
ZKDL Camp Lecture Notes
Distributed Lab

July 18, 2024

1

Distributed Lab ZKDL Camp

1 Mathematics for Cryptographers
1.1 Notation

Before going into the details, let us introduce some notation.

1.1.1 Set Theory
First, let us enumerate some fundamental sets:
• N – a set of natural numbers. Examples: 10, 13, 193,
• Z – a set of integers. Examples: −2,−6, 0, 62, 103,
• Q – a set of rational numbers. Examples: { n

m
: n ∈ Z, m ∈ N}.

• R – a set of real numbers. Examples: 2.2, 1.4,−6.7,
• R>0 – a set of positive real numbers. Examples: 2.6, 10.4, 100.2.
• C – a set of complex numbers1. Examples: 1 + 2i , 5i ,−7− 5.7i ,
Typically we write a ∈ A to say “element a is in set A”. To represent the number of elements

in a set A, we write |A|. If the set is finite, |A| ∈ N, otherwise |A| =∞. A ⊂ B denotes “A is
a subset of B” (meaning that all elements of A are also in B, e.g., Q ⊂ R).
A ∩ B means the intersection of A and B (a set of elements belonging to both A and B),

while A ∪ B – the union of A and B (the set of elements belonging to either A or B). A \ B
denotes the set difference (the set of elements belonging to A, but not B). A denotes the
complement of A (the set of elements not belonging to A). All operations are illustrated in
Figure 1 (this picture is typically called the Venn Diagram).

To define the set, we typically write {f (a) : φ(a)}, where f (a) is some function and φ(a) is
a predicate (function, inputting a and returning true/false if a certain condition on a is met).
For example, {x3 : x ∈ R, x2 = 4} is “a set of values x3 which are the real solutions to equation
x2 = 4”. It is quite easy to see that this set is simply {23, (−2)3} = {8,−8}.

The notation A×B means a set of pairs (a, b) where a ∈ A and b ∈ B (or, written shortly,
A×B = {(a, b) : a ∈ A, b ∈ B}), called a Cartesian product. We additionally introduce notation
An := A× A× · · · × A︸ ︷︷ ︸

n times

– Cartesian product n times. For example, Q3 is a set of triplets (a, b, c)

where a, b, c ∈ Q, while Q2 × R is a set of triplets (a, b, c) where a, b ∈ Q and c ∈ R.

1.1.2 Logic
Statement beginning with ∀ means “for all...”. For instance, (∀a ∈ A ⊂ R) : {a < 1} is read

as: “For any a in set A (which is a subset of real numbers), it is true that a < 1”. Or, more
shortly, “Any (real) a from A is less than 1”.

Statement beginning from ∃ means “there exists such...”. Let us consider the following
example: (∃ε > 0)(∀a ∈ A) : {a > ε} is read as “there exists such a positive ε such that for
any element a from A, a is greater than ε”, or, more concisely, “there exists a positive constant
ε such that any element from A is greater than ε”.

Statement beginning from ∃! means “there exists a unique...”. For example, (∃!x ∈ R>0) :
{x2 = 4} is read as “there exists a unique positive real x such that x2 = 4”.

Symbol ∧ means “and”. For example, {x ∈ R : x2 = 4 ∧ x > 0} is read as “a set of real x

1Complex number is an expression in a form x + iy for i2 = −1

Page 2

Distributed Lab ZKDL Camp

A B

A ∩ B

A B

A ∩ B

A B

A ∪ B

A B

A \ B

Figure 1: Set operations illustrated with Venn diagrams.

such that x2 = 4 and x is positive”. Of course, {x ∈ R : x2 = 4 ∧ x > 0} = {2}.
Symbol ∨ means “or”. For example, {x ∈ R : x2 = 4 ∨ x2 = 9} is read as “a set of real x

such that either x2 = 4 or x2 = 9”. Here, this set is equal to {−2, 2,−3, 3}.

1.1.3 Randomness and Probability
To denote the probability of an event A happening, we write Pr[A]. For example, if event A

represents that a coin lands heads, then Pr[A] = 0.5.
Fix some set A. To denote that we are uniformly randomly picking some element from A,

we write a R←− A. For example, a R←− {1, 2, 3, 4, 5, 6} means that we are picking a number from
1 to 6 uniformly at random.

1.1.4 Sequences and Vectors
To denote the infinite sequence {x1, x2, x3, . . . } we write {xn}n∈N. To denote the finite

sequence {x1, x2, . . . , xn} we write {xk}nk=1.
Vector is a collection of elements x = (x1, . . . , xn) ∈ An. Finally, the scalar product2 is

denoted as ⟨x, y⟩ :=
∑n
k=1 xkyk .

1.2 Basic Number Theory
1.2.1 Primes

Primes are often used when doing almost any cryptographic computation. A prime number
is a natural number (Z+) that is not a product of two smaller natural number. In other words,
the prime number is divisible only by itself and 1. First primes look like this: 2, 3, 5, 7, 11...

2It is totally normal if you do not know what that is, we will explain more in the Bulletproof lecture

Page 3

Distributed Lab ZKDL Camp

1.2.2 Deterministic prime tests
A primality test is deterministic if it outputs True when the number is a prime and False

when the input is composite with probability 1. An example of a deterministic prime test is
Trial_Division_Test. Here is an example implementation in Rust:

1 fn is_prime(n: u32) -> bool {
2 let square_root = (n as f64).sqrt() as u32;
3
4 for i in 2.. = square_root {
5 if n % i == 0 {
6 return false;
7 }
8 }
9

10 true
11 }

Deterministic tests often lack efficiency. For instance, even with square root optimization,
the asymptotic complexity is O(

√
N). While further optimizations are possible, they do not

change the overall asymptotic complexity.
In cryptography, N can be extremely large — 256 bits, 512 bits, or even 6144 bits. An

algorithm is impractical when dealing with such large numbers.

