
Distributed Lab ZKDL Camp

11 Circom
11.1 Circom Walkthrough

In this final lecture, we bridge the gap between the theoretical concepts presented in previous
lectures and their practical realization using the Circom DSL.

Definition 11.1. Circom is a domain-specific language for building arithmetic circuits that
can be used to produce zk-SNARK proofs.

Throughout this lecture, we will walk through how concepts like R1CS, witness, trusted
setup, and verification keys appear in actual code and practice.

11.1.1 Journey Begins
In the previous lectures, we covered a variety of theoretical concepts: zk-SNARKs, trusted

setup, arithmetic circuits, constraints, witnesses, and the Rank-1 Constraint System (R1CS)
representation. Now, let’s see how these appear in practice.

11.1.2 From Theory to Practice: Circom Basics
We learned that a circuit can represent a complex arithmetic computation over a finite field.

Circom allows us to write these circuits in a high-level syntax. To begin, consider the arithmetic
circuit r = x × y .

It can be represented in Circom syntax as follows:

1 pragma circom 2.1.6;
2
3 template Math() {
4 signal input x;
5 signal input y;
6
7 signal output r <== x * y;
8 }
9

10 component main = Math();

Here, we see how easy it is to define a circuit that takes two inputs x, y and outputs
their product r . The template defines a reusable circuit component, while signal input
and signal output represent inputs and outputs, respectively. Intermediate signals (without
input or output) are internal primitives within the circuit.

Public vs Private Signals:
Output signals are always public. You may also define public inputs by specifying them in the

main component, for example:

component main {public [x]} = Math();

This means x is a public input and will appear in the verification context. The order of public
signals in the final proof verification step follows the order of their definition inside the template,
starting with outputs.

Page 141

Distributed Lab ZKDL Camp

For example, if your circuit looks like this:

1 template Circuit () {
2 signal x;
3
4 signal output o2;
5
6 signal input c;
7 signal input a;
8
9 signal k1;

10
11 signal input b;
12
13 signal output o1;
14 }
15
16 component main {public [a, b, c]} = Circuit ();

The order of the public signals that should be passed to the verifier is as follows:

(o2, o1, c, a, b)

11.1.3 Arguments, Functions, and Vars
Sometimes we need to calculate some values as constants for our circuit. For example, if you

want your circuit to be a multi-tool that, based on provided arguments, can work with different
cases. For this purpose, we can declare functions and vars inside the circuit, as shown below:

1 function transformNumber(value) {
2 return value ** 2;
3 }
4
5 template Math(padding) {
6 signal input x;
7 signal input y;
8
9 var elementsNumber = transformNumber(padding);

10 signal b <== x * elementsNumber;
11
12 signal output r <== b * y;
13 }
14
15 component main {public [x]} = Math (12);

Here, var elementsNumber and the function transformNumber are evaluated at compile
time. Remember that assignments using var and functions do not produce constraints by
themselves. Only <==, ==>, or === and actual arithmetic on signals produce constraints reflected
in R1CS.

Page 142

Distributed Lab ZKDL Camp

Remark. Sometimes, one needs to perform operations like division or non-quadratic multi-
plication on the signal. For this purpose, you can use the --> and <-- notations to compute
the values “out-of-circuit”. For example:

template Math() {
signal input x;
signal input y;

signal b <-- x / y;

signal output r <== b * y;
}

component main = Math();

In this case, no constraints are generated with the x input, and it does not even participate
in the witness directly.
Notice! This is the main difference between Circom and other languages. When you write a
function evaluation y = f (x) in any other language (say, Python or Rust), you are specifying
the set of instructions to compute y from x (commonly sequentially). In Circom (or in
any other R1CS language) you are merely asserting the correctness of the computation
and therefore of all intermediate computations. This way, if your task would have been to
compute y = 1

x
, you could simply ask y to be the result of the division (that can be computed

out of circuit) and then asserting that x × y = 1 with x ̸= 0. This way, you are not writing
the division itself, but the constraints that the division should satisfy.

11.1.4 Theoretical Recap: Using the Learned Concepts
Next, let us apply the learned concepts to a more complex examples. We start with the if

statement logic.

Example. Recall the complex example we analyzed in earlier lectures:

def r(x1: bool , x2: F, x3: F) -> F:
return x2 * x3 if x1 else x2 + x3

This can be represented as:

r = x1 × (x2 × x3) + (1− x1)× (x2 + x3).

