
Distributed Lab ZKDL Camp

12 PlonK
12.1 Number Theoretical Trasnform: Universal Polynomial

Accelerator
In the previous sections, when considering Groth16, we have seen the idea that polynomials

are powerful encoders of data. To encode a set of N values a0, . . . , aN−1 ∈ F, we interpolate
a polynomial p(x) that at specific points x0, . . . , xN−1 ∈ F evaluates to these values. The only
condition we impose on these points is that they are distinct (unless, the interpolation would
not be properly defined). This way, generally, we have the following interpolation problem:

p(xj) = aj , j = 0, . . . , N − 1

Particularly, in Groth16 our choice of points was xj = j for j = 0, . . . , N − 1, which, for the
large enough finite field F, does not cause any issues. However, the complexity of interpolation
in this case is not optimal. Let us see why.

Recall that the interpolation formula (see Section 2 for details) is given by:

p(x) =

N−1∑
i=0

aiℓi(x), ℓi(x) =

N−1∏
j=0,j ̸=i

x − xj
xi − xj

.

The naive evaluation of this formula requires O(N2) operations: we need to compute each
ℓi , costing O(N) operations, and then sum them up with, again, O(N) operations.

With the specific choice of points {xj}0≤j<N, we can do much better: in fact, we can re-
duce the complexity to O(N logN) operations or even O(N). This is done by utilizing several
techniques, including the Barycentric Interpolation and the Nth roots of unity.

12.1.1 Barycentric Interpolation
The idea of O(N logN) is to exploit the barycentric formula for polynomial interpolation.

Let us derive the formula and see how it helps.
First, introduce the quantity γ(x) =

∏N−1
j=0 (x − xj). Now note that the Lagrange basis

polynomials ℓj(x) can be rewritten as:

ℓj(x) = γ(x) ·
wj

x − xj
, wj =

1∏N−1
k=0,k ̸=j(xj − xk)

, j ∈ [N]

Remark. This step might seem unobvious, so let us be careful here. Let us see why expression
γ(x) · wj

x−xj indeed gives the desired basis polynomial:

γ(x) ·
wj

x − xj
=

(
N−1∏
k=0

(x − xk)

)
·

1(∏N−1
k=0,k ̸=j(xj − xk)

)
(x − xj)

Note that we can cancel out (x − xj) from both numerator and denominator and get(
N−1∏
k=0,k ̸=j

(x − xj)

)
·

1∏N−1
k=0,k ̸=j(xj − xk)

=

N−1∏
k=0,k ̸=j

x − xj
xj − xk

= ℓj(x),

which is exactly what we wanted to show.

Page 159



Distributed Lab ZKDL Camp

Good, so why do we even need such an expression for ℓj? Let us substitute it back into the
interpolation formula:

p(x) =

N−1∑
i=0

aiℓi(x) =

N−1∑
i=0

aiγ(x) ·
wi

x − xi
= γ(x)

N−1∑
i=0

wi
x − xi

ai

In regards to this formula, we give the following definition.

Proposition 12.1. The barycentric interpolation formula for the interpolation problem
p(xj) = aj , j ∈ [N], given by p(x) = γ(x)

∑
i∈[N]

wi
x−xi ai with γ(x) =

∏
i∈[N](x − xi), requires

O(N) operations to compute and O(N2) operations to pre-compute.

Proof. Coefficients {wj}j∈[N] are independent of x , and so are the values {aj}j∈[N]. To
compute {wj}j∈[N], one needs O(N) operations for each wj , and thus O(N2) operations in
total. To compute the polynomial p(x), one needs O(N) operations to compute γ(x) and
O(N) operations to compute the sum, knowing {wjaj}j∈[N]. □

Of course, in reality, storing N values {wj}j∈[N] requires O(N) memory, which is not optimal.
Moreover, these points on their own are useless and typically are not used in any other parts of
the protocol. This is where the Nth roots of unity come into play.

12.1.2 Multiplicative Cyclic Subgroup
Again, assume we have the prime field Fp. Let ω be a primitive N-th root of unity, i.e.,

ωN = 1 and ωj ̸= 1 for j < N. The set Ω = {ωj}0≤j<N is called the N-th root of unity
subgroup of Fp of order N. One might ask the following question: why such primitive root
even exists? Consider the following lemma, briefly mentioned in Section 3.1.3.

Lemma 12.2. For Fp there exists a primitive N-th root of unity if and only if N | (p − 1).

What is so special about the set Ω? The magic of Ω is that it allows to compute cer-
tain polynomial operations (such as interpolation or multiplication) using the Discrete Fourier
Transform (DFT) or, equivalently, the Number Theoretic Transform (NTT) algorithm. Con-
sider the first central lemma.