1.2.3 Probabilistic prime tests
A primality test is probabilistic if it outputs True when the number is a prime and False when

the input is composite with probability less than 1. Such test is often called a pseudoprimality
test. Fermat Primality and Miller-Rabin Primality Tests are examples of probabilistic primality
test. Both of them use the idea of Fermat’s Little Theorem:

Theorem 1.1. Let p be a prime number and a be an integer not divisible by p. Then ap−1−1
is always divisible by p: ap−1 ≡ 1 (mod p)

The key idea behind the Fermat Primality Test is that if for some a not divisible by n we have
an−1 ̸≡ 1 (mod n) then n is definitely NOT prime. Athough, with such an approach, we might
get a false positive, as you cannot state for sure that n is prime. For example, consider n = 15
and a = 4. 415−1 ≡ 1 (mod 15), but n = 15 = 3 · 5 is composite. To solve this issue, a is
picked many times, decreasing the chances of a false positive. The probability that a composite

number is mistakenly called prime for k iterations is 2−k =
1

2k
.

There exists a problem with such an algorithm in the form of Carmichael numbers, which
are numbers that are Fermat pseudoprime to all bases. To put it simply, no matter how many
times you check whether the number is prime using this type of primality test, it will always stay
positive, even though the number is composite. The good thing is that Carmichael numbers
are pretty rare. The bad thing is that there are infinitely many of them.

Even though this algorithm is probabilistic (which does not guarantee the correctness of the
output) and has a vulnerability in the form of Carmichael numbers, it runs with an asymptotic
complexity O(log3 n). This is much better for large numbers and is often used in cryptography.

Page 4

Distributed Lab ZKDL Camp

Here is a pseudocode implementation of this algorithm:

1 # n = number to be tested for primality
2 # k = number of times the test will be repeated
3 def is_prime(n, k):
4 i = 1
5 while i <= k:
6 a = rand(2, n - 1)
7
8 if a^(n - 1) != 1 (mod n):
9 return False

10
11 i++
12
13 return True

Miller-Rabin primality test, is a more advanced form of Fermat primality test. The main
difference is it is not vulnerable to Carmichael numbers, which makes it much better to use in
practice.

1.3 Introduction to Abstract Algebra
1.3.1 Groups

Throughout the lectures, probably the most important topic is the group theory.
As you can recall from the high school math, typically real-world processes are described

using real numbers, denoted by R. For example, to describe the position or the velocity of an
object, you would rather use real numbers.

When it comes to working with computers though, real numbers become very inconvenient
to work with. For instance, different programming languages might output different values for
quite a straightforward operation 2.01 + 2.00. This becomes a huge problem when dealing
with cryptography, which must check precisely whether two quantities are equal. For example,
if the person’s card number is N and the developed system operates with a different, but very
similar card with number N + k for k ≪ N, then this system can be safely thrown out of the
window. See Figure 2.

Card Number M Card Number N

Card Number N+k

Alice BobTx

Figure 2: Alice pays to Bob to a card number N, but our awesome system pays to N+k instead.
Bob would not be happy...

This motivates us to work with integers (denoted by Z), instead. This solves the problem

Page 5

Distributed Lab ZKDL Camp

with card numbers, but for cryptography this object is still not really suitable since it is hard
to build a secure and reliable protocol exploiting pure integers (without using a more complex
structure).

This motivates us to use a different primitive for dealing with cryptographic systems. Similarly
to programmers working with interfaces (or traits, if you are the Rust developer), mathemati-
cians also use the so-called groups to represent objects obeying a certain set of rules. The
beauty is that we do not concretize how operations in this set are performed, but rather state
the fact that we can somehow combine elements with the pre-defined properties. We can
then discover properties of such objects and whenever we apply the concrete “implementation”
(spoiler, group of points on elliptic curve), these properties would still hold.

Remark. Further discussion with abstract objects should be regarded as “interfaces” which
do not concretize the “implementation” of an object. It merely shows the nature of an object
without going into the details.

Now, let us get dirty and define what the group is.

Definition 1.2. Group, denoted by (G,⊕), is a set with a binary operation ⊕, obeying the
following rules:

1. Closure: Binary operations always outputs an element from G, that is ∀a, b ∈ G :
a ⊕ b ∈ G.

2. Associativity: ∀a, b, c ∈ G : (a ⊕ b)⊕ c = a ⊕ (b ⊕ c).
3. Identity element: There exists a so-called identity element e ∈ G such that ∀a ∈ G :
e ⊕ a = a ⊕ e = a.

4. Inverse element: ∀a ∈ G ∃b ∈ G : a ⊕ b = b ⊕ a = e. We commonly denote the
inverse element as (⊖a).

Quite confusing at first glance, right? The best way to grasp this concept is to consider a
couple of examples.

Example. A group of integers with the regular addition (Z,+) (also called the additive group
of integers) is a group. Indeed, an identity element is eZ = 0, associativity obviously holds,
and an inverse for each element a ∈ Z is (⊖a) := −a ∈ Z.

Remark. We use the term additive group when we mean that the binary operation is
addition +, while multiplicative group means that we are multiplying two numbers via ×a.

aIn this section, regard · and × as the same operation of multiplication.

Example. The multiplicative group of positive real numbers (R>0,×) is a group for similar
reasons. An identity element is eR>0 = 1, while the inverse for a ∈ R>0 is defined as 1

a
.

Example. The additive set of natural numbers (N,+) is not a group. Although operation
of addition is closed, there is no identity element nor inverse element for, say, 2 or 10.

Page 6

Distributed Lab ZKDL Camp

Example. That is possible to have the situation when the element a ∈ G can be its own
inverse, meaning a = a−1. This happens when a2 = e. Additionally, we can mention that
for any group G = {g, e} with the order |G| = 2 we have g2 = e.

One might ask a reasonable question: suppose you pick a, b ∈ G. Is a⊕b the same as b⊕a?
Unfortunately, for some groups, this is not true.

For this reason, it makes sense to give a special name to a group in which the operation is
commutative (meaning, we can swap the elements in the operation).

