
Distributed Lab ZKDL Camp

10 Pairing-based SNARKs. Pinocchio and Groth16
10.1 Building Pairing-based SNARK
10.1.1 Attempt #1: Encrypted Verification

Now, assume we have the cyclic group G of prime order q with a generator g. Typically,
this is the group of points on an elliptic curve. Assume for simplicity that e : G×G→ GT is a
symmetric pairing function, where (GT ,×) is a target group.

Now, suppose during the setup phase, we have a trusted party that generated a random
value τ R←− F and public parameters gτ , gτ

2
, . . . , gτ

d
for d = 2|C| — maximum degree of used

polynomials (later we will use notation {gτ i}i∈[d] for brevity). Then, party deleted τ . This way,
we can now find the KZG commitment for each polynomial. Indeed, for example,

com(L) ≜ gL(τ) = g
∑d
i=0 Liτ

i

=

d∏
i=0

(gτ
i

)Li ,

and the same goes for gR(τ), gO(τ), gH(τ), gZ(τ). Now, with these points, how can we verify
that the polynomial M(x) = L(x)R(x) − O(x) is correct? Well, first notice that the check is
equivalent to

L(τ)R(τ) = Z(τ)H(τ) +O(τ).

Notice that we transferred O(τ) to the right side of the equation to further avoid finding
the inverse. Now, we can check this equality using encrypted values as follows:

e(com(L), com(R)) = e(com(Z), com(H)) · e(com(O), g),

Remark. One might ask: why is the above equation correct? Well, let us see:

e(com(L), com(R)) = e(com(Z), com(H)) · e(com(O), g) // Initial statement

⇔ e(gL(τ), gR(τ)) = e(gZ(τ), gH(τ)) · e(gO(τ), g) // KZG commitment def.

⇔ e(g, g)L(τ)R(τ) = e(g, g)Z(τ)H(τ)e(g, g)O(τ) // Pairing bilinearity

⇔ e(g, g)L(τ)R(τ) = e(g, g)Z(τ)H(τ)+O(τ) // Exponent product rule

⇔ L(τ)R(τ) = Z(τ)H(τ) +O(τ) // QAP Check

⇔ L(x)R(x) ≡ Z(x)H(x) +O(x) // Schwarz-Zippel Lemma

So, sounds like we are done. Let us summarize what we have done so far:

Page 124

Distributed Lab ZKDL Camp

Attempt #1: Non-sound SNARK Protocol

Suppose we are given a circuit C with a maximum degree d of polynomials used under-
neath. Thus, all parties additionally know the target polynomial Z(x).

Setup(1λ)

The trusted party conducts the following steps:

✓ Picks a random value τ R←− F.
✓ Calculates the public parameters {gτ i}i∈[d].
✓ Deletes τ (toxic waste).
✓ Outputs prover parameters pp← {gτ i}i∈[d] and verifier parameters vp← com(Z).

Prove(pp, x,w)

The prover P conducts the following steps:
✓ Runs the circuit with the statement x and witness w, obtains the intermediate con-

straint values, and calculates the polynomials L(x), R(x), O(x) through Lagrange
Interpolation.

✓ Calculates H(x)← (L(x)R(x)−O(x))
/
Z(x).

✓ Calculates the KZG commitments as follows:

πL ← com(L), πR ← com(R), πO ← com(O), πH ← com(H),

using powers of τ from the prover parameters pp.
✓ Publishes π = (πL, πR, πO, πH) as a proof.

Verify(vp, x,π)

Upon receiving π = (πL, πR, πO, πH), using com(Z) from the verifier parameters vp, the
verifier V checks:

e(πL, πR) = e(com(Z), πH) · e(πO, g).

This sounds like an end to the story. However, there is a problem with this approach: there is
no guarantee that commitments πL, πR, πO, πH were indeed obtained through exponentiating
the base g by the corresponding values L(τ), R(τ), O(τ), and H(τ). In other words, how can
the verifier know that prover indeed knows, say, polynomial L(x) such that πL = gL(τ)?

10.1.2 Attempt #2: Including Proof of Exponent
In this section, we introduce the Proof of Exponent assumption (PoE) which makes KZG

knowledge sound. Let us define it below.

Page 125

Distributed Lab ZKDL Camp

Definition 10.1 (Proof of Exponent for KZG Commitment). A Proof of Exponent (PoE)
is a protocol that allows the prover P to convince the verifier V that he obtained a value
com(f) through exponentiating a base g by f (τ). The protocol works as follows:

1. Setup: Proper parameters pp now contain not only {gτ i}i∈[d], but also {gατ i}i∈[d] for

randomly selected τ, α R←− F and further deleted values.
2. Commit: P commits to two values: com(f) = gf (τ) and com′(f) = gαf (τ). The latter

can be computed using pp as follows:

com′(f) =

d∏
i=0

(gατ
i

)fi

3. Verify: V additionally checks e(com(f), gα) = e(com′(f), g).

The informal reason why it makes KZG commitment sound is following: suppose we have an
adversary prover P∗ that published commitment c without knowing underlying polynomial f (x).
Now, there is no way for him to cheat the verifier. Indeed, what P∗ needs to do is calculating
cα, but he does now know α since, similarly to τ , it was deleted as a part of the toxic waste.
Besides, he cannot obtain α for the same reason he cannot obtain τ .