We also had the additional constraint x1 × (1− x1) = 0 to ensure x1 is binary.
The resulting system of constraints was:

x1 × x1 = x1 (1)

x2 × x3 = mult (2)

x1 ×mult = selectMult (3)

(1− x1)× (x2 + x3) = r − selectMult (4)

Page 143

Distributed Lab ZKDL Camp

It took us quite some time to understand and come up with the constraint system, which
can be visualized as follows:

c

b

a

1

+

×

−

×

×

+ r

r1

r3

r2

r4

r5

Figure 11.1: Example of a circuit evaluating the if statement logic.

The inputs can be directly transformed into signals like below:

1 template Math() {
2 signal output r;
3
4 signal input x1;
5
6 signal input x2;
7 signal input x3;
8 }

In our case, we have an additional output signal, so we can "return" it from the circuit. Now,
let’s compare the mathematical and Circom representations.

Mathematical Constraints:
x1 × x1 = x1
x2 × x3 = mult

x1 ×mult = selectMult

(1− x1)× (x2 + x3) = r − selectMult

Circom Representation:
x1 * x1 === x1;
signal mult <== x2 * x3;
signal selectMult <== x1 * mult;

(1 - x1) * (x2 + x3) + selectMult ==> r;

As we can see, the translation from math to Circom is straightforward. We have used signals
for constraint definitions.

Remark. If you wish to follow along with the explanations in the following chapters:
1. Clone the repository https://github.com/ZKDL-Camp/hardhat-zkit-template.
2. Run npm install to install dependencies and npx hardhat zkit make to compile

Circom circuits and generate the necessary artifacts.

11.1.5 From R1CS to Proof Generation
Now, let us break down everything that is happening during the proof generation process.

After compilation, you will find the following files in the zkit/artifacts/circuits folder

Page 144

https://github.com/ZKDL-Camp/hardhat-zkit-template

Distributed Lab ZKDL Camp

(starting from the project root):
• .r1cs file: The Rank-1 Constraint System representation of the circuit.
• .wasm and *.js files: The code to compute the witness from the given inputs.
• .zkey file: Proving keys after the trusted setup.
• .sym file: Symbolic reference for signals.
R1CS File. Let us start with the .r1cs file. In Section 8, we defined the following coefficient

vectors (in simple constraints) for our task:

a1 = (0, 0, 1, 0, 0, 0, 0) b1 = (0, 0, 1, 0, 0, 0, 0) c1 = (0, 0, 1, 0, 0, 0, 0)

a2 = (0, 0, 0, 1, 0, 0, 0) b2 = (0, 0, 0, 0, 1, 0, 0) c2 = (0, 0, 0, 0, 0, 1, 0)

a3 = (0, 0, 1, 0, 0, 0, 0) b3 = (0, 0, 0, 0, 0, 1, 0) c3 = (0, 0, 0, 0, 0, 0, 1)

a4 = (1, 0,−1, 0, 0, 0, 0) b4 = (0, 0, 0, 1, 1, 0, 0) c4 = (0, 1, 0, 0, 0, 0,−1)

On the other hand, using the test from the test/Math.witness.test.ts file and reading
the R1CS file, we can see:

test/Math.witness.test.ts
expect(constraint1 [0]).to.deep.equal ([0n, 0n, 1n, 0n, 0n, 0n, 0n]);
expect(constraint1 [1]).to.deep.equal ([0n, 0n, 1n, 0n, 0n, 0n, 0n]);
expect(constraint1 [2]).to.deep.equal ([0n, 0n, 1n, 0n, 0n, 0n, 0n]);

expect(constraint2 [0]).to.deep.equal ([0n, 0n, 0n, babyJub.F.negone , 0n, 0n, 0n]);
expect(constraint2 [1]).to.deep.equal ([0n, 0n, 0n, 0n, 1n, 0n, 0n]);
expect(constraint2 [2]).to.deep.equal ([0n, 0n, 0n, 0n, 0n, babyJub.F.negone , 0n]);

expect(constraint3 [0]).to.deep.equal ([0n, 0n, babyJub.F.negone , 0n, 0n, 0n, 0n]);
expect(constraint3 [1]).to.deep.equal ([0n, 0n, 0n, 0n, 0n, 1n, 0n]);
expect(constraint3 [2]).to.deep.equal ([0n, 0n, 0n, 0n, 0n, 0n, babyJub.F.negone]);

expect(constraint4 [0]).to.deep.equal ([babyJub.F.negone , 0n, 0n, 0n, 0n, 0n, 0n]);
expect(constraint4 [1]).to.deep.equal ([0n, 0n, 0n, 1n, 0n, 0n, 0n]);
expect(constraint4 [2]).to.deep.equal ([0n, babyJub.F.negone , 0n, 0n, 0n, 0n, 0n]);

Mostly, the structure generated by Circom aligns with what we had devised, except for the last
constraint. The difference occurs because of Circom’s optimization to make proof generation
and verification more efficient.

