
Distributed Lab ZKDL Camp

12 PlonK
12.1 Plonk Arithmetization

Consider we have a certain relation R, which we would like to write down into a processing-
prone format over the field F. Plonk arithmetizes this relation into a set of 8 polynomials, which
are then used to verify the witness knowledge. Let us start with the concrete example.

Example. To begin with, observe this fairly simple relation Rexample: suppose we have a
public input x ∈ F and public output y ∈ F, and we want to prove the knowledge of e ∈ F
such that e × x + x − 1 = y . Formally, we have the following relation:

Rexample =

{
Public Statement: x, y ∈ F

Witness : e ∈ F

∣∣∣ e × x + x − 1 = y}
Remark. Note that of course, from x and y , it is fairly simple to find e: simply take 1−x+y

x
.

However, the Plonk arithmetization is not limited to this simple example, and can be applied
to more complex relations, such as hash function pre-image knowledge or any NP statement.

12.1.1 Execution Trace
Standard Plonk is defined as a system with two types of gates: addition and multiplication.

We would explain how to build custom gates later. So, let us consider our program in terms of
gates with left, right operands and output.

Example. We need three gates to encode our program:
1. Gate #1: left e, right x , output u = e × x
2. Gate #2: left u, right x , output υ = u + x
3. Gate #3: left υ, right x , output w = υ + (−1)

You might have glanced the intuitive formation of what is called execution trace table — a
matrix T with columns L, R and O (it is common to denote those as A,B, C to distinguish
from another matrix we will discuss later). Moreover, we will mark columns A, B and C in bold
to indicate that they are vectors from FN, where here and hereafter, unless stated otherwise,
N is the number of gates in the program.

Example. We might visualize the execution trace table T for the example program as follows:

A B C

2 3 6
6 3 9
9 ✗ 8

Notice how the last row has no value in B column (marked by ✗) — this is reasoned by the
fact it is not a variable, but rather a constant, meaning it doesn’t depend on execution. Also
note that the number of gates in this particular circuit is N = 3.

Page 152

Distributed Lab ZKDL Camp

Remark. As you might notice, in contrast to classic R1CS (which we used for Groth16),
the standard Plonk arithmetization as is only allows two input values to be processed at a
time. This way, if Groth16 requires only one constraint for verifying x1(x2 + x3 + x4) = x5,
Plonk would need three constraints to verify the same statement. Custom gates partially
solve this problem as we will see later, but it is important to keep in mind.

12.1.2 Encode the program
It is essential to distinguish the definition of the program and its specific evaluation for the

sake of simplicity and efficiency — once having established encoding for the program, you might
apply it for any reasonable inputs. Therefore, let us at first focus on what defines whether
execution trace table will be considered valid for our circuit, because having a table by itself
does not tell much, since it can be populated with any values.

For that reason, we would define two matrices — Q ∈ FN×5 and V ∈ ZN×3≥0 where N ∈ N,
again, is the number of gates in the program:

• Q is the Gate Matrix, which encodes the values of the gates and stores all the intermediate
values computed.

• V is the Wiring Matrix, which encodes the wiring of the gates, i.e., how the output of
one gate is carried as input to another.

Definition 12.1. The gate matrix Q ∈ FN×5 has one row per each gate with columns QL,
QR, QO, QM, QC from FN. If columns A, B and C ∈ FN of the execution trace table form
valid evaluation of the circuit, then the following holds:

Ai(QL)i + Bi(QR)i + AiBi(QM)i + Ci(QO)i + (QC)i = 0, ∀i ∈ [N]

Using Hadamard product notation, this can be concisely rewritten as:

A⊙QL + B⊙QR + A⊙ B⊙QM + C⊙QO +QC = 0

Example. For our program, we would have a following Q table:

QL QR QM QO QC
0 0 1 −1 0
1 1 0 −1 0
1 0 0 −1 −1

You can verify that our claim holds for aforementioned trace matrix:

2× 0 + 3× 0 + 2× 3× 1 + 6× (−1) + 0 = 0
6× 1 + 3× 1 + 6× 3× 0 + 9× (−1) + 0 = 0
9× 1 + 0× 0 + 9× 0× 0 + 8× (−1) + (−1) = 0

Recall that columns of trace matrix T are A =

26
9

 , B =
33

✗

 , C =
69
8

.