Lemma 12.3. The vanishing polynomial of the set Ω is given by zΩ(X) = XN − 1.

Proof Idea. If ω is the Nth primitive root, then for any h ∈ Ω we have hN = 1 and therefore
all elements of Ω are the roots of XN − 1. There are precisely N such roots, so XN − 1 can be
decomposed as a product of linear factors c ·

∏N−1
j=0 (X − ωj). It is easy to see that c = 1 by

comparing the leading coefficient.
Now, let us come back to the barycentric formula. We have seen that the interpolation

polynomial p(x) can be written as p(x) = γ(x)
∑N−1
i=0

wi
x−xi ai . The key idea of the FFT is to set

xj = ω
j . What does it give us? We give the following proposition.

Page 160



Distributed Lab ZKDL Camp

Proposition 12.4. Suppose the interpolation domain is chosen so that ai = ωi . Then,
following the notation of Proposition 12.1, certain expressions simplify to the following:

• γ(x) = xN − 1.
• wi = ω

i/N.

Proof Idea. For the first claim, notice that by definition γ(x) =
∏N−1
i=0 (x − ωi), which is

exactly the vanishing polynomial of Ω. Thus, γ(x) = zΩ(x) = xN − 1 from Lemma 12.3.
As for the second claim, recall that wi = 1/

∏N−1
j ̸=i (ω

i−ωj). Intuitively, the real analysis shows

that wi = 1/γ ′(xi) and since γ(x) = xN − 1, we have exactly wi = 1/NxN−1
∣∣∣
x=ωi
= ωi/N. The

same result can be obtained by direct computation. □
That being said, the barycentric formula is now given by:

p(x) =
xN − 1
N

∑
j∈[N]

ωj

x − ωj aj

This formula is a much more convenient form for the computation of the interpolation
polynomial! First, the evaluation of the sum requires O(N) operations and it depends only
on the values {ωj}j∈[N], which are typically pre-computed and used in many other parts of
the protocol. Second, the evaluation of the vanishing polynomial xN − 1 requires O(logN)
operations using the fast exponentiation algorithm, compared to naive O(N) operations.

12.1.3 Fast Polynomial Multiplication
Forward NTT. Using the Nth roots of unity Ω, we can also compute the polynomial mul-

tiplication in O(N logN) operations. The idea is to use the Number Theoretic Transform
(NTT) algorithm, which is a generalization of the Fast Fourier Transform (FFT) to the finite
fields. But first, let us define what NTT is.

Definition 12.5 (NTT). Suppose the polynomial is given by p(x) =
∑N−1
j=0 pjx

j ∈ F[x ]. In
its essence, the polynomial is defined as a vector of coefficients p = (p0, . . . , pN−1). The
Number Theoretic Transform (NTT) of polynomial p(x) is the vector of evaluations at
the Nth roots of unity Ω: NTT(p) = (p(ω0), p(ω1), . . . , p(ωN−1)).

Remark. Typically, the jth component of the NTT vector is denoted as p̂j = NTT(p)j .

If computed naively, the NTT requires O(N2) operations, since each evaluation of p(x)
requires O(N) operations. However, due to the specifics of the selected domain Ω, the NTT
can be computed in O(N logN) operations. Let us emphasize this in the following lemma.

Lemma 12.6. The Number Theoretic Transform (NTT) of a polynomial p(x) can be
computed in O(N logN) operations using the Nth roots of unity. This is possible only if the
prime field Fp allows to find the primitive 2k root of unity for k ∈ [m] with large enough m.
Equivalently, 2k | (p − 1) for k ∈ [m].

To show this lemma is true, let us develop the concrete algorithm. Notice that our task

Page 161



Distributed Lab ZKDL Camp

consists in computing:

p(ωi) =
∑
j∈[N]

pj(ω
i)j =

∑
j∈[N]

pjω
i j for each i ∈ [N]

Suppose the considered polynomial is such that N = 2r (we can always pad the polynomial
if that is not the case). Now, let us proceed with the polynomial as follows:

p(ωi) =

2r−1∑
j=0

pjω
i j =

2r−1−1∑
j=0

p2jω
2i j +

2r−1−1∑
j=0

p2j+1ω
i(2j+1) =

2r−1−1∑
j=0

p2j(ω
2i)j + ωi

2r−1−1∑
j=0

p2j+1(ω
2i)j

This already looks interesting enough. Notice that we can introduce two new polynomials:
pE(x) =

∑2r−1−1
j=0 p2jx

j and pO(x) =
∑2r−1−1
j=0 p2j+1x

j , which are polynomials, containing even
and odd coefficients of p, respectively. In that case,

p(ωi) = pE(ω
2i) + ωipO(ω

2i)