Definition 1.3. A group (G,⊕) is called abelian if ∀a, b ∈ G : a ⊕ b = b ⊕ a.

Example. The additive group of integers (Z,+) is an abelian group. Indeed, a + b = b + a
for any a, b ∈ Z.

Example. The set of 2×2matrices with real entries and determinant 1 (denoted by SL(2,R))
is a group with respect to matrix multiplication. However, this group is not abelian! Take

A =

(
1 1

0 1

)
, B =

(
1 0

1 1

)
. (1)

Then, it is easy to verify that

AB =

(
2 1

1 1

)
, BA =

(
1 1

1 2

)
, (2)

so clearly AB ̸= BA – the elements of SL(2,R) do not commute.

Remark. Further, we will write ab instead of a × b and a−1 instead of ⊖a for the sake of
simplicity (and because it is more common in the literature). As mentioned before, it is
usually called the multiplicative notation.

Finally, for cryptography it is important to know the number of elements in a group. This
number is called the order of the group.

Definition 1.4. The order of a finite group G is the number of elements in the group. We
denote the order of a group as |G|.

Example. Integers modulo 13, denoted by Z13, is a group with respect to addition modulo
13 (e.g., 5 + 12 = 4 in Z13). The order of this group is 13.

Despite the aforementioned definitions, many things are not generally obvious. For example,
one might ask whether the identity element is unique. Or, whether the inverse element is unique
for each group element. For that reason, we formulate the following lemma.

Lemma 1.5. Suppose G is a group. Then, the following statements hold:
1. The identity element is unique.

Page 7

Distributed Lab ZKDL Camp

2. The inverse element is unique for each element: ∀a ∈ G∃!a−1 ∈ G : aa−1 = a−1a = e.
3. For all a, b ∈ G there is a unique x ∈ G such that ax = b.
4. If ab = ac then b = c . Similarly, if xy = zy then x = z .

Since this guide is not a textbook on abstract algebra, we will not prove all the statements.
However, we will prove the first and second one to show the nature of the proofs in abstract
algebra.

First Statement Proof. Suppose e1, e2 ∈ G are both identity elements. Consider e1e2.
From the definition of the identity element, we know that e1e2 = e1 and e1e2 = e2. Therefore,
e1 = e2.

Second Statement Proof. Take g ∈ G and suppose a, b ∈ G are both inverses of g. By
defininition,

ag = ga = e, bg = gb = e. (3)

Now, notice that
a = ae = a(gb) = (ag)b = eb = b (4)

Thus, a = b.

Exercise. Prove the third and fourth statements.

1.3.2 Subgroups
When we are finally comfortable with the concept of a group, we can move on to the concept

of a subgroup.
Suppose we have a group (G,⊕). Suppose one takes the subset H ⊂ G. Of course, since

all elements in H are still elements in G, we can conduct operations between them via ⊕. The
natural question to ask is whether H is a group itself. Yes, but at the same time H is called a
subgroup of G.

Definition 1.6. A subset H ⊂ G is called a subgroup of G if H is a group with respect to
the same operation ⊕. We denote this as H ≤ G.

Example. Of course, not every subset of G is a subgroup. Take (Z,+). If we cut, say, 3 out
of Z (so we get H = Z \ {3}), then H is not a subgroup of Z since an element −3 does not
have an inverse in H. Moreover, it is not closed: take 1, 2 ∈ H. In this case, 1+2 = 3 /∈ H.

Example. Now, let us define some valid subgroup of Z. Take H = {3k : k ∈ Z} – a set of
integers divisible by 3 (commonly denoted as 3Z). This is a subgroup of Z, since it is closed
under addition, has an identity element 0, and has an inverse for each element 3k (namely,
−3k). That being said, 3Z ≤ Z.

These are good examples, but let us consider a more interesting one, which we call a lemma.
It is frequently used further when dealing with cosets and normal subgroups, but currently regard
this just as an exercise.

Page 8

Distributed Lab ZKDL Camp

Lemma 1.7. Let G be a group and g ∈ G. The centralizer of g is defined to be

Cg = {h ∈ G : hg = gh} (5)

Then, Cg is a subgroup of G.

Exercise. Prove the lemma.

1.3.3 Cyclic Groups
Probably, cyclic groups are the most interesting groups in the world of cryptography. But

before defining them, we need to know how to add/subtract elements multiple times (that is,
multiplying by an integer). Suppose we have a group G and g ∈ G. Then, gn means multiplying
(adding) g to itself n times. If n is negative, then we add g−1 to itself |n| times. For n = 0 we
define g0 = e. Now, let us define what the cyclic group is.

Definition 1.8. Given a group G and g ∈ G the cyclic subgroup generated by g is

⟨g⟩ = {gn : n ∈ Z} = {. . . , g−3, g−2, g−1, e, g, g2, g3, . . . }. (6)

Example. Consider the group of integers modulo 12, denoted by Z12. Consider 2 ∈ Z12, the
group generated by 2 is then

⟨2⟩ = {2, 4, 6, 8, 10, 0} (7)

Definition 1.9. We say that a group G is cyclic if there exists an element g ∈ G such that
G is generated by g, that is, G = ⟨g⟩.

Example. The group of integers (Z,+) is an infinite cyclic group. Indeed, it is generated by
1.

1.3.4 Isomorphisms and Endomorphisms
Finally, we will define the concept of isomorphisms and endomorphisms. These are important

concepts in the world of cryptography, since they allow us to compare different groups. Namely,
suppose we have two groups (G,⊕) and (H,⊙). Is there any way to state that these two groups
are the same? The answer is yes, and this is done via isomorphisms.

Definition 1.10. A function ϕ : G→ H is called an homomorphism if it is a function that
preserves the group operation, that is,

∀a, b ∈ G : ϕ(a ⊕ b) = ϕ(a)⊙ ϕ(b). (8)

Definition 1.11. An isomorphism is a bijective homomorphism.