Page 153

Distributed Lab ZKDL Camp

Now, we do have a way of encoding gates separately, yet in order to guarantee how result of
one gate is carried in as input of the other (wirings), we need another matrix — V .

Definition 12.2. The wiring matrix V ∈ ZN×3≥0 consists of indices of all inputs and interme-
diate values, so that if T is a valid trace,

∀(i , j) ∀(k, ℓ) : Vi ,j = Vk,ℓ =⇒ Ti ,j = Tk,ℓ

Put more simply, if two values are equal in V , then the corresponding values (corresponding
to these indices) in T must be equal as well.

Example. For our program, V can be defined as follows:

L R O

0 1 2
2 1 3
3 ✗ 4

Here 0 is an index of e, 1 is an index of x , 2 — of intermediate value u, 3 — of υ and finally
4 — of output w .

12.1.3 Custom Gates
In order to reach beyond classical operations such as addition and multiplication, one may

consider composing a custom gate. The main streamliner of this functionality is a matrix Q,
using 5 basic columns of which, you already may build custom logic.

Example. Our entire program may be encoded as one custom gate.

Q =
QL QR QM QO QC
0 1 1 −1 −1 V =

L R O
0 1 2

T =
A B C
2 3 8

2× 0 + 3× 1 + 2× 3× 1 + 8× (−1) + (−1) = 0

As you can see, custom gates is a good way to reduce the number of constraints needed for
the same program.

Remark. Real-world PlonK applications commonly have additional columns in the Q matrix,
enabling an even broader set of custom functionality.

12.1.4 Public Inputs
With the current design, we can prove that the computations were done correctly, but we

have no restrictions on the values of inputs. For example, when the prover wants to convince
the verifier that he knows e for x = 3 and y = 7, the verifier does not even check whether x is
3 (not to mention whether the result of execution y = 7 is correct) in the trace table T . One
way of doing this is by incorporating them in three previously defined matrices Q, V , T .

Page 154

Distributed Lab ZKDL Camp

Proposition 12.3. One way to solve this is to use the equality gates. Introduce two gadgets:
• Constant Equality Gate: Suppose we want to check whether the certain variable

equals to the constant value α ∈ F at gate with index i . For ith gate, set (QL)i = −1,
(QC)i = α and other columns to 0. Then, add a row to V with L = i , R = ✗ and
O = ✗. Then, to satisfy the condition, the ith left input must be equal to α.

• Nodes Equality Gate: Suppose we want to check whether the ith and jth gates have
equal outputs in the kth gate. Set (QL)k = 1, (QR)k = −1 with other columns to 0.
Add a row to V with L = i , R = j and O = ✗. Then, to satisfy the condition, the ith
and jth outputs must be equal.

Example. Suppose the prover wants to prove that he knows e for the public statement
(x, y) = (3, 8). We can encode this as follows:

Q =

QL QR QM QO QC
−1 0 0 0 3
−1 0 0 0 8
1 1 1 −1 1
1 −1 0 0 0

V =

L R O

0 ✗ ✗

1 ✗ ✗

2 0 3
1 3 ✗

T =

A B C

3 ✗ ✗

8 ✗ ✗

2 3 8
8 8 ✗

As can be seen, besides the original program gate, inscribed in the third row, we have three
additional gates:

• The first two gates “allocate” two nodes with indices 0 and 1 to the values 3 and 8
respectively. This is done through the constant equality gates.

• The last gate checks whether the result of the third gate is equal to the index 1,
corresponding to the allocated value 8. This is done through the nodes equality gate.

The primary problem with this approach, is that now we have lost agnosticism in Q and V
of concrete evaluations. In other words, our circuit is now “hardcoded” to the specific values
of public inputs. In order to resolve this, we would define a separate one-column matrix named
ΠΠΠ ∈ FN, in which we would encode the public inputs.