Now, let’s take a closer look at how the witness is computed. In Section 8, we had:

w = (1, r, x1, x2, x3,mult, selectMult)

Given the inputs: x1 = 1, x2 = 3, x3 = 4, we can quickly do the math and find out that the
actual witness should look like this: w = (1, 12, 1, 3, 4, 12, 12) based on:

mult = 3× 4 = 12
selectMult = 1× 12 = 12

r = 1× (3× 4) + (1− 1)× (3 + 4) = 12 + 0 = 12

Indeed, it aligns with the test from test/Math.witness.test.ts:

Page 145

Distributed Lab ZKDL Camp

test/Math.witness.test.ts
expect(witness [0]).to.equal(1n);
expect(witness [1]).to.equal (12n); // r
expect(witness [2]).to.equal(1n); // x1
expect(witness [3]).to.equal(3n); // x2
expect(witness [4]).to.equal(4n); // x3
expect(witness [5]).to.equal (12n); // mult
expect(witness [6]).to.equal (12n); // selectMult

The initial 1 in the witness is a constant to facilitate the usage of constants inside the circuit.
This corresponds to the fact that w0 = 1 is often used to handle constant terms in R1CS.

The Circom also provides a named representation of all witness elements, which is stored in
the .sym file and looks as follows:

.sym file for x1? x2 × x3 : x2 + x3
1,1,0,main.r
2,2,0,main.x1
3,3,0,main.x2
4,4,0,main.x3
5,5,0,main.mult
6,6,0,main.selectMult

It not only tells us the names of all signals, but also includes information about the optimized
signals.

Recall the previous example where we used division and <-- to store it in the intermediate
signal. The generated .sym file would look like this:

.sym file for b <-- x/y , r <== by
1,1,0,main.r
2,-1,0,main.x
3,2,0,main.y
4,3,0,main.b

As we can see, the −1 was added to the signal x to indicate that it is not used in the witness.
Also, according to the documentation of Circom, there are three levels of optimization (ref:

https://docs.circom.io/getting-started/compilation-options).
In the 2.1.9 version of Circom, the default optimization was O2, but it was lowered to O1

in following versions because O2 was too aggressive leading to vulnerable circuits.

Remark. In addition, all linear constraints are optimized on the O2 optimization.

Now, let’s examine what the third column in the .sym file means.
Consider the following circuit:

1 template BinaryCheck () {
2 signal input x1;
3
4 x1 * x1 === x1;
5 }
6

Page 146

https://docs.circom.io/getting-started/compilation-options

Distributed Lab ZKDL Camp

7 template SelectMult () {
8 signal input x1;
9

10 signal input x2;
11 signal input x3;
12
13 signal mult <== x2 * x3;
14
15 signal output out <== x1 * mult;
16 }
17
18 template Math() {
19 signal output r;
20
21 signal input x1;
22
23 signal input x2;
24 signal input x3;
25
26 component binCheck = BinaryCheck ();
27 binCheck.x1 <== x1;
28
29 component selectMult = SelectMult ();
30 selectMult.x1 <== x1;
31 selectMult.x2 <== x2;
32 selectMult.x3 <== x3;
33
34 (1 - x1) * (x2 + x3) + selectMult.out ==> r;
35 }

We split the circuit into three parts, and the .sym file will look like this:

.sym file for x1? x2 × x3 : x2 + x3 with templates
1,1,2,main.r
2,2,2,main.x1
3,3,2,main.x2
4,4,2,main.x3
5,-1,0,main.binCheck.x1
6,5,1,main.selectMult.out
7,-1,1,main.selectMult.x1
8,-1,1,main.selectMult.x2
9,-1,1,main.selectMult.x3
10,6,1,main.selectMult.mult

As we can see, the third column indicates the locality of the signal. Essentially, it tells us
which signals are grouped together under the same template.

Another interesting aspect is the order: 0 represents the first component, 1 represents the
second component used during computation, and the last component used is the actual ‘main‘.

Remark. Pay attention to the difference between the modified Math circuit’s .sym file and
the original one. Even though we added more signals (i.e., constraints), they were actually
optimized by Circom back to the original state.

Page 147

Distributed Lab ZKDL Camp

And the last column is the full name of the constraint, including the path to where it is
defined in the code.

11.1.6 Parallel and Custom Keywords
In Circom, there are two special keywords designed to address specific use cases: custom

and parallel.
The custom keyword introduces custom templates that do not emit R1CS constraints di-

rectly. Instead, they delegate logic to snarkjs or other libraries at a later stage. Consequently,
custom templates cannot declare subcomponents or add R1CS constraints within their bodies.