For that reason, we modify the SNARK protocol to include not only commitments to poly-
nomials but also PoE for each of them. Let us see how it looks like.

Page 126

Distributed Lab ZKDL Camp

Attempt #2: SNARK with PoE included

Suppose we are given a circuit C with a maximum degree d of polynomials used under-
neath. Thus, all parties additionally know the target polynomial Z(x).

Setup(1λ)

The trusted party conducts the following steps:

✓ Picks a random value τ, α R←− F.
✓ Calculates the public parameters {gτ i}i∈[d], {gατ

i}i∈[d].
✓ Deletes τ, α (toxic waste).
✓ Outputs proper parameters pp← {{gτ i}i∈[d], {gατ

i}i∈[d]}, and verification parame-
ters vp← {gZ(τ), gα}.

Prove(pp, x,w)

The prover P conducts the following steps:
✓ Runs the circuit with the statement x and witness w, obtains the intermediate con-

straint values, and calculates the polynomials L(x), R(x), O(x) through Lagrange
Interpolation.

✓ Calculates H(x)← (L(x)R(x)−O(x))
/
Z(x).

✓ Calculates the sound KZG commitments as follows:

πL ← gL(τ), π′L ← gαL(τ)

πR ← gR(τ), π′R ← gαR(τ)

πO ← gO(τ), π′O ← gαO(τ)

πH ← gH(τ), π′H ← gαH(τ).

using powers {gτ i}i∈[d] and {gατ i}i∈[d] from the proper parameters pp.
✓ Publishes π = (πL, π′L, πR, π

′
R, πO, π

′
O, πH, π

′
H) as a proof.

Verify(vp, x,π)

Upon receiving π = (πL, π′L, πR, π
′
R, πO, π

′
O, πH, π

′
H), the verifier V checks:

e(πL, πR) = e(g
Z(τ), πH) · e(πO, g), // Polynomial Equality Test

e(πL, g
α) = e(π′L, g), e(πR, g

α) = e(π′R, g), // Proof of Exponent

e(πO, g
α) = e(π′O, g), e(πH, g

α) = e(π′H, g). // Proof of Exponent

The provided protocol is secure under the PoE assumption. However, it is still not fully sound.
Currently, there is no guarantee that when evaluating πL, πR, πO we used the same extended
witness w. In other words, the prover can still cheat by using different extended witnesses for
each polynomial (faking the proof system is still hard in this situation, but we want to make
sure to eliminate all possible weaknesses). Let us see how to fix this!

Page 127

Distributed Lab ZKDL Camp

10.1.3 Attempt #3: Making SNARK Sound
Besides fixing the issue with consistent use of witness w, we additionally include one more

optimization we have not included so far.
Optimization. Left/Right/Output Polynomial Preprocessing. Recall that:

L(x) =

n∑
i=0

wiLi(x), R(x) =

n∑
i=0

wiRi(x), O(x) =

n∑
i=0

wiOi(x).

while M(x) = L(x)R(x) − O(x) is only known to the prover P since it contains the extended
witness (w) coefficients. However, the set of polynomials

{Li(x)}i∈[n], {Ri(x)}i∈[n], {Oi(x)}i∈[n]

are known in advance. Meaning, we can precompute the values of {gLi (τ)}i∈[n], {gαLi (τ)}i∈[n],
{gRi (τ)}i∈[n], {gαRi (τ)}i∈[n], {gOi (τ)}i∈[n], {gαOi (τ)}i∈[n] and use them in the prover parameters pp.

How? Suppose the prover P knows the extended witness w. Consider the polynomial
L(x) =

∑n
i=0 wiLi(x). P can compute the KZG commitment πL and its PoE π′L as follows:

πL ≜ g
L(τ) = g

∑n
i=0 wiLi (τ) =

n∏
i=0

(gLi (τ))wi , π′L ≜ g
αL(τ) = gα

∑n
i=0 wiLi (τ) =

n∏
i=0

(gαLi (τ))wi .

Fix. Witness consistency check.
Introducing new term with β. To prove that the same w is used in all commitments, we

need some “checksum” term that will somehow combine all polynomials L(x), R(x), and O(x)
with the witness w. Moreover, we will need to compare this term with proofs πL, πR, and πO.
The best candidate for this is the following group element for some other random β

R←− F:

πβ = g
L(τ)+R(τ)+O(τ) =

n∏
i=1

(gLi (τ)+Ri (τ)+Oi (τ))wi , π′β =

n∏
i=1

(gβ(Li (τ)+Ri (τ)+Oi (τ)))wi

This way, we get a term that includes all three polynomials L(x), R(x), and O(x), and all
coefficients of the extended witness w. Moreover, verifier V can compare πβ with three other
commitments πL, πR, πO to ensure that all of them are consistent. This is done through the
following check:

e(πLπRπO, g
β) = e(π′β, g).