Example. With only Q modified, we now have:

ΠΠΠ

3
8
0
0

Q =

QL QR QM QO QC
−1 0 0 0 0
−1 0 0 0 0
1 1 1 −1 1
1 −1 0 0 0

Proposition 12.4 (Wrap-up). The matrix T with columns A, B and C ∈ FN encodes correct
execution of the program, if the following two conditions hold:

1. ∀i ∈ [N] : Ai(QL)i + Bi(QR)i + AiBi(QM)i + Ci(QO)i + (QC)i +Πi = 0
2. ∀(i , j)∀(k, ℓ) : Vi ,j = Vk,ℓ =⇒ Ti ,j = Tk,ℓ

Page 155

Distributed Lab ZKDL Camp

12.1.5 Matrices to Polynomials
Gates Satisfability. Now we can traduce the sets of constraints on matrices to just a few

equations on polynomials, as we have already done for Groth16. Let ω be a primitive N-th root
of unity14 and let Ω = {ωj}0≤j<N. Although currently the choice of set Ω might seem totally
random, in the next sections we will see how the usage of Fast-Fourier Transform (FFT) will
make this choice convenient.

Let a, b, c, qL, qR, qM, qO, qC, π ∈ F(≤N)[X] be polynomials of degree at most N that in-
terpolate corresponding columns from matrices at the domain Ω. In other words, we have
∀j ∈ [N] : a(ωj) = Aj and the same holds for other polynomials.

Notice that if our trace matrix is correct, then the first condition of Proposition 12.4 can be
reduced to the following polynomial equation:

a(ωj)qL(ω
j)+ b(ωj)qR(ω

j)+ a(ωj)b(ωj)qM(ω
j)+ c(ωj)qO(ω

j)+ qC(ω
j)+π(ωj) = 0, ∀j ∈ [N]

Notice that this essentially means that the left polynomial aqL+bqR+ abqM + cqO+qC +π
has roots at ωj for all j ∈ [N]. This is equivalent to stating that the polynomial zΩ(X) =∏N−1
j=0 (X − ωj) divides the left hand side. Now, the interesting fact. . .

Lemma 12.5. It so happens that if Ω is a set of N-th roots of unity, then the polynomial
zΩ(X) = X

N − 1 is the vanishing polynomial of Ω.

Proof Idea. If ω is the Nth primitive root, then for any h ∈ Ω we have hN = 1 and therefore
all elements of Ω are the roots of XN − 1. There are precisely N such roots, so XN − 1 can be
decomposed as a product of linear factors c ·

∏N−1
j=0 (X − ωj). It is easy to see that c = 1 by

comparing the leading coefficient.

Aha! So we have that XN − 1 must divide the left polynomial. Let us wrap this up in the
following proposition.

Proposition 12.6. Now we can reduce down our first condition of Proposition 12.4 to check-
ing valid execution trace into the following claim over polynomials:

∃t ∈ F(≤3N)[X] : aqL + bqR + abqM + cqO + qC + π = zΩt,

where zΩ(X) is the vanishing polynomial XN − 1.

Wiring Satisfability. The next step is to shrink the second condition imposed by the V
matrix. This may be achieved by introducing the concept of permutation.

Remark. Permutation of the set S is commonly denoted as σ : S → S. This function is
bijective, meaning that for every s ∈ S there exists a unique s ′ ∈ S such that σ(s) = s ′.

14Suppose such ω exists, then ωN = 1 and ωj ̸= 1 for 0 ≤ j < N.

Page 156

Distributed Lab ZKDL Camp

Example. A permutation is a rearrangement of the set, which is in our case:

I = {(i , j) : such that 0 ≤ i < N, and 0 ≤ j < 3}

Naturally, the matrix V induces a permutation σ of this set where σ((i , j)) equals to the pair
of indices of the next occurrence of the value at position (i , j). So, for our example:

V =

L R O

0 ✗ ✗

1 ✗ ✗

2 0 3
1 3 ✗

We have the following permutation:

σ((0,0)) = (2,1), σ((0, 1)) = (0, 3), σ((0, 2)) = (0, 2)

σ((0, 3)) = (0, 1), σ((2, 1)) = (0, 0), σ((3, 1)) = (2, 2)

For demonstration purposes, we marked in green the index of the first and second occurance
of the value 0. For proper σ definition (as it has to be bijective), the application of σ to the
last occurance outputs the first one.