The custom keyword is used as follows:

1 pragma circom 2.0.6;
2 pragma custom_templates;
3
4 template custom MyCustomGate () {
5 // Custom template ’s code
6 // No R1CS constraints or subcomponents can be desclared here
7 // Logic will be handled by snarkjs as a PLONK custom gates
8 }

Remark. At the moment of writing the document the snarkjs does not support any custom
gates (as stated in their documentation). Also, they can be used only in turbo-PLONK or
UltraPlonk schemes. Nevertheless, you can find an example of how they have been used
here: https://github.com/zkFHE/circomlib-fhe/tree/main.

Meanwhile, the parallel keyword (available from Circom 2.0.8 onward) can be applied at
either the template or the component instantiation level to parallelize witness generation for
independent computations, thereby accelerating large circuits. Parallelism is only applied to the
C++ witness generator; it does not affect the constraints themselves.

This keyword will be useful in the structures as below:

1 template parallel ParallelExample(n) {
2 signal input in[n];
3 signal output out[n];
4
5 // Each iteration is independent, so we can parallelize
6 for (var i = 0; i < n; i++) {
7 out[i] <== in[i] * 2;
8 }
9 }

In summary, you should use the custom keyword whenever you want to define a template
handled only by turbo-PLONK or UltraPlonk schemes. You can also find the exact sec-
tion in the R1CS binary format where custom gates are stored for later processing by the
library here: https://github.com/iden3/r1csfile/blob/master/doc/r1cs_bin_format.
md#custom-gates-list-section-plonk

The parallel keyword is helpful when dealing with large or repetitive computations, as it can
speed up witness generation. However, in small circuits or wherever computation is inherently
sequential (i.e., where the output of one part is the input to another), parallel has no effect.

Page 148

https://github.com/zkFHE/circomlib-fhe/tree/main
https://github.com/iden3/r1csfile/blob/master/doc/r1cs_bin_format.md#custom-gates-list-section-plonk
https://github.com/iden3/r1csfile/blob/master/doc/r1cs_bin_format.md#custom-gates-list-section-plonk

Distributed Lab ZKDL Camp

You can find additional examples of the parallel keyword usage here: https://github.
com/zkFHE/circomlib-fhe/tree/main.

With this, we have covered all the important files generated by Circom.

11.1.7 Generating and Verifying Proofs
Now, it is time to look at proof generation and verification. In this chapter, our main focus

will be on the code from test/Math.circuit.ts.
To generate a proof, we need to call the generateProof method on the circuit object:

const proof = await circuit.generateProof(inputs);

The actual proof looks like this:

proof.json
{
"proof": {
"pi_a": [
"4705801711565477046837119510773988173091957417270766918367441244292047980064",
"1400811599548904237959319989696481634963162026439383059052135976273120564167",
"1"

],
"pi_b": [
[
"12538508168416900299033726521685163817792614632620657244409429354131980454661",
"10914283679966848917795247355212516197618338956682374874239005506750384424444"

],
[
"11504632457518572930719312464170675169899321263873993433191427524966381618623",
"15524163713890313070296837080299781036987071183397727452907670321368057103914"

],
[
"1",
"0"

]
],
"pi_c": [
"260996700533282086084038116247679709285710726946875725263543647585988798998",
"14278428069254250939292704696175748719031859166075451182707331713513969403299",
"1"

],
"protocol": "groth16",
"curve": "bn128"

},
"publicSignals": {
"r": "18"

}
}

Also, at the end of the proof, we have the public signals.

Remark. Usually, public signals are represented by an array of elements, but when using the
hardhat-zkit plugin, they are typed, and we have actual names for them.

The third element of each program does not participate in any computations; it is needed as
additional metadata for the library that implements Groth16 verification.

Remark. When submitting the proof, we have to swap elements inside the arrays of the b
point, so that the proof can be verified correctly.

Page 149

https://github.com/zkFHE/circomlib-fhe/tree/main
https://github.com/zkFHE/circomlib-fhe/tree/main

Distributed Lab ZKDL Camp

These three points πL, πR, πO are used by the verifier to check the equality:

e(πL, πR) = e(g
α
1 , g

β
2)e(πio, g

γ
2)e(πO, g

δ
2).

Other constants needed for the verifier (for example, points gα1 or gβ2) are defined in the
following file: zkit/artifacts/circuits/Math.circom/Math.vkey.json — see Figure 11.2.