Again, this approach still has a weakness (yeah-yeah, I am also tired of this). Indeed, this
check is complete (meaning, if w is used consistently across πL, πR, πO, then the check will
pass), but it is still not sound with an overwhelming probability. Indeed, suppose w is used in-
consistently, meaning, we have extended witnesses wL, wR, wO, and wβ, each for corresponding
polynomials. If the witness is consistent, the following condition must hold:

(wL,iLi(τ) + wR,iRi(τ) + wO,iOi(τ))β = wβ,iβ(Li(τ) + Ri(τ) +Oi(τ)) ∀i ∈ [n]

Assume otherwise. Consider a simple situation where it happens that Li ≡ Ri , meaning
Li(τ) and Ri(τ) are the same (call them q). Then,

(wL,i + wR,i)q + wO,iOi(τ) = wβ,i(2q +Oi(τ)) ∀i ∈ [n]

Page 128

Distributed Lab ZKDL Camp

For arbitrarily chosen wR,i and wO,i , the adversary prover P∗ can set wβ,i := wO,i and wL,i =
2wO,i −wR,i . It is easy to verify that the above equation would hold, meaning that w is not the
same across all polynomials.

One might ask: well, situation when Li ≡ Ri is very rare! Indeed, but there also might be
situations where Li ≡ 5Ri , Ri ≡ 100Oi , or Li ≡ 235Oi — all of them would lead to the same
issue. So what is the solution?

Introducing separate βL, βR, βO. Our proposal is to make β different for each polyno-
mial L(x), R(x), O(x), making it much harder for the adversary to find inconsistent witnesses.
That being said, during the setup phase, we choose arbitrary βL, βR, βO

R←− F and publish
{gβLLi (τ)+βRRi (τ)+γOOi (τ)}i∈[n] as a part of the prover parameters pp. Then, the prover P calcu-
lates the following additional commitment:

πβ ←
n∏
i=1

(gβLLi (τ)+βRRi (τ)+βOOi (τ))wi

and then publishes πβ as a part of the proof. The verifier V checks the following condition:

e(πL, g
βL) · e(πR, gβR) · e(πO, gβO) = e(πβ, g).

Even that is not the end of the story! We also need to make sure that gβL, gβR , and gβO

are incompatible with g
∑n
i=0(βLL(τ)+βRR(τ)+βOO(τ))wi (for reasons we drop here due to already long

explanation). For that reason, we multiply βL, βR, βO by some random factor γ R←− F. This
way, the proving part remains the same, but the check becomes:

e(πL, g
γβL) · e(πR, gγβR) · e(πO, gγβO) = e(πβ, gγ).

Oof, that was a long fix! Let us come back to the new version of the SNARK protocol (not
yet zero-knowledge)!

Page 129

Distributed Lab ZKDL Camp

Attempt #3: Sound SNARK Protocol

Suppose we are given a circuit C with a maximum degree d of polynomials used under-
neath. Thus, all parties additionally know the target polynomial Z(x).

Setup(1λ)

The trusted party conducts the following steps:

✓ Picks random values τ, α, βL, βR, βO, γ
R←− F.

✓ Outputs prover parameters pp and verification parameters vp:

pp←
{
{gτ i}i∈[d], {gLi (τ), gαLi (τ), gRi (τ), gαRi (τ),

gOi (τ), gαOi (τ), gβLLi (τ)+βRRi (τ)+βOOi (τ)}i∈[n]
}

vp←
{
gZ(τ), gα, gβL, gβR , gβO , gβLγ, gβRγ, gβOγ, gγ

}
✓ Deletes aforementioned random scalars (toxic waste).

Prove(pp, x,w)

The prover P conducts the following steps:
✓ Runs the circuit to get w and L(x), R(x), O(x).
✓ Calculates H(x)← (L(x)R(x)−O(x))

/
Z(x).

✓ Calculates the sound KZG commitments as follows:

πL ← gL(τ), π′L ← gαL(τ),

πR ← gR(τ), π′R ← gαR(τ),

πO ← gO(τ), π′O ← gαO(τ),

πH ← gH(τ), π′H ← gαH(τ).

✓ Calculates the additional commitment πβ as follows:

πβ ← gβLL(τ)+βRR(τ)+βOO(τ)

✓ Publishes π = (πL, π′L, πR, π
′
R, πO, π

′
O, πH, π

′
H, πβ) as a proof.

Verify(vp, x,π)

Upon receiving π = (πL, π′L, πR, π
′
R, πO, π

′
O, πH, π

′
H, πβ), the verifier V checks:

e(πL, πR) = e(g
Z(τ), πH) · e(πO, g), // Polynomial Equality Test

e(πL, g
α) = e(π′L, g), e(πR, g

α) = e(π′R, g), // Proof of Exponent

e(πO, g
α) = e(π′O, g), e(πH, g

α) = e(π′H, g), // Proof of Exponent

e(πL, g
γβL) · e(πR, gγβR) · e(πO, gγβO) = e(πβ, gγ). // Extended Witness Consistency

Page 130

Distributed Lab ZKDL Camp

10.1.4 Attempt #4: Splitting the Extended Witness
Now, recall that the actual circuit C is defined for some statement x and witness w. According

to the Circuit Satisfability Problem, the prover P wants to convince the verifier V that he knows
the witness w such that the circuit C(x,w) = 0. Up until now, we have been using the extended
witness w̃ to represent the trace of computation. However, we can split the witness into two
parts: the first part wmid — intermediate witness that contains the private witness Rw and
intermediate variables values, and the second part wio — input/output witness that contains
public statement information (e.g., x). Suppose for vector w̃ = (w̃1, . . . , w̃n) we pick out the
set of indeces Imid ⊂ [n] to represent the intermediate witness and Iio ⊂ [n] to represent the
input/output witness (of course, Imid ∩ Iio = ∅ and Imid ∪ Iio = [n]).

