
Lecture #8 Task
Distributed Lab

September 12, 2024

Turn to the next page to see the tasks =⇒

1



Distributed Lab ZKDL Camp

1 R1CS In Rust
1.1 Introduction

This time, the task is a bit unusual: you need to implement a simple Rank-1 Constraint
System (R1CS) in Rust. For that reason, consider a pretty simple problem: the prover P wants
to convince the verifier V that he knows the modular cube root of y modulo p for the given
y ∈ Fp. Here, p is the BLS12-381 prime, which will become handy in the next tasks.

For that reason, we construct the circuit of the following form:

C(x, y) = x3 − y ,

Here, we need only two constraints to check the correctness of the prover’s statement:
1. r1 = x × x .
2. r2 = x × r1 − y .
Therefore, the solution vector becomes w = (1, x, y , r1, r2). The goal of this task is to:
• Implement the basic Linear Algebra operations for R1CS in Rust.
• Implement the R1CS satisfiability check.
• Construct the matrices L,R,O to check the satisfiability of the given solution vector w

(checking the cubic root of given y).

1.2 Task Statement
1.2.1 Task 1: Preparation

All the source code we are going to refer to is specified by the link below:

https://github.com/ZKDL-Camp/lecture-8-r1cs-qap

Download Rust1 (in case you do not have one), clone/fork the repository and verify that
everything compiles (just that, the code does not work yet). In case you are confused, the
project is structured as follows:

• src/main.rs contains the entrypoint where you can test your implementation.
• src/finite_field.rs contains the Fp specification — you will not need it.
• src/linear_algebra.rs contains the basic Linear Algebra operations (with vectors and

matrices) you need to implement.
• src/r1cs.rs contains the R1CS implementation where you also would need to implement

a piece of functionality.

1.2.2 Task 2: Linear Algebra Operations
Now, recall that our ultimate goal is to construct the matrices L,R,O to check the following

satisfiability condition:
Lw ⊙ Rw = Ow,

1If you are the total beginner, you might find these official resources useful: https://www.rust-lang.org/
learn

Page 2

https://github.com/ZKDL-Camp/lecture-8-r1cs-qap
https://www.rust-lang.org/learn
https://www.rust-lang.org/learn


Distributed Lab ZKDL Camp

And additionally, for education purposes, we will want to check the satisfiability of any
specified constraint, that is:

⟨ℓj ,w⟩ × ⟨r j ,w⟩ = ⟨o j ,w⟩.

For that reason, we need to have the Hadamard product (element-wise multiplication) and
inner (dot) product of two vectors and the matrix-vector product. For that reason, implement
the following functions in the linear_algebra.rs module:

1. Vector::dot(&self, other: &Self) -> Fp — the inner product of two vectors.
2. Vector::hadamard_product(&self, other: &Self) -> Self — the Hadamard (el-

ementwise) product v ⊙ u of two vectors.
3. Matrix::hadamard_product(&self, other: &Self) -> Self — the Hadamard (el-

ementwise) product A⊙ B of two matrices.
4. Matrix::vector_product(&self, other: &Vector) -> Vector — the matrix-vector

product Av.
To test the correctness of your implementation, run

cargo test linear_algebra

1.2.3 Task 3: R1CS Satisfiability Check
Now, we need to implement the R1CS satisfiability check. For that reason, implement the

following functions in the r1cs.rs module:
1. R1CS::is_satisfied(&self, witness: &Vector<WITNESS_SIZE>) -> bool — the

function that checks the satisfiability of the given solution vector w.
2. R1CS::is_constraint_satisfied(&self, witness: &Vector<WITNESS_SIZE>, j:

usize) -> bool — the function that checks whether the j-th constraint is satisfied.
To test the correctness of your implementation, run

cargo test r1cs

1.2.4 Task 4: R1CS for Cubic Root
Now, as the final step, construct the matrices L,R,O for the given R1CS problem and

check the satisfiability of the solution vector w = (1, x, y , r1, r2) where x is the cubic root of y
modulo p. For that reason, insert the missing pieces of code in the main.rs file. This file will
automatically:

1. Generate a random valid witness.
2. Construct the R1CS with the given matrices L,R,O.
3. Check the satisfiability of the given solution vector.
Hint. In the lecture, we considered a bit more complicated circuit

C(x1, x2, x3) = x1 × x2 × x3 + (1− x1)× (x2 + x3), x1 ∈ {0, 1}, x2, x3 ∈ Fp

You might take a look at how this circuit is implemented in the r1cs.rs file in the tests
module and adapt it to the cubic root problem.

Page 3


	R1CS In Rust
	Introduction
	Task Statement
	Task 1: Preparation
	Task 2: Linear Algebra Operations
	Task 3: R1CS Satisfiability Check
	Task 4: R1CS for Cubic Root