Quick reminder about the structure of points in the proof for BN254 (BN128) curve:
• Each point is either from the regular curve G1 : y 2 = x3+b over Fp or from the quadratic

extension curve G2 : y ′2 = x ′3+b′ over Fp2. For BN254, the quadratic extension is defined
as Fp2 = Fp(i) with i2 + 1. Curve coefficients are b = 3 ∈ Fp and b′ = 3

9+i
∈ Fp2.

• Left inputs to the pairing function e are the points on the regular curve G1. They are
specified in the form of two field elements (x, y) ∈ G1, where x, y ∈ Fp are the coordinates.

• Right inputs to the pairing function e are the points over the quadratic extension curve
G2. They are specified of the form of four prime field elements (x1, y1, x2, y2) ∈ G2, where
the coordinates are x1 + iy1, x2 + iy2 ∈ Fp2.

• e(gα1 , g
β
2) is the element from the multiplicative group F×

p12
. Therefore, we need 12 prime

field elements to represent it.

Remark (On representing Fp12 element). One might wonder: why is the element from Fp12
is represented as a pair of two arrays, each consisting of three pairs of prime field elements?
The primary reason is that the most convenient way to construct Fp12 element is to use
the so-called tower of extensions: we represent an element from Fp12 as a pair of two Fp6
elements, while each Fp6 consists of a triplet of Fp2 elements. For more details, see Section 3

Thus, we have covered all the information about the internal structure of the Circom files
needed for proof generation and verification.

Finally, we verify the proof in the code:

expect(await math.verifyProof(proof)).to.be.true

This concludes our first journey into learning Circom.

Remark. Here is a set of links that can be used for a deeper dive into the Circom ecosystem:
1. Circom Documentation: https://docs.circom.io/
2. Circom Libraries (like circomlib): https://github.com/iden3/circomlib

Page 150

https://docs.circom.io/
https://github.com/iden3/circomlib

Distributed Lab ZKDL Camp

vkey.json
{

"protocol": "groth16",
"curve": "bn128",
"nPublic": 1,
"vk_alpha_1": [

"20491192805390485299153009773594534940189261866228447918068658471970481763042",
"9383485363053290200918347156157836566562967994039712273449902621266178545958",
"1"

],
"vk_beta_2": [

[
"6375614351688725206403948262868962793625744043794305715222011528459656738731",
"4252822878758300859123897981450591353533073413197771768651442665752259397132"

],
[

"10505242626370262277552901082094356697409835680220590971873171140371331206856",
"21847035105528745403288232691147584728191162732299865338377159692350059136679"

],
["1", "0"]

],
"vk_gamma_2": [

[
"10857046999023057135944570762232829481370756359578518086990519993285655852781",
"11559732032986387107991004021392285783925812861821192530917403151452391805634"

],
[

"8495653923123431417604973247489272438418190587263600148770280649306958101930",
"4082367875863433681332203403145435568316851327593401208105741076214120093531"

],
["1", "0"]

],
"vk_delta_2": [

[
"10857046999023057135944570762232829481370756359578518086990519993285655852781",
"11559732032986387107991004021392285783925812861821192530917403151452391805634"

],
[

"8495653923123431417604973247489272438418190587263600148770280649306958101930",
"4082367875863433681332203403145435568316851327593401208105741076214120093531"

],
["1", "0"]

],
"vk_alphabeta_12": [

[
[

"2029413683389138792403550203267699914886160938906632433982220835551125967885",
"21072700047562757817161031222997517981543347628379360635925549008442030252106"

],
[

"5940354580057074848093997050200682056184807770593307860589430076672439820312",
"12156638873931618554171829126792193045421052652279363021382169897324752428276"

],
[

"7898200236362823042373859371574133993780991612861777490112507062703164551277",
"7074218545237549455313236346927434013100842096812539264420499035217050630853"

]
],
[

[
"7077479683546002997211712695946002074877511277312570035766170199895071832130",
"10093483419865920389913245021038182291233451549023025229112148274109565435465"

],
[

"4595479056700221319381530156280926371456704509942304414423590385166031118820",
"19831328484489333784475432780421641293929726139240675179672856274388269393268"

],
[

"11934129596455521040620786944827826205713621633706285934057045369193958244500",
"8037395052364110730298837004334506829870972346962140206007064471173334027475"

]
]

],
"IC": [

[
"4162541565828872643496914921393902054824387648641933177665940781539334781623",
"4678293780284819015763290392952715769540194300841323348855962545628746384938",
"1"

],
[

"7846408072049176620553358542204120795817938985459251067840222635524693287955",
"17494754572705064819681843056808269434754047134538681907566256240907807975850",
"1"

]
]

}

Figure 11.2: Verification key for the proof stored in the generated vkey.json file.

Page 151