Now, how do we split the proofs πL, πR, . . . into two parts? Well, consider for instance πL:

πL = g
∑n
i=0 wiLi (τ).

We split this expression as follows:

πL = g
∑
i∈Imid

wiLi (τ)︸ ︷︷ ︸
new πL

× g
∑
i∈Iio

wiLi (τ)︸ ︷︷ ︸
πL,io

.

This way, the prover P first calculates the new commitment πL using only the intermediate
witness wmid and then the verifier can compute the “public” portion of the proof πL,io using the
input/output witness wio (which is typically quite easy to do since |Iio| is typically much smaller
than |Imid|). The same goes for other parts of the proof π.

Now, let us formulate the updated SNARK protocol with the extended witness split.

Page 131

Distributed Lab ZKDL Camp

Attempt #4: Sound SNARK for Public/Private Inputs

Suppose we are given a circuit C with a maximum degree d of polynomials used under-
neath. Thus, all parties additionally know the target polynomial Z(x). Additionally, we
know that Iio corresponds to public signals, while Imid corresponds to private signals.

Setup(1λ)

The trusted party conducts the following steps:

✓ Picks random values τ, α, βL, βR, βO, γ
R←− F.

✓ Outputs prover parameters pp and verification parameters vp:

pp←
{
{gτ i}i∈[d], {gLi (τ), gαLi (τ), gRi (τ), gαRi (τ),

gOi (τ), gαOi (τ), gβLLi (τ)+βRRi (τ)+βOOi (τ)}i∈Imid

}
vp←

{
gZ(τ), gα, gβL, gβR , gβO , gβLγ, gβRγ, gβOγ, gγ, {gLi (τ), gRi (τ), gOi (τ)}i∈Iio

}
✓ Deletes aforementioned random scalars (toxic waste).

Prove(pp, x,w)

The prover P conducts the following steps:
✓ Runs the circuit to get w and L(x), R(x), O(x).
✓ Calculates H(x)← (L(x)R(x)−O(x))

/
Z(x).

✓ Splits L(x) = Lmid(x) + Lio(x) — intermediate and input/output parts. That being
said, Lmid(x) =

∑
i∈Imid

Li(x). Repeat for R(x) and O(x).
✓ Calculates the following values:

πL ← gLmid(τ), π′L ← gαLmid(τ),

πR ← gRmid(τ), π′R ← gαRmid(τ),

πO ← gOmid(τ), π′O ← gαOmid(τ),

πH ← gH(τ), π′H ← gαH(τ),

πβ ← gβLL(τ)+βRR(τ)+βOO(τ).

✓ Publishes π = (πL, π′L, πR, π
′
R, πO, π

′
O, πH, π

′
H, πβ) as a proof.

Verify(vp, x,π)

Upon receiving π = (πL, π′L, πR, π
′
R, πO, π

′
O, πH, π

′
H, πβ), the verifier V:

✓ Finds π∗L ← πL
∏
i∈Iio
(gLi (τ))wi , π∗R ← πR

∏
i∈Iio
(gRi (τ))wi , π∗O ← πO

∏
i∈Iio
(gOi (τ))wi

✓ Checks whether all of the following conditions hold:

e(π∗L, π
∗
R) = e(g

Z(τ), πH) · e(π∗O, g), // Polynomial Equality Test

e(πL, g
α) = e(π′L, g), e(πR, g

α) = e(π′R, g), // Proof of Exponent

e(πO, g
α) = e(π′O, g), e(πH, g

α) = e(π′H, g), // Proof of Exponent

e(πL, g
γβL) · e(πR, gγβR) · e(πO, gγβO) = e(πβ, gγ). // Extended Witness Consistency

Page 132

Distributed Lab ZKDL Camp

10.1.5 Attempt #5: Making SNARK Zero-Knowledge
Finally, we came to the point where we need to make the protocol zero-knowledge. As it

turns out, it is not that hard to do (compared to what we have done so far)!

Remark. Currently, you might have a reasonable question: the proof contains quantities
such as gL(τ), gR(τ), gO(τ) and variations of them. As long as discrete logarithm holds, there
is no PPT adversary that would be able to extract coefficients of L(x), R(x), O(x) from
published KZG commitments (and respective PoE shifts and witness consistency proof). So
what could be the issue?
This reasoning is correct. In other words, the adversary will not learn coefficients of polyno-
mials and therefore will not be able to get the witness fully. However, the zero-knowledge
property ensures that the adversary cannot draw conclusions based on proof π. However, in
our current version, we do have SNARK, but not zk-SNARK. For instance, currently anyone
can check whether L ≡ R (by checking πL = πR) or that L ≡ 11R (by checking πL = π11R).