Definition 1.12. If there exists an isomorphism between two groups G and H, we say that
these groups are isomorphic and write G ∼= H.

Page 9

Distributed Lab ZKDL Camp

Example. Consider the group of integers (Z,+) and the group of integers modulo 12
(Z12,+). The function ϕ : Z → Z12 defined as ϕ(x) = x mod 12 is a homomorphism.
Indeed:

ϕ(a + b) = (a + b) mod 12 = (a mod 12) + (b mod 12) = ϕ(a) + ϕ(b). (9)

However, this function is not an isomorphism, since it is not bijective. For example, ϕ(0) =
ϕ(12) = 0.

Example. Additive group of reals (R,+) and the multiplicative group of positive reals
(R>0,×) are isomorphic. The function ϕ : R → R>0 defined as ϕ(x) = ex is an iso-
morphism. Indeed:

ϕ(a + b) = ea+b = ea · eb = ϕ(a) · ϕ(b). (10)

Thus, ϕ is a homomorphism. It is also injective since ex = ey =⇒ x = y . Finally, it is
obviously onto. This means (R,+) ∼= (R>0,×).

Example. All groups of order 2 are isomorphic to Z2. Indeed, let G = {g, e} – any group of
order 2, and define ϕ : Z2 → G as ϕ(0) = e and ϕ(1) = g. This is an isomorphism.

A generalization of the above example is the following quite interesting theorem:

Theorem 1.13. Suppose G = ⟨g⟩ is a finite cyclic group, meaning |G| = n ∈ N. Then,
G ∼= Zn.

Idea of the proof. Define a function ϕ : Zn → G as m 7→ gm. One can prove that this is
an isomorphism.

Here, it is quite evident that isomorphism tells us that the groups have the same structure.
Moreover, it is correct to say that if G ≡ H, then G and H are equivalent since ∼= is an
equivalence relation.

Exercise (*). Prove that ∼= is an equivalence relation.
Finally, we will define the concept of an endomorphism and automorphism to finish the

section.

Definition 1.14. An endomorphism is a function ϕ which maps set X to itself (ϕ : X → X).

Definition 1.15. An automorphism is an isomorphic endomorphism.

Example. Given a group G, fixate a ∈ G. The map ϕ : x 7→ axa−1 is an automorphism.

Last two definitions are especially frequently used in Elliptic Curves theory.

Page 10

Distributed Lab ZKDL Camp

1.4 Fields
1.4.1 Formal Definition

Although typically one introduces rings before fields, we believe that for the basic under-
standing, it is better to start with fields.

Notice that when dealing with groups, we had a single operation ⊕, which, depending on the
context, is either interpreted as addition or multiplication. However, fields allow to extend this
concept a little bit further by introducing a new operation, say, ⊙, which, combined with ⊕,
allows us to perform the basic arithmetic.

This is very similar to the real or rational numbers, for example. We can add, subtract,
multiply, and divide them. This is exactly what fields are about, but in a more abstract way.
That being said, let us see the definition.

Definition 1.16. A field is a set F with two operations ⊕ and ⊙ such that:
1. (F,⊕) is an abelian group with identity e⊕.
2. (F \ {e⊕},⊙) is an abelian group.
3. The distributive law holds: ∀a, b, c ∈ F : a ⊙ (b ⊕ c) = (a ⊙ b)⊕ (a ⊙ c).

What this definition basically states is that we can perform the following operations:
1. Addition: a ⊕ b, inherited from group structure (F,⊕).
2. Subtraction: a ⊕ (⊖b), inherited from group structure (F,⊕).
3. Multiplication: a ⊙ b, inherited from group structure (F \ {e⊕},⊙).
4. Division: a ⊙ b−1, except for b = 0, inherited from group structure (F \ {e⊕},⊙).

Example. The set of real numbers (R,+,×) is obviously a field.

Example. The set of complex numbers (C,+,×) is also a field. Indeed, let us see how we
can perform operations. Suppose we are given z = a0+a1i and w = b0+b1i with i2+1 = 0.
In this case:

1. Addition: z + w = (a0 + b0) + (a1 + b1)i .
2. Subtraction: z − w = (a0 − b0) + (a1 − b1)i .
3. Multiplication: z · w = (a0b0 − a1b1) + (a0b1 + a1b0)i .
4. Division: z/w = a0b0+a1b1

b20+b
2
1
+ a1b0−a0b1

b20+b
2
1
i .

Interestingly though, it is very difficult to come up with some more complicated, non-trivial
examples. For that reason, we will simply move to the most central field used in cryptography
– finite fields.

1.4.2 Finite Fields
Recall: we do not like reals, we want to operate with integers! But notice that (Z,+,×)

does not form a field since division is not closed. For that reason, fixate some integer p and
consider the set Zp := {0, 1, 2, . . . , p − 2, p − 1}. Now, we will define operations as follows:

Addition. To add a, b ∈ Zp, add them as usual to get c ← a + b. However, this way,
operation is not closed, since c might be easily greater than p−1 (e.g., for a = b = p−2). To

Page 11

Distributed Lab ZKDL Camp

fix this, take c ′ ∈ Zp such that c ≡ c ′ (mod p) (or, written more concisely, c ′ = (a+b) mod p).

Example. Take p = 5. Then, 3+4 = 2 in Z5 since c = 3+4 = 7 and 7 ≡ 2 = c ′ (mod 5).

Multiplication and subtraction. The algorithm is the same. Find c ← ab or c ← a − b,
respectively, and find c ′ ∈ Zp such that c ′ ≡ c (mod p).

Example. Again, suppose p = 5. Then, 3 · 4 = 2 in F5 since c = 3 · 4 = 12 and 12 ≡ 2 = c ′
(mod 5). Similarly, 3− 4 = 4 in F5 since c = 3− 4 = −1 and −1 ≡ 4 = c ′ (mod 5).