Permutation Check. This is probably the most tedious part of PlonK. We split the following
derivation into two parts:

• Set Equality using Polynomials. We will show how to check whether two sets of field
elements are equal using polynomials.

• Permutation Check using Polynomials. We will show how to check whether a given
function is a permutation using polynomials in several forms.

Set equality. Having defined permutation, we can now reduce the second condition of
Proposition 12.4 of valid execution trace matrix into the following check:

∀(i , j) ∈ I : Ti ,j = Tσ(i ,j)

You may have noticed how this can be reformulated as equality of two sets A and B:

A := {((i , j), Ti ,j) : (i , j) ∈ I}
B := {(σ((i , j)), Ti ,j) : (i , j) ∈ I}

We can reduce this check down to polynomial equations! Here is how: suppose for simplicity
we have two sets with two elements A = {a0, a1} and B = {b0, b1}. Introduce two sets of
polynomials A′ = {a0 +X, a1 +X} and B′ = {b0 +X, b1 +X}.

When do we have the set equality A′ = B′? Well, (a0 + X)(a1 + X) = (b0 + X)(b1 + X)
works fine. This is true because of linear polynomial unique factorization property, working as
prime factors. Now, we can utilize Schwartz-Zippel lemma to replace the latter formula with
(a0 + γ)(a1 + γ) = (b0 + γ)(b1 + γ) for some random γ

R←− F with overwhelming probability,
being at least 1− 2/|F|. If we wish to generalize this for arbitrary sets A = {a0, . . . , ak−1} and
B = {b0, . . . , bk−1}, apply the following equivalent check:

Page 157

Distributed Lab ZKDL Camp

k−1∏
i=0

(ai + γ) =

k−1∏
i=0

(bi + γ)

Let Ω be a domain of the form {1, ω, . . . , ωk−1} for some k-th root of unity ω. Let f and g
be polynomials that we interpolate at Ω as follows:

f (ωj) = aj + γ, g(ωj) = bj + γ, j ∈ [k]

Then,
∏k−1
i=0 (ai + γ) =

∏k−1
i=0 (bi + γ) holds if and only if there is a polynomial Z ∈ F[X] such

that for all h ∈ Ω we have Z(ω0) = 1 and Z(h)f (h) = g(h)Z(ωh).
Now that we can encode equality of sets of field elements, let’s expand this to sets of tuples

of field elements. Let A = {(a0, a1), (a2, a3)} and B = {(b0, b1), (b2, b3)}. Then, similarly, if

A′ = {a0 + a1Y +X, a2 + a3Y +X}, B′ = {b0 + b1Y +X, b2 + b3Y +X},

then A = B if and only if A′ = B′. As before, we can leverage Schwartz-Zippel lemma to
reduce this down into sampling two random β and γ R←− F and checking equality of:

(a0 + βa1 + γ)(a2 + βa3 + γ) = (b0 + βb1 + γ)(b2 + βb3 + γ)

Permutation Check. Now, to go back to the second condition of Proposition 12.4 which
we are trying to formulate in the polynomial domain, it becomes clear that if we somehow
encoded inner indices tuple (i , j) into a one field element, we could use the above fact. Recall
that i ∈ [N] and j ∈ {0, 1, 2}. Thus, take the 3N-th primitive root of unity η and define the
bijective map ((i , j), v) 7→ (η3i+j , Ti ,j). Thus, consider the modified sets:

A = {(η3i+j , Ti ,j) : (i , j) ∈ I}
B = {(η3k+ℓ, Ti ,j) : (i , j) ∈ I, σ((i , j)) = (k, ℓ)}

Sample two random field elements β and γ R←− R. Let D = {1, η, η2, . . . , η3N−1}. Then,
interpolate two polynomials f and g over the defined set D as follows:

f (η3i+j) = Ti ,j + η
3i+jβ + γ, (i , j) ∈ I

g(η3k+ℓ) = Ti ,j + η
3k+ℓβ + γ, (i , j) ∈ I, σ((i , j)) = (k, ℓ)

Similarly to our previous discussion, there should be a polynomial Z ∈ F[X] such that ∀d ∈ D,
we have Z(η0) = 1 and Z(d)f (d) = g(d)Z(ηd). This would imply the set equality A = B with
overwhelming probability according to Schwartz-Zippel lemma.