The main idea to make our protocol zero-knowledge is to “shift” our commitments by some
random factor δ. Of course, this “shift” δ must be different for each commitment and must be
chosen by the prover P. This way, we propose to modify the commitments as follows:

πL = g
∑
i∈Imid

wiLi (τ)+δLZ(τ) = (gZ(τ))δL
∏
i∈Imid

(gLi (τ))wi , π′L = (g
αZ(τ))δL

∏
i∈Imid

(gαLi (τ))wi

πR = g
∑
i∈Imid

wiRi (τ)+δRZ(τ) = (gZ(τ))δR
∏
i∈Imid

(gRi (τ))wi , π′R = (g
αZ(τ))δR

∏
i∈Imid

(gαRi (τ))wi

πO = g
∑
i∈Imid

wiOi (τ)+δOZ(τ) = (gZ(τ))δO
∏
i∈Imid

(gOi (τ))wi , π′O = (g
αZ(τ))δO

∏
i∈Imid

(gαOi (τ))wi

for randomly selected δL, δR, δO
R←− Zq. Good, we concealed all the information about the

witness w in the commitment. However, we need to make sure that the verifier V can still verify
the proof, but without modifying the verification mechanism itself. Notice that PoE verifications
are still valid, but we need to modify something to make polynomial equality test hold. This
can be done by perturbating the polynomial H(x) by some (currently) unknown value ∆H. Let
us derive it from the polynomial equality test:

(L(x) + δLZ(x))(R(x) + δRZ(x)) = (H(x) + ∆H)Z(x) + (O(x) + δOZ(x)),

which, by expanding, gives us the following equation:

������
L(x)R(x)+δRL(x)Z(x)+δLZ(x)R(x)+δLδRZ(x)

2 = ((((((((((
H(x)Z(x) +O(x)+∆HZ(x)+δOZ(x),

where we can cancel out L(x)R(x) and H(x)Z(x) +O(x) terms since they are equal based
on initial construction. This way, we get the following expression for ∆H:

∆H = δO + δRL(x) + δLR(x) + δLδRZ(x)

Therefore, our fourth proof system becomes:

πH = g
H(τ)+δO+δRL(τ)+δLR(τ)+δLδRZ(τ), π′H = g

α(H(τ)+δO+δRL(τ)+δLR(τ)+δLδRZ(τ)).

Page 133

Distributed Lab ZKDL Camp

Finally, we need to make sure that our witness consistency proof πβ is still valid. Since
previously we had πβ = gβLL(τ)+βRR(τ)+βOO(τ), we need to modify it to include the new δ values.
Namely, we change L(τ) to L(τ)+δLZ(τ), R(τ) to R(τ)+δRZ(τ), and O(τ) to O(τ)+δOZ(τ).
This way, our new πβ becomes:

This can be done by changing it into:

πβ = g
βLL(τ)+βRR(τ)+βOO(τ)+(δLβL+δRβR+δOβO)Z(τ)

=
(
gβLZ(τ)

)δL (
gβRZ(τ)

)δR (
gβOZ(τ)

)δO
gβLL(τ)+βRR(τ)+βOO(τ).

Oof. Finally, we also have a zero-knowledge property for our SNARK. Let us summarize
what has changed for the prover P.

Proposition 10.2 (Including ZK in general-purpose SNARK). Now, the prover P samples
random scalars δL, δR, δO

R←− Zq and calculates the following commitments:
• Updated Commitments for L,R,O: Now, the prover P needs to calculate the com-

mitments πL, πR, πO with the additional δ’s values to ensure zero-knowledge property:

πL ← g
∑
i∈Imid

wiLi (τ)+δLZ(τ), π′L ← gα
∑
i∈Imid

wiLi (τ)+δLZ(τ),

πR ← g
∑
i∈Imid

wiRi (τ)+δRZ(τ), π′R ← gα
∑
i∈Imid

wiRi (τ)+δRZ(τ),

πO ← g
∑
i∈Imid

wiOi (τ)+δOZ(τ), π′O ← gα
∑
i∈Imid

wiOi (τ)+δOZ(τ).

• Updated Commitment for H: The prover P needs to calculate the commitment πH
with the additional δ’s values to ensure polynomial equality test is satisfied:

πH ← gH(τ)+δO+δRL(τ)+δLR(τ)+δLδRZ(τ), π′H ← gα(H(τ)+δO+δRL(τ)+δLR(τ)+δLδRZ(τ)).

• Updated Witness Consistency Proof: The prover P needs to calculate the commit-
ment πβ with the additional δ’s values to ensure witness consistency:

πβ ←
(
gβLZ(τ)

)δL (
gβRZ(τ)

)δR (
gβOZ(τ)

)δO
gβLL(τ)+βRR(τ)+βOO(τ).

Let us now look at the final version of our basic SNARK protocol.