This is quite an interesting observation which already screams divide-and-conquer! However,
currently it might still be unclear how to use it: we still have to evaluate N expressions of
form pE(ω

2i) + ωipO(ω
2i) where both polynomials pE and pO contain roughly N/2 coefficients,

totalling in O(N2) operations again. To counter this, we claim the following: we need only half
the domain of Ω to compute both pE and pO. To see why, consider the expression p(ωi+N/2):

p(ωi) = pE(ω
2(i+N/2)) + ωi+N/2pO(ω

2(i+N/2)) = pE(ω
2i) + ωiωN/2pO(ω

2i)

In other words, having computed pE(ω2i) and pO(ω2i), we know not only p(ωi), but also
p(ωi+N/2) for free! This way, to compute the NTT for N-degree polynomial, we need to
evaluate two N

2
-degree polynomials at N

2
points. This way, on each step: (a) the evaluation

domain shrinks in half, (b) the complexity of computing polynomials shrinks in half, (c) we get
two new polynomials. This way, on each step, we reduce the problem complexity in half!

The reason why the prime field should support multiplicative cyclic subgroups of order 2k for
sufficiently many k is that not always if ω is the Nth primitive root, then ω2 is the N

2
th primitive

root. If that is not the case, all the aforementioned magic breaks.
We summarize everything so far in the Algorithm 4.

Algorithm 4: Number Theoretic Transform (NTT)

Input : Polynomial p(x) =
∑N−1
j=0 pjx

j

Output: Vector of evaluations NTT(p, ω) at Ω = {ω}j∈[N]
1 if N = 1 then

Return : (p0)
2 end
3 H ← N/2 /* Compute the domain half-size */

4 pE ← (p0, p2, . . . , pN−2) /* Find even-indexed coefficients */

5 pO ← (p1, p3, . . . , pN−1) /* Find odd-indexed coefficients */

6 yE ← NTT(pE, ω
2) /* Compute NTT for even polynomial via N

2 th primitive root ω2 */

7 yO ← NTT(pO, ω
2) /* Compute NTT for odd polynomial via N

2 th primitive root ω2 */

Return : (y0, . . . , yN−1) with yj = yE, j mod H + ω
jyO, j mod H

Page 162



Distributed Lab ZKDL Camp

NTT Domain. OK, so what next? Suppose we want to multiply two polynomials p(x), q(x) ∈
F[X] of degree N = 2r and we have successfully evaluated their NTTs. Say, we got p̂ and q̂.
What can we do next? Here is another trick.

Proposition 12.7. Suppose m(x) = p(x)q(x) is the product of p and q. Then,

m̂ = p̂ ⊙ q̂

Speaking more formally, NTT : (F(≤N)[X],×) → (FN,⊙) is a homomorphism between a
set of polynomials of degree up to N and their NTT domain. With certain appropriate
technicalities, NTT can be extended to the isomorphism.

Intuition. Although this fact might come out of random, we give an intuitive explanation why
this holds. One of NTT interpretations is well-known to you interpolation. Indeed, polynomials
p and q satisfy the following interpolation problem:

p(ωj) = NTT(p)j = p̂j , q(ωj) = NTT(q)j = q̂j .

In turn, m̂j is nothing but the evaluation of m at ωj . But, if m is the product of p and q and
values of p and q at ωj are p̂j and q̂j , this immediately implies that m(ωj) is nothing but p̂j q̂j .
Meaning, m̂j = p̂j q̂j . This, in turn, implies m̂ = p̂ ⊙ q̂.

Wow! What this essentially means is that multiplication in NTT domain is very cheap: it
requires only O(N) field multiplication operations! Now, the algorithm of multiplication of p
and q becomes a little bit more clear at this point:

1. Compute NTTs p̂ and q̂ of p and q.
2. Compute NTT m̂ = p̂ ⊙ q̂ of their product m = pq.
3. Restore m(x) from NTT m̂ — this problem is called Inverse NTT (INTT).
Inverse NTT. So, the only problem left is restoring the polynomial from its NTT form. This

problem is equivalent to solving the interpolation problem:

m(ωj) = m̂j , j ∈ [N]

Suprisingly, the Inverse NTT is given by pj = 1
N

∑N−1
j=0 p̂jω

−i j , which can be computed by
running the forward NTT, but with generator ω−1. Division by N is done over Fp, which is
surely trivial. We summarize the whole discussion in Figure 12.1.

Polynomial Space F(≤N)[x ]

NTT Space

p, q m = p · q

p̂, q̂ m̂ = p̂ ⊙ q̂

O(N2)

O(N logN)

O(N)

O(N logN)

Figure 12.1: Illustration of the NTT Algorithm

Page 163