Inversion. Inversion is a bit more tricky. Recall that (Zp \{0},×) must be an abelian group,
meaning that for each a ∈ Zp there should be some x ∈ Zp such that ax = 1 (multiplication in
a sense of definition above). In other words, we need to solve the modular equation:

ax ≡ 1 (mod p). (11)

Note that there is no guarantee that for any a ∈ Zp \{0} we might find such x . For example,
take p = 10 and a = 2. Then, 2x ≡ 1 (mod 10) has no solution.

The only way to guarantee that for any a ∈ Zp \ {0} we might find such x is to take p to
be a prime number. This is the reason why we call such fields prime fields (or, in many cases,
one calls them finite fields).

So finally, with all the definitions, we can define the finite field.

Definition 1.17. A finite field (or prime field) is a set with prime number p of elements
{0, 1, . . . , p − 2, p − 1}, in which operations are defined “modulo p” (see details above).
Typically, finite fields are denoted as Fp or GF(p).

Finite fields is the core object in cryptography. Instead of real numbers or pure integers, we
will almost always use finite fields.

Remark. In many cases, one might encounter both Fp and Zp notations. The difference is
the following: when one refers to Zp, it is typically assumed that the operations are performed
in the ring of integers modulo p (meaning, only addition and multiplication), while division is
of little interest. When one refers to Fp, it is typically assumed that we need full arithmetic
(including division) for the procool.

Example. Consider 9, 14 ∈ F17. Some examples of calculations:
1. 9 + 14 = 6.
2. 9− 14 = 12.
3. 9× 14 = 7.
4. 14−1 = 11 since 14 · 11 = 154 ≡ 1 (mod 17).

1.5 Polynomials
1.5.1 Basic Definition

Polynomials are intensively used in almost all areas of cryptography. In our particular case,
polynomials will encode the information about statements we will need to prove. That being

Page 12

Distributed Lab ZKDL Camp

said, let us define what polynomial is.

Definition 1.18. A polynomial f (x) is a function of the form

p(x) = c0 + c1x + c2x
2 + · · ·+ cnxn =

n∑
k=0

ckx
k , (12)

where c0, c1, . . . , cn are coefficients of the polynomial.

Notice that for now we did not specify what are ci ’s. We are interested in the case where
ci ∈ F, where F is a field.

Definition 1.19. A set of polynomials depending on x with coefficients in a field F is denoted
as F[x], that is

F[x] =

{
p(x) =

n∑
k=0

ckx
k : ck ∈ F, k = 0, . . . , n

}
. (13)

Definition 1.20. Evaluation of polynomial p(x) ∈ F[x] at point x0 ∈ F is simply finding the
value of p(x0) ∈ F.

Example. Consider the finite field F3. Then, some examples of polynomials from F3[x] are
listed below:

1. p(x) = 1 + x + 2x2.
2. q(x) = 1 + x2 + x3.
3. r(x) = 2x3.

If we were to evaluate these polynomials at 1 ∈ F3, we would get:
1. p(1) = 1 + 1 + 2 · 1 mod 3 = 1.
2. q(1) = 1 + 1 + 1 mod 3 = 0.
3. r(1) = 2 · 1 = 2.

Definition 1.21. The degree of a polynomial p(x) = c0 + c1x + c2x2 + . . . is the largest
k ∈ Z≥0 such that ck ̸= 0. We denote the degree of a polynomial as deg p. We also denote
by F(≤m)[x] a set of polynomials of degree at most m.

Example. The degree of the polynomial p(x) = 1 + 2x + 3x2 is 2, so p(x) ∈ F(≤2)3 [x].

Theorem 1.22. For any two polynomials p, q ∈ F[x] and n = deg p,m = deg q, the following
two statements are true:

1. deg(pq) = n +m.
2. deg(p + q) = max{n,m} if n ̸= m and deg(p + q) ≤ m for m = n.

Page 13

Distributed Lab ZKDL Camp

1.5.2 Roots and divisibility

Definition 1.23. Let p(x) ∈ F[x] be a polynomial of degree deg p ≥ 1. A field element
x0 ∈ F is called a root of p(x) if p(x0) = 0.

Example. Consider the polynomial p(x) = 1 + x + x2 ∈ F3[x]. Then, x0 = 1 is a root of
p(x) since p(x0) = 1 + 1 + 1 mod 3 = 0.

One of the fundamental theorems of polynomials is following.

Theorem 1.24. Let p(x) ∈ F[x], deg p ≥ 1. Then, x0 ∈ F is a root of p(x) if and only if
there exists a polynomial q(x) (with deg q = n − 1) such that

p(x) = (x − x0)q(x) (14)

Example. Note that x0 = 1 is a root of p(x) = x2 + 2. Indeed, we can write p(x) =
(x − 1)(x − 2), so here q(x) = x − 2.

Also, this might not be obvious, but we can also divide polynomials in the same way as we
divide integers. The result of division is not always a polynomial, so we also get a remainder.

Theorem 1.25. Given f , g ∈ F[x] with g ̸= 0, there are unique polynomials p, q ∈ F[x] such
that

f = q · g + r, 0 ≤ deg r < deg g (15)

Example. Consider f (x) = x3 + 2 and g(x) = x + 1 over R. Then, we can write f (x) =
(x2 − x + 1)g(x) + 1, so the remainder of the division is 1. Typically, we denote this as:

f div g = x2 − x + 1, f mod g = 1. (16)

The notation is pretty similar to one used in integer division.

Similarly, one can define gcd, lcm, and other number field theory operations for polynomials.
However, we will not go into details here, besides mentioning the divisibility.

Definition 1.26. A polynomial f (x) ∈ F[x] is called divisible by g(x) ∈ F[x] (or, g divides
f , written as g | f) if there exists a polynomial h(x) ∈ F[x] such that f = gh.

Theorem 1.27. If x0 ∈ F is a root of p(x) ∈ F[x], then (x − x0) | p(x).

Definition 1.28. A polynomial f (x) ∈ F[x] is said to be irreducible in F if there are no
polynomials g, h ∈ F[x] both of degree more than 1 such that f = gh.