Page 134

Distributed Lab ZKDL Camp

Attempt #5: Turning SNARK into zk-SNARK

Suppose we are given a circuit C with a maximum degree d of polynomials used underneath.
Thus, all parties additionally know the target polynomial Z(x). Additionally, we know that Iio
corresponds to public signals, while Imid corresponds to private signals.

Setup(1λ)

The trusted party conducts the following steps:

✓ Picks random values τ, α, βL, βR, βO, γ
R←− F.

✓ Outputs prover parameters pp and verification parameters vp:

pp←
{
{gτ i}i∈[d], {gZ(τ), gLi (τ), gαLi (τ), gRi (τ), gαRi (τ),

gOi (τ), gαOi (τ), gβLLi (τ), gβRRi (τ), gβOOi (τ)}i∈Imid

}
vp←

{
gZ(τ), gα, gβL , gβR , gβO , gβLγ , gβRγ , gβOγ , gγ , {gLi (τ), gRi (τ), gOi (τ)}i∈Iio

}
✓ Deletes aforementioned random scalars (toxic waste).

Prove(pp, x,w)

The prover P conducts the following steps:
✓ Runs the circuit to get w and L(x), R(x), O(x).
✓ Calculates H(x)← (L(x)R(x)−O(x))

/
Z(x).

✓ Splits L(x) = Lmid(x) + Lio(x) — intermediate and input/output parts. That being said,
Lmid(x) =

∑
i∈Imid

Li(x). Repeat for R(x) and O(x).

✓ Samples δL, δR, δO
R←− F and calculates the following values:

πL ← gLmid(τ)
(
gZ(τ)

)δL
, π′L ← gαLmid(τ)

(
gαZ(τ)

)δL
,

πR ← gRmid(τ)
(
gZ(τ)

)δR
, π′R ← gαRmid(τ)

(
gZ(τ)

)δR
,

πO ← gOmid(τ)
(
gZ(τ)

)δO
, π′O ← gαOmid(τ)

(
gZ(τ)

)δO
,

πH ← gH(τ)(gδO)(gR(τ))δL(gL(τ))δR(gZ(τ))δLδR ,

π′H ← gαH(τ)(gδO)(gR(τ))δL(gL(τ))δR(gZ(τ))δLδR ,

πβ ←
(
gβLZ(τ)

)δL (
gβRZ(τ)

)δR (
gβOZ(τ)

)δO
gβLL(τ)+βRR(τ)+βOO(τ).

✓ Publishes π = (πL, π′L, πR, π
′
R, πO, π

′
O, πH, π

′
H, πβ) as a proof.

Verify(vp, x,π)

Upon receiving π = (πL, π′L, πR, π
′
R, πO, π

′
O, πH, π

′
H, πβ), the verifier V:

✓ Finds π∗L ← πL
∏
i∈Iio
(gLi (τ))wi , π∗R ← πR

∏
i∈Iio
(gRi (τ))wi , π∗O ← πO

∏
i∈Iio
(gOi (τ))wi

✓ Checks whether all of the following conditions hold:

e(π∗L, π
∗
R) = e(g

Z(τ), πH) · e(π∗O, g), // Polynomial Equality Test

e(πL, g
α) = e(π′L, g), e(πR, g

α) = e(π′R, g), // Proof of Exponent

e(πO, g
α) = e(π′O, g), e(πH, g

α) = e(π′H, g), // Proof of Exponent

e(πL, g
γβL) · e(πR, gγβR) · e(πO, gγβO) = e(πβ, gγ). // Extended Witness Consistency

Page 135

Distributed Lab ZKDL Camp

10.2 Real Protocols
While our built protocol is zk-SNARK, it is still not optimized for practical use. In fact, let

us recap what is complexity of our protocol.

Proposition 10.3 (Complexity of the Basic Protocol). Suppose circuit consists of n gates.
Then, the complexity of the basic protocol is as follows:

• Proof Size: O(1) — we have a constant number of group elements.
• Setup Time: O(n) — we need to calculate powers of τ and evaluations at τ .
• Prover Time: O(n log n) — using FFT and wise choice of Ω.
• Verifier Time: O(1) — we have a constant number of pairings to evaluate.

However, O(1) is not very descriptive for proof and verifier complexities, so let us provide a
more detailed analysis.

• Proof Size: 9 G group elements.
• Verifier Time: 15 pairings and O(|Iio|) group multiplications.

Now, this is not bad at all! In fact, this is already practical for many applications. However,
we can do better by a more clever choice of constants and terms. This is exactly what is
done by Bryan Parno and Craig Gentry in their research “Pinocchio: Nearly Practical Verifiable
Computation”.

