
sufficient. Indeed, if u = g% v = ¢°, then w = @ Thus, the relation is:

R = {((u, v,w),B) €G* x Z, :}

Now, we apply the Fiat-Shamir Transformation. Recall that prover, instead of getting

the random challenge ¢ Ecc Zq from the verifier interactively, calculates it as the
hash function from the public statement (v, v, w) and the prover's commitment. For
that reason, define the non-interactive proof system ® = (Gen, Verify) as follows:

e Gen: On input (u, v, w) € G3,
R .
1. Sample B, <= Z4 and compute the commitment .

2. Use the hash function @ to get the challenge ¢ < .

3. Compute response 3, < B, + B¢ and output commitment (v,, w,) and B, as
a proof .

e Verify: Upon receiving statement (u, v, w) and a proof m = (v,, w,, B,), the verifier:
1. Recomputes the challenge c using the hash function.
2. Accepts if and only if g% = v,v¢ and U5 = w,w°®.

Exercise 6. Exercise 7.
A) VP A) v=gPand w = vu
B) uP B) v=gPand w=\F
C) vu Q) v=dgfand w= 1P
D) v D) u=gf and w = 1P
E) vPu E) u/w=gP
Exercise 8. Exercise 9. Exercise 10.
A) (v, w,) = (g°, g°P) A) H:G*xG?—=C A) H((u, v, w), (v, w,))
B) (v,, w,) = (¢°, whr) B) H:G*x(GxZ,) —C B) H(u,v,w),(v.5,))
Q) (v,, w,) = (g°, uPr) Q) H:G*—=¢C C) H(u,v,w)
D) (v, w,) = (¢°,) D) H:G*x Zy—C D) H((u. v, w).B,)
E) (v,,w;) = (d°, ¢° P) E) H:G?>x Zy—C E) H((v,, w,),B,)

Page 2