Example. A polynomial f (x) = x2 + 16 is irreducible in R. In turn, f (x) = x2 − 2 is not
irreducible since f (x) = (x −

√
2)(x +

√
2).

Page 14

Distributed Lab ZKDL Camp

Example. There are no polynomials over complex numbers C with degree more than 2 that
are irreducible. This follows from the fundamental theorem of algebra.

1.5.3 Interpolation
Now, let us ask the question: what defines the polynomial? Well, given expression p(x) =∑n
k=0 ckx

k one can easily say: “hey, I need to know the coefficients {ck}nk=0”.
Indeed, each polynomial of degree n is uniquely determined by the vector of its coefficients

(c0, c1, . . . , cn) ∈ Fn. However, that is not the only way to define a polynomial.
Suppose I tell you that p(x) = ax + b – just a simple linear function over R. Suppose I tell

you that p(x) intercepts (0, 0) and (1, 2). Then, you can easily say that p(x) = 2x .
The more general question is: suppose deg p = n, how many points do I need to define

the polynomial p(x) uniquely? The answer is n + 1 distinct points. This is the idea behind
the interpolation: the polynomial is uniquely defined by n + 1 distinct points on the plane.
An example is depicted in Figure 3. Now, let us see how we can interpolate the polynomial
practically.

Figure 3: 5 points on the plane uniquely define the polynomial of degree 4.

Theorem 1.29. Given a set of points {(x0, y0), (x1, y1), . . . , (xn, yn)} ⊂ F × F, there is a
unique polynomial L(x) of degree n such that L(xi) = yi for all i = 0, . . . , n. This polynomial
is called the Lagrange interpolation polynomial and can be found through the following
formula:

L(x) =

n∑
i=0

yiℓi(x), ℓi(x) =

n∏
j=0,j ̸=i

x − xj
xi − xj

. (17)

Lemma 1.30. The polynomials {ℓi}ni=1, in fact, have quite an interesting property:

ℓi(xj) = δi j =

{
1, i = j

0, i ̸= j
, (18)

where δi j is the Kronecker delta. Moreover, {ℓi}ni=1 form a basis of F(≤n)[x]: for any polyno-

Page 15

Distributed Lab ZKDL Camp

mial p(x) ∈ F(≤n)[x] there exist unique coefficients α0, . . . , αn ∈ F such that

p(x) =

n∑
i=0

αiℓi(x). (19)

Example. Suppose we have points (0, 1) and (1, 2). Then, the Lagrange interpolation poly-
nomial is

L(x) = 1 ·
x − 1
0− 1 + 2 ·

x − 0
1− 0 = (−1) · (x − 1) + 2 · x = x + 1 (20)

1.5.4 Some Fun: Shamir’s Secret Sharing
Shamir’s Secret Sharing, also known as (t, n)-threshold scheme, is one of the protocols

exploiting Lagrange Interpolation.
But first, let us define what secret sharing is. Suppose we have a secret data α, which

is represented as an element from some finite set F . We divide this secret into n pieces
α1, . . . , αn ∈ F in such a way:

1. Knowledge of any t shares can reconstruct the secret α.
2. Knowledge of any number of shares below t cannot be used to reconstruct the secret α.
Now, let us define the sharing scheme.

Definition 1.31. Secret Sharing scheme is a pair of efficient algorithms (Gen,Comb) which
work as follows:

• Gen(α, t, n): probabilistic sharing algorithm that yields n shards (α1, . . . , αt) for which
t shards are needed to reconstruct the secret α.

• Comb(I, {αi}i∈I): deterministic reconstruction algorithm that reconstructs the secret
α from the shards I ⊂ {1, . . . , n} of size t.

Here, we require the correctness: for every α ∈ F , for every possible output (α1, . . . , αn)←
Gen(α, t, n), and any t-size subset I of {1, . . . , n} we have

Comb(I, {αi}i∈I) = α. (21)

Now, Shamir’s protocol is one of the most famous secret sharing schemes. It works as
follows: our finite set is Fq for some large prime q. Then, algorithms in the protocol are defined
as follows:

• Gen(α, k, n): choose random k1, . . . , kt−1
R←− Fq and define the polynomial

ω(x) := α+ k1x + k2x
2 + · · ·+ kt−1x t−1 ∈ F≤(t−1)q [x], (22)

and then compute αi ← ω(i) ∈ Fq, i = 1, . . . , n. Return (α1, . . . , αn).
• Comb(I, {αi}i∈I): reconstruct the polynomial ω(x) using Lagrange interpolation and re-

turn ω(0) = α.
The combination function is possible since, having t points {i , αi}i∈I with ω(i) = αi , we can

fully reconstruct the polynomial ω(x) and then evaluate it at 0 to get α.
Instead, suppose we have only t − 1 (or less) pairs {i , αi}i∈I. Then, there are many polyno-

mials ω(x) that pass through these points (in fact, if we were in the field of real numbers, this

Page 16

Distributed Lab ZKDL Camp

C

A

B

Figure 4: Suppose we have t = 3. Having only 2 points means knowing two blue points without
knowing the red one. There are infinitely many quadratic polynomials passing through these
two points (gray dashed lines). However, knowing the third red point allows us to uniquely
determine the polynomial and thus get its value at 0. Note that this is illustrated over R, but
for Fq the logic is similar.

number would be infinite), and thus the secret α is not uniquely determined.
The intuition behind the Shamir’s protocol is illustrated in Figure 4.

Page 17

Distributed Lab ZKDL Camp

1.5.5 Some Fun: Group Implementation in Rust
In programming, we can think of a group as an interface, having a single binary operation

defined, that obeys the rules of closure, associativity, identity element, and inverse element.
For that reason, we might even code a group in Rust! We will also write a simple test to

check whether the group is valid and whether the group is abelian.
Trait for Group. First, we define a trait for a group. We will define a group as a trait with

the following methods:

1 /// Trait that represents a group.
2 pub trait Group: Sized {
3 /// Checks whether the two elements are equal.
4 fn eq(&self , other: &Self) -> bool;
5 /// Returns the identity element of the group.
6 fn identity () -> Self;
7 /// Adds two elements of the group.
8 fn add(&self , a: &Self) -> Self;
9 /// Returns the negative of the element.