10.2.1 Pinocchio Protocol
We first begin from the non-zero-knowledge version of the Pinocchio Protocol and then

extend it to the zero-knowledge version.
Setup Procedure. The Pinocchio Protocol exploits the idea that we might choose different

generators for L(x), R(x), and O(x). Namely, the protocol begins from choosing random
ρL, ρR

R←− F. Then, we define ρO ≜ ρLρR, and finally introduce the following generators:

gL ≜ g
ρL, gR ≜ g

ρR , gO ≜ g
ρO = gρLρR

The next change is that we use different α values for L(x), R(x), and O(x). Namely, we
define αL, αR, αO

R←− F and use them in the commitments. This way, in the setup phase, we
additionally prepare the following values:

{gLi (τ)L , g
αLLi (τ)
L , g

Ri (τ)
R , g

αRRi (τ)
R , g

Oi (τ)
O , g

αOOi (τ)
O }i∈Imid

Instead of using three different β’s, the Pinocchio Protocol uses a single β R←− F:

{gβLi (τ)L , g
βRi (τ)
R , g

βOi (τ)
O }i∈Imid

And finally, since we also have a γ R←− F for the extended witness consistency and some other
missing quantities, we also prepare the following values:

g
Z(τ)
O , gαL, gαR , gαO , gβγ, gγ

Proving. Again, suppose intermediate polynomials for indices Imid are Lmid(x) =
∑
i∈Imid

wiLi(x)

and similarly for Rmid(x) and Omid(x). The prover P calculates the following commitments:

Page 136

Distributed Lab ZKDL Camp

πL ← g
Lmid(τ)
L , π′L ← g

αLLmid(τ)
L ,

πR ← g
Rmid(τ)
R , π′R ← g

αRRmid(τ)
R ,

πO ← g
Omid(τ)
O , π′O ← g

αOOmid(τ)
O ,

πH ← gH(τ), πβ ← g
βLmid(τ)
L g

βRmid(τ)
R g

βOmid(τ)
O ,

and then uses these commitments in the proof π = (πL, π′L, πR, π
′
R, πO, π

′
O, πH, πβ).

Verification. First, the verifier checks the PoE properties:

e(πL, g
αL
L) = e(π

′
L, gL), e(πR, g

αR
R) = e(π

′
R, gR), e(πO, g

αO
O) = e(π

′
O, gO).

Next, we check the extended witness consistency:

e(πLπRπO, g
βγ) = e(πβ, g

γ)

The verifier restores the full proof π∗L, π
∗
R, π

∗
O by multiplying the public part of the proof with

the corresponding private part. This is done as follows:

π∗L ← πL
∏
i∈Iio

(g
Li (τ)
L)wi , π∗R ← πR

∏
i∈Iio

(g
Ri (τ)
R)wi , π∗O ← πO

∏
i∈Iio

(g
Oi (τ)
O)wi .

And finally, we check the polynomial equality test:

e(π∗L, π
∗
R) = e(g

Z(τ)
O , πH) · e(π∗O, g)

Zero-Knowledge Extension. The zero-knowledge extension of the Pinocchio Protocol is
done exactly in the same way as we did for the basic SNARK protocol. Namely, we introduce
random scalars δL, δR, δO

R←− F and calculate the following commitments:

πL ← g
Lmid(τ)
L

(
g
Z(τ)
L

)δL
, π′L ← g

αLLmid(τ)
L

(
g
αLZ(τ)
L

)δL
,

πR ← g
Rmid(τ)
R

(
g
Z(τ)
R

)δR
, π′R ← g

αRRmid(τ)
R

(
g
αRZ(τ)
R

)δR
,

πO ← g
Omid(τ)
O

(
g
Z(τ)
O

)δO
, π′O ← g

αOOmid(τ)
O

(
g
αOZ(τ)
O

)δO
,

πH ← gH(τ)(gδO)(gδL)(gδR)(gδLδR),

πβ ←
(
g
βZ(τ)
L

)δL (
g
βZ(τ)
R

)δR (
g
βZ(τ)
O

)δO
g
βLmid(τ)
L g

βRmid(τ)
R g

βOmid(τ)
O

Let us see what has changed in the Pinocchio Protocol.

Proposition 10.4. Pinocchio Protocol Proof size and verifier time complexity, compared to
the basic SNARK protocol, are as follows:

• Proof Size: 8 G group elements.
• Verifier Time: 11 pairings and O(|Iio|) group multiplications (4 less!)

Let us see the complete specification of the Pinocchio Protocol.

Page 137

Distributed Lab ZKDL Camp

Pinocchio Protocol

Suppose we are given a circuit C with a maximum degree d of polynomials used underneath.
Thus, all parties additionally know the target polynomial Z(x). Additionally, we know that Iio
corresponds to public signals, while Imid corresponds to private signals.

Setup(1λ)

The trusted party conducts the following steps:

✓ Picks random values τ, αL, αR, αO, β, γ, ρL, ρR
R←− F.

✓ Calculates ρO ← ρLρR and defines generators gL ← gρL , gR ← gρR , gO ← gρO .
✓ Outputs prover parameters pp and verification parameters vp:

pp←
{
{gτ i}i∈[d], {g

Li (τ)
L , g

αLLi (τ)
L , g

Ri (τ)
R , g

αRRi (τ)
R , g

Oi (τ)
O , g

αOOi (τ)
O ,

g
βLi (τ)
L , g

βRi (τ)
R , g

βOi (τ)
O }i∈Imid ,

g
αLZ(τ)
L , g

Z(τ)
L , g

Z(τ)
R , g

Z(τ)
O , g

αRZ(τ)
R , g

αOZ(τ)
O , g

βZ(τ)
L , g

βZ(τ)
R , g

βZ(τ)
O

}
vp←

{
g
Z(τ)
O , gαL , gαR , gαO , gβγ , gγ , {gLi (τ)L , g

Ri (τ)
R , g

Oi (τ)
O }i∈Iio

}
✓ Deletes aforementioned random scalars (toxic waste).