Shorter Form. Now, using the 3N-th root of unity is a bit of overkill, so let us try compressing
it down to Ω = {ωj}0≤j<N where ω is the Nth root of unity. We will define three polynomials
Sσ,1, Sσ,2, Sσ,3 ∈ F[X], which are interpolated as follows:

Sσ,1(ω
i) = η3k+ℓ, (i , 0) ∈ I, σ((i , 0)) = (k, ℓ)

Sσ,2(ω
i) = η3k+ℓ, (i , 1) ∈ I, σ((i , 1)) = (k, ℓ)

Sσ,3(ω
i) = η3k+ℓ, (i , 2) ∈ I, σ((i , 2)) = (k, ℓ)

Page 158

Distributed Lab ZKDL Camp

Let k1 and k2 be two field elements such that ωi ̸= ωjk1 ̸= ωℓk2 for all possible triplets i , j, ℓ.
Recall that β and γ are random field elements. Let f and g be the polynomials that interpolate,
respectively, the following values at Ω:

f (ωi) =
(
Ti ,0 + ω

iβ + γ
) (
Ti ,1 + ω

ik1β + γ
) (
Ti ,2 + ω

ik2β + γ
)
, i ∈ [N]

g(ωi) =
(
Ti ,0 + Sσ,1(ω

i)β + γ
) (
Ti ,0 + Sσ,2(ω

i)β + γ
) (
Ti ,0 + Sσ,3(ω

i)β + γ
)
, i ∈ [N]

That being said, there is a polynomial Z ∈ F[X] such that ∀d ∈ D we have Z(ω0) = 1 and
Z(d)f (d) = g(d)Z(ωd), implying A = B with overwhelming probability. That being said, we
now can encode our program using 8 polynomials mentioned at the very beginning:

qL, qR, qM, qO, qC, Sσ,1, Sσ,2, Sσ,3

These are typically called common preprocessed input.

12.1.6 Summary
Having a program for relation R, we saw how it can be represented as a sequence of gates

with left, right operands and output. The circuit may be encoded using two matrices Q — for
capturing gates, and V — for encoding value carries (wirings). Upon execution, we get trace
execution matrix T and Π for public inputs.

Definition 12.7. Let T ∈ FN×3 be a trace matrix with columns A, B, C ∈ FN and let ΠΠΠ ∈ FN
be a public input vector. They correspond to a valid execution instance with public input
given by ΠΠΠ if and only if:

1. ∀i ∈ [N] : Ai(QL)i + Bi(QR)i + AiBi(QM)i + Ci(QO)i + (QC)i +Πi = 0
2. ∀(i , j), ∀(k, ℓ) : Vi ,j = Vk,ℓ =⇒ Ti ,j = Tk,ℓ

3. ∀i > n : Πi = 0, where n is the number of public inputs.

Then, we encode these conditions in terms of polynomials.

Definition 12.8. Let zΩ = XN−1 be a vanishing polynomial. Let T ∈ FN×3 be a trace matrix
with columns A,B,C ∈ FN and ΠΠΠ ∈ FN be a vector of public signals. They correspond to a
valid execution instance with public input given by ΠΠΠ if and only if:

1. ∃t1 ∈ F[X] : aqL + bqR + abqM + cqO + qC + π = zΩt1
2. ∃t2, t3, z ∈ F[X] : zf − gz ′ = zΩt2 and (z − 1)L1 = zΩt3, where z ′(X) = z(Xω).

Remark. We can reduce every needed check down to one equation, if we introduce random-
ness. Let α be a random field element, then:

zΩt = aqL + bqR + abqM + cqO + qC + π

= α(gz ′ − f z)
= α2(z − 1)L1

The transition between second and third line is very unobvious and requires a bit of algebraic
manipulation. Don’t worry if you don’t see it immediately.

Page 159