10 fn negate (&self) -> Self;
11 /// Subtracts two elements of the group.
12 fn sub(&self , a: &Self) -> Self {
13 self.add(&a.negate ())
14 }
15 }

Checking group validity. Now observer the following: we get closure for free, since the
compiler will check whether the return type of the operation is the same as the type of the
group. However, there is no guarantee that associativity holds, and our identity element is at all
valid. For that reason, we need to somehow additionally check the validity of implementation.

We propose to do the following: we will randomly sample three elements from the group
a, b, c

R←− G and check our three properties:

1. a ⊕ (b ⊕ c) ?== (a ⊕ b)⊕ c .
2. a ⊕ e ?

== e ⊕ a ?
== a.

3. a ⊕ (⊖a) ?== (⊖a)⊕ a ?
== e.

Additionally, if we want to verify whether the group is abelian, we can check whether a⊕b ?
==

b ⊕ a.
For that reason, for the check, we require the group to be samplable (i.e. we can randomly

sample elements from the group):

1 /// Trait for sampling a random element from a group.
2 pub trait Samplable {
3 /// Returns a random element from the group.
4 fn sample () -> Self;
5 }

And now, our test looks as follows:

Page 18

Distributed Lab ZKDL Camp

1 /// Number of tests to check the group properties.
2 const TESTS_NUMBER: usize = 100;
3
4 /// Asserts that the given group G is valid.
5 /// A group is valid if the following properties hold:
6 /// 1. Associativity: (a + b) + c = a + (b + c)
7 /// 2. Identity: a + e = a = e + a
8 /// 3. Inverse: a + (-a) = e = (-a) + a
9 pub fn assert_group_valid <G>()

10 where
11 G: Group + Samplable ,
12 {
13 for _ in 0.. TESTS_NUMBER {
14 // Take random three elements
15 let a = G:: sample ();
16 let b = G:: sample ();
17 let c = G:: sample ();
18
19 // Check whether associativity holds
20 let ab_c = a.add(&b).add(&c);
21 let a_bc = a.add(&b.add(&c));
22 let associativity_holds = ab_c.eq(&a_bc);
23 assert!(associativity_holds , "Associativity does not hold

↪→ for the given group");
24
25 // Check whether identity element is valid
26 let e = G:: identity ();
27 let ae = a.add(&e);
28 let ea = e.add(&a);
29 let identity_holds = ae.eq(&a) && ea.eq(&a);
30 assert!(identity_holds , "Identity element does not hold for

↪→ the given group");
31
32 // Check whether inverse element is valid
33 let a_neg = a.negate ();
34 let a_neg_add_a = a_neg.add(&a);
35 let a_add_a_neg = a.add(& a_neg);
36 let inverse_holds = a_neg_add_a.eq(&e) && a_add_a_neg.eq(&e);
37 assert!(inverse_holds , "Inverse element does not hold for

↪→ the given group");
38 }
39 }
40
41 /// Asserts that the given group G is abelian.
42 /// A group is an abelian group if the following property holds:
43 /// a + b = b + a for all a, b in G (commutativity)
44 pub fn assert_group_abelian <G>()
45 where
46 G: Group + Samplable ,

Page 19

Distributed Lab ZKDL Camp

47 {
48 for _ in 0.. TESTS_NUMBER {
49 assert_group_valid ::<G>();
50
51 // Take two random elements
52 let a = G:: sample ();
53 let b = G:: sample ();
54
55 // Check whether commutativity holds
56 let ab = a.add(&b);
57 let ba = b.add(&a);
58 assert!(ab.eq(&ba), "Commutativity does not hold for the

↪→ given group");
59 }
60 }

Testing the group (Z,+). And now, we can define a group for integers and check whether
it is valid and abelian:

1 use crate:: group ::{Group , Samplable };
2 use rand::Rng;
3
4 /// Implementing group for Rotation3 <f32 >
5 impl Group for i64 {
6 fn eq(&self , other: &Self) -> bool {
7 self == other
8 }
9

10 fn identity () -> Self {
11 0i64
12 }
13
14 fn add(&self , a: &Self) -> Self {
15 self + a
16 }
17
18 fn negate (&self) -> Self {
19 -self
20 }
21 }
22
23 impl Samplable for i64 {
24 fn sample () -> Self {
25 let mut gen = rand:: thread_rng ();
26
27 // To prevent overflow , we choose a smaller range for i64
28 let min = i64::MIN / 3;
29 let max = i64::MAX / 3;
30 gen.gen_range(min..max)

Page 20

Distributed Lab ZKDL Camp

31 }
32 }

Just a small note: since we cannot generate infinite integers, we restrict the range of integers
to prevent overflow. So, for the sake of simplicity, we divide the range of integers by 3, in which
overflow never occurs.

And now, the moment of truth! Let us define some tests and run them:

1 #[cfg(test)]
2 mod tests {
3 use super ::*;
4 use group ::*;
5
6 #[test]
7 fn test_integers_are_group () {
8 assert_group_valid ::<i64 >()
9 }

10
11 #[test]
12 fn test_integers_are_abelian () {
13 assert_group_abelian ::<i64 >();
14 }
15 }

Both tests pass! Now let us consider something a bit trickier.
Testing the group SO(3). We can define a group for 3 × 3 rotation matrices. Of course,

composition of two rotation is not commutative, so we expect the abelian test to fail. However,
the group is still valid! For example, there is an identity rotation matrix E, and for each rotation
matrix A ∈ SO(3), there exists a rotation matrix A−1 ∈ SO(3) such that AA−1 = A−1A = E.
Finally, the associativity holds as well.