Prove(pp, x,w)

The prover P conducts the following steps:
✓ Runs the circuit to get w and L(x), R(x), O(x).
✓ Calculates H(x)← (L(x)R(x)−O(x))

/
Z(x).

✓ Splits L(x) = Lmid(x) + Lio(x) — intermediate and input/output parts. Repeat for R(x)
and O(x).

✓ Samples δL, δR, δO
R←− F and publishes the following values as a proof π:

πL ← g
Lmid(τ)
L

(
g
Z(τ)
L

)δL
, π′L ← g

αLLmid(τ)
L

(
g
αLZ(τ)
L

)δL
,

πR ← g
Rmid(τ)
R

(
g
Z(τ)
R

)δR
, π′R ← g

αRRmid(τ)
R

(
g
αRZ(τ)
R

)δR
,

πO ← g
Omid(τ)
O

(
g
Z(τ)
O

)δO
, π′O ← g

αOOmid(τ)
O

(
g
αOZ(τ)
O

)δO
,

πH ← gH(τ)(gδO)(gδL)(gδR)(gδLδR),

πβ ←
(
g
βZ(τ)
L

)δL (
g
βZ(τ)
R

)δR (
g
βZ(τ)
O

)δO
g
βLmid(τ)
L g

βRmid(τ)
R g

βOmid(τ)
O

Verify(vp, x,π)

Upon receiving π = (πL, π′L, πR, π
′
R, πO, π

′
O, πH, πβ), the verifier V:

✓ Finds π∗L ← πL
∏
i∈Iio
(g
Li (τ)
L)wi , π∗R ← πR

∏
i∈Iio
(g
Ri (τ)
R)wi , π∗O ← πO

∏
i∈Iio
(g
Oi (τ)
O)wi

✓ Checks whether all of the following conditions hold:

e(π∗L, π
∗
R) = e(g

Z(τ)
O , πH) · e(π∗O, g), // Polynomial Equality Test

e(πL, g
αL
L) = e(π

′
L, gL), e(πR, g

αR
R) = e(π

′
R, gR), // Proof of Exponent

e(πO, g
αO
O) = e(π

′
O, gO), // Proof of Exponent

e(πLπRπO, g
γβ) = e(πβ, g

γ). // Extended Witness Consistency

Page 138

Distributed Lab ZKDL Camp

10.2.2 Groth16 Protocol
Finally, Groth16 allows to reduce the number of pairings down to 3! This is done through a

technique called Generic Group Model (GGM for short). Simply put, GGM allows the adversary
to only make oracle requests to compute the group operations. For example, having a set
{gαRi (τ)}i∈[d], adversary can compute only linear combinations of these values. In the particular
case of Groth16, instead of considering Li(x), Ri(x), and Oi(x) separately, we construct their
linear combinations as Qi(x) := βLi(x)+αRi(x)+Oi(x), where α and β are toxic parameters.

Let us now concretely describe the Groth16 construction.
Asymmetric Pairing. One change which was made in Groth16 is using the asymmetric

pairing function e : G1 ×G2 → GT over groups G1 and G2 (for more details, see Section 4.3).
Suppose respective group generators are g1 ∈ G1 and g2 ∈ G2. The primary reason for this is
that calculating the pairing in asymmetric setting is more efficient than in symmetric setting.
Other than that, Groth16 can be easily formulated using symmetric pairings.

Setup Procedure. In Groth16, we need only five random scalars: α, β, γ, δ, τ R←− F. Now,
the prover key pk looks as follows:

pp←

(
gα1 , g

β
1 , g

δ
1,

{
gτ
i

1 ,
βLi(τ) + αRi(τ) +Oi(τ)

γ
,
τ iZ(τ)

δ

}
i∈[n]

, gβ2 , g
δ
2, g

γ
2 , {gτ

i

2 }i∈[d]

)

Proving. Sample random δL, δR
R←− F and compute the following values:

πL ← g
α+

∑n
i=1 wiLi (τ)+δLδ

1 , πR ← g
β+

∑n
i=0 wiRi (τ)+δRδ

2 , πO ← g
Qmid(τ)+H(τ)Z(τ)

δ
+LδR+RδL−δLδRδ

1 ,

where we denoted Qmid :=
∑
i∈Imid

wi(βLi(τ) + αRi(τ) +Oi(τ)).
Verification. The verifier first calculates the following value:

πio ← g

∑
i∈Iio

wi (βLi (τ)+αRi (τ)+Oi (τ))/γ

1 ,

and then checks the following single condition:

e(πL, πR) = e(g
α
1 , g

β
2)e(πio, g

γ
2)e(πO, g

δ
2)

Note that e(gα1 , g
β
2) can be additionally hard-coded in the verifier, thus reducing the number

of pairings to 3. Finally, the proof’s size is now reduced to 3 group elements: two from G1,
and one from G2.

Page 139