We will use the nalgebra library for this purpose, which contains the implementation of
rotation matrices. So our implementation can look as follows:

1 /// A threshold below which two floating point numbers are
↪→ considered equal.

2 const EPSILON: f32 = 1e-6;
3
4 /// Implementing group for Rotation3 <f32 >
5 impl Group for Rotation3 <f32 > {
6 fn eq(&self , other: &Self) -> bool {
7 // Checking whether the norm of a difference is small
8 let difference = self.matrix () - other.matrix ();
9 difference.norm_squared () < EPSILON

10 }
11
12 fn identity () -> Self {
13 Rotation3 :: identity ()
14 }

Page 21

Distributed Lab ZKDL Camp

15
16 fn add(&self , a: &Self) -> Self {
17 self * a
18 }
19
20 fn negate (&self) -> Self {
21 self.inverse ()
22 }
23 }
24
25 impl Samplable for Rotation3 <f32 > {
26 fn sample () -> Self {
27 let mut gen = rand:: thread_rng ();
28
29 // Pick three random angles
30 let roll = gen.gen_range (0.0..1.0);
31 let pitch = gen.gen_range (0.0..1.0);
32 let yaw = gen.gen_range (0.0..1.0);
33
34 Rotation3 :: from_euler_angles(roll , pitch , yaw)
35 }
36 }

Here, there are two tricky moments:
1. We cannot compare floating point numbers directly, since they might differ by a small

amount. For that reason, we define a small threshold ε. We say that two matrices are
equal iff the norm3 of their difference is less than ε.

2. To generate a random rotation matrix, we generate three random angles and create a
rotation matrix from these angles.

1.6 Exercises
Exercise 1. Which of the following statements is false?
1. (∀a, b ∈ Q, a ̸= b) (∃q ∈ R) : {a < q < b}.
2. (∀ε > 0) (∃nε ∈ N) (∀n ≥ nε) : {1/n < ε}.
3. (∀k ∈ Z) (∃n ∈ N) : {n < k}.
4. (∀x ∈ Z \ {−1}) (∃!y ∈ Q) : {(x + 1)y = 2}.
Exercise 2. Denote X := {(x, y) ∈ Q2 : xy = 1}. Oleksandr claims the following:
1. X ∩ N2 = {(1, 1)}.
2. |X ∩ Z2| = 2|X ∩ N2|.
3. X is a group under the operation (x1, y1)⊕ (x2, y2) = (x1x2, y1y2).
Which statements are true?
a) Only 1.
b) Only 1 and 2.

3one can think of norm as being the measure of “distance” between two objects. Similarly, we can define norm
not only on matrices, but on vectors as well.

Page 22

Distributed Lab ZKDL Camp

c) Only 1 and 3.
d) Only 2 and 3.
e) All statements are correct.
Exercise 3. Does a tuple (Z,⊕) with operation a ⊕ b = a + b − 1 define a group?
a) Yes, and this group is abelian.
b) Yes, but this group is not abelian.
c) No, since the associativity property does not hold.
d) No, since there is no identity element in this group.
e) No, since there is no inverse element in this group.
Exercise 4. Consider the Cartesian plane R2, where two coordinates are real numbers. For

two points A,B define the operation ⊕ as follows: A⊕B is the midpoint on segment AB. Does
(R2,⊕) define a group?

a) Yes, and this group is abelian.
b) Yes, but this group is not abelian.
c) No, since the associativity property does not hold and there is no identity element in this

group.
d) No, since the associativity property does not hold, but we might define an identity element

nonetheless.
Exercise 5. Find the inverse of 4 in F11.
a) 8
b) 5
c) 3
d) 7
Exercise 6. Suppose for three polynomials p, q, r ∈ F[x] we have deg p = 3, deg q =

4, deg r = 5. Which of the following is true for n := deg{(p − q)r}?
a) n = 9.
b) n might be less than 9.
c) n = 20.
d) n is less than deg{qr}.
Exercise 7. Define the polynomial over F5: f (x) := 4x2 + 7. Which of the following is the

root of f (x)?
a) 2
b) 3
c) 4
d) This polynomial has no roots over F5.
Exercise 8. Quadratic polynomial p(x) = ax2 + bx + c ∈ R[x] has zeros at 1 and 2 and

p(0) = 2. Find the value of a + b + c .
a) 0
b) −1
c) 1

Page 23

Distributed Lab ZKDL Camp

d) Not enough information to determine.
Exercise 9. Which of the following is a valid endomorphism f : X → X?
a) X = [0, 1], f : x 7→ x2.
b) X = [0, 1], f : x 7→ x + 1.
c) X = R>0, f : x 7→ (x − 1)3.
d) X = Q>0, f : x 7→

√
x .

Exercise 10*. Denote by GL(2,R) a set of 2×2 invertable matrices with real entries. Define
two functions ϕ : GL(2,R)→ R:

ϕ1

([
a b

c d

])
= ad − bc, ϕ2

([
a b

c d

])
= a + d (23)

Den claims the following:
1. ϕ1 is a group homomorphism between multiplicative groups (GL(2,R),×) and (R,×).
2. ϕ2 is a group homomorphism between additive groups (GL(2,R),+) and (R,+).
Which of the following is true?
a) Only statement 1 is correct.
b) Only statement 2 is correct.
c) Both statements 1 and 2 are correct.
d) None of the statements is correct.

Page 24

	Mathematics for Cryptographers
	Notation
	Set Theory
	Logic
	Randomness and Probability
	Sequences and Vectors

	Basic Number Theory
	Primes
	Deterministic prime tests
	Probabilistic prime tests

	Introduction to Abstract Algebra
	Groups
	Subgroups
	Cyclic Groups
	Isomorphisms and Endomorphisms

	Fields
	Formal Definition
	Finite Fields

	Polynomials
	Basic Definition
	Roots and divisibility
	Interpolation
	Some Fun: Shamir's Secret Sharing
	Some Fun: Group Implementation in Rust

	Exercises

