
18 Bulletproofs
"Just the place for a Snark!" the Bellman cried,
As he landed his crew with care;
Supporting each man on the top of the tide
By a finger entwined in his hair.

– Lewis Carroll, "The Hunting of the Snark"

18.1 Introduction
Bulletproofs is a zero-knowledge proof protocol with logarithmically sized

proofs without a trusted setup. Originally, bulletproofswas developed to provide
efficient range proofs in application to confidential transactions, but it applies also
to arbitrary arithmetic circuit (possibly encoded in R1CS). In the heart of protocol
lays inner-product argument which we describe in details. Technically, the
protocol is built in an interactive fashion (like Σ-protocols from Section 12), but
one could make it non-interactive with a Fiat-Shamir transform. One key feature
that differs it from Σ-protocols is the number of challenges from a verifier V – in
Σ-protocols there is only one challenge, while bulletproofs implies a logarithmic
in circuit size number of queries.

Also, bulletproofs’ inner-product argument could be used to build various
polynomial commitment schemes – crucial building block of proving systems
built with IOP framework (Halo, Nova, etc).

The main advantages of bulletproofs are an absence of a trusted setup and
security against eavesdropping that relies on the discrete-logarithm assumption
without any other auxiliary structures like bilinear pairings. Also it has quite
fast prover for small circuits making it practically useful for client-side proving.
However, the main disadvantage of bulletproofs is that it isn’t a classic SNARK
due to linear in circuit size verification time, however still very efficient for small
circuits.

18.2 Notation
LetG - cyclic group of prime orderpwritten additively,G = (G1, . . . , Gn),H =

(H1, . . . ,Hn) ∈ Gn - vectors of independent generators. We denote by ⟨a,b⟩ -
inner product of vectors a = (a1, . . . , an),b = (b1, . . . , bn) ∈ Fn

p and ⟨a,G⟩ =∑n
i=1[ai]Gi ∈ G - inner product of vector a with vector of generatorsG. Denote

by kn vector of k’s first n powers: kn = (1, k, k2, . . . , kn−1), for example 0n,1n

represents vectors of zeros and ones respectively, while 2n = (1, 2, 4, . . . , 2n−1)

18.3 Zero-knowledge multiplication
Let a, b, c ∈ Fp. Here we build a zero-knowledge protocol for relation

Rabc = {(⊥; c, a, b)|c = ab}. We use well-known Σ-protocol framework for that,
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but firstly we make very useful generalization that could allow us to prove much
larger class of relations.

Consider the first-degree polynomials l(x) = a+sLx, r(x) = b+sRx ∈ Fp[x].
Let t(x) = l(x)r(x) and relation

Rmul = {(⊥; l(x), r(x), t(x))|t(x) = l(x)r(x)}

Firstly, observe that proving t(x) = l(x)r(x) may be reduced to evaluation check
at some challenge point u ∈ Fp: t(u) = l(u)r(u), due to the Schwartz-Zippel
lemma(Definition 5.14):

Pr[l(u)r(u) = t(u)|l(x)r(x) ̸= t(x)] ≤ max(deg(l(x)r(x)), deg(t(x)))

p
=

2

p

is typically negligible function from security level which makes this check sound.

18.3.1 Naїve polynomial multiplication protocol

Let’s describe naїve unoptimized version of polynomial multiplication
protocol Π′mul = (Setup,P,V) for relationRmul. During Setup parties agree on
group elements G,B ∈ G. After that parties involve in the following protocol:

• Prover P computes:

t(x) = l(x)r(x) = (a+ sLx)(b+ sRx) = ab+ (asR + bsL) + sLsRx
2

• Prover P draws blinding factors α0, α1, β0, β1, τ0, τ1, τ2 ←$ Fp forming
blinding polynomials

α(x) = α0 + α1x, β(x) = β0 + β1x, τ(x) = τ0 + τ1x+ τ2x
2

and sends to V Pedersen commitments (Section 10) for each coefficient of
l(x), r(x), t(x):

L0 = [a]G+ [α0]B R0 = [b]G+ [β0]B

L1 = [sL]G+ [α1]B R1 = [sR]G+ [β1]B

T0 = [ab]G+ [τ0]B

T1 = [asR + bsL]G+ [τ1]B

T2 = [sLsR]G+ [τ2]B

(1)

Remark. Each commitment could be also seen as a Pedersen commit-
ment to a reciprocal blinding polynomial coefficient as well.

• Verifier V samples and sends to P random evaluation point u←$ Fp
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• Prover P evaluates l(x), r(x), t(x) and α(x), β(x), τ(x) at u:

lu = a+ sLu αu = α0 + α1u

ru = b+ sRu βu = β0 + β1u

tu = luru τu = τ0 + τ1u+ τ2u
2

(2)

and sends (lu, ru, tu, αu, βu, τu) to V .
• Verifier V performs checks:

[lu]G+ [αu]B
?
= L0 + [u]L1

[ru]G+ [βu]B
?
= R0 + [u]R1

[tu]G+ [τu]B
?
= T0 + [u]T1 + [u2]T2

tu
?
= luru

(3)

Theorem 18.1. Naїve polynomial multiplication protocolΠ′mul has perfect
completeness, 3-special soundness, perfect honest-verifier zero-knowledge

Proof idea. Perfect completeness holds due to:

[lu]G+ [αu]B = [a+ sLu]G+ [α0 + α1u]B

L0 + [u]L1 = [a]G+ [α0]B + [sLu]G+ [α1u]B =

= [a+ sLu]G+ [α0 + α1u]B

[ru]G+ [βu]B = [b+ sRu]G+ [β0 + β1u]B

R0 + [u]R1 = [b]G+ [β0]B + [sRu]G+ [β1u]B =

= [b+ sRu]G+ [β0 + β1u]B

[tu]G+ [τu]B = [luru]G+ [τ0 + τ1u+ τ2u
2]B

T0 + [u]T1 + [u2]T2 = [ab]G+ [τ0]B + [u(asR + bsL)]G+

+ [u]τ1B + [u2]sLsRG+ [u2]τ2B

= [ab+ (asR + bsL)u+ sLsRu
2]G+ [τ0 + τ1u+ τ2u

2]B

= [luru]G+ [τ0 + τ1u+ τ2u
2]B

Proving honest-verifier zero-knowledge is a bit complicated due to proper
building of a simulator and proving indistinguishability of distributions, so we
briefly describe the idea behind it: each commitment sent in the first phase by P
is a Pedersen commitment which is hiding by design, every second phase response
of P is an evaluation of some first or second degree polynomial at chosen point so
there’s not enough information for interpolation and polynomial reconstruction,
moreover it could be easily simulated.

To prove 3-special soundness we need to build a knowledge extractor E
which extracts knowledge of witness polynomials l(x), r(x), t(x) such that
l(x)r(x) = t(x) using 3 accepting transcripts:
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1. E runs P to the end and rewinds back the second phase of P , getting
three non-equal challenges u1, u2, u3 ∈ Fp and three prover responses
(lui

, rui
, tui

)3i=1

2. E solves the following systems of linear equations:{
lu1 = a+ sLu1

lu2
= a+ sLu2

{
ru1 = b+ sRu1

ru2
= b+ sRu2


tu1 = t0 + t1u1 + t2u

2
1

tu2
= t0 + t1u2 + t2u

2
2

tu3
= t0 + t1u3 + t2u

2
3

and gets the coefficients of witness polynomials: (a, sL, b, sR, t0, t1, t2)
3. To prove that l(x)r(x) = t(x) we apply Schwartz-Zippel lemma which as-

serts polynomial equality with high probability since for random challenges
ui for honest prover we have l(ui)r(ui) = t(ui) □.

18.3.2 Optimized polynomial multiplication protocol

We could optimize our polynomial multiplication protocol furthermore.
Note that we could simply apply vector Pedersen commitment for constant and
linear terms using one more group element H ∈ G.

Definition 18.2. The polynomial multiplication protocol Πmul =
(Setup,P,V) for the relation

Rmul = {(⊥; l(x), r(x), t(x))|t(x) = l(x)r(x)}

with prover P and verifier V is defined as follows:
• Setup returns triple of group generators with unknown discrete log
relations G,H,B ∈ G

• Parties P,V run the following protocol:
– Prover P computes:

t(x) = l(x)r(x) = (a+sLx)(b+sRx) = ab+(asR+bsL)+sLsRx
2

– ProverP draws blinding factorsα, β, τ0, τ1, τ2 ←$ Fp and sends to
V the following commitments for coefficients of l(x), r(x), t(x):

A = [a]G+ [b]H + [α]B

S = [sL]G+ [sR]H + [β]B

T0 = [ab]G+ [τ0]B

T1 = [asR + bsL]G+ [τ1]B

T2 = [sLsR]G+ [τ2]B

(4)

– Verifier V samples and sends to P random evaluation point
u←$ Fp
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– Prover P evaluates polynomials at u:

lu = a+ sLu αu = α+ βu

ru = b+ sRu τu = τ0 + τ1u+ τ2u
2

tu = luru

(5)

and sends (lu, ru, tu, αu, τu) to V .
– Verifier V performs checks:

A+ [u]S
?
= [lu]G+ [ru]H + [αu]B

[tu]G+ [τu]B
?
= T0 + [u]T1 + [u2]T2

tu
?
= luru

(6)

Theorem 18.3. The polynomial multiplication protocol Πmul has perfect
completeness, special soundness, perfect honest-verifier zero-knowledge

Proof. We left to a reader proof of the theorem in the sake of brevity because
it’s very similar to the proof of Definition 18.1 □

18.3.3 Zero-knowledge multiplication protocol

Finally, we could easily build the protocol for the zk-multiplication relation
where each witness element presented in statement as a Pedersen commitment:

Rabc =

 (G,H,B,A, T0; a, b, α, τ0)|
A = [a]G+ [b]H + [α]B∧
T0 = [ab]G+ [τ0]B


Where G,H,B ∈ G are generators with unknown discrete log relations, A ∈ G
is a Pedersen commitment to a, b and T0 ∈ G is a Pedersen commitment to their
product ab.

Definition18.4. ThemultiplicationprotocolΠabc = (P,V) for the relation
Rabc with prover P and verifier V is defined as follows:

• Prover P draws random sL, sR ←$ Fp and defines polynomials:

l(x) = a+ sLx, r(x) = b+ sRx, t(x) = l(x)r(x)

• Parties run Πmul on inputs (l(x), r(x), t(x)) along with provided a-
priori setup G,H,B ∈ G and commitments A, T0

The protocol obviously has perfect completeness, special soundness, perfect
honest-verifier zero-knowledge due to the Definition 18.3.
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Remark. Now curious reader may wonder why build so overwhelmingly
complicated protocol for simple multiplication and not just use classic Chaum-
Pedersen protocol for DH-triplets? Indeed, it definitely could establish that for
given group elements [a]G, [b]G, [c]G equality c = ab holds, but unfortunately
commitments [a]G, [b]G, [c]G do not have a perfect hiding property (though
preserving computational binding property) so an adversary could potentially
learn a, b, c values especially if they are small or have non-uniform distribution.

Also, there’s a folklore version of very similar protocol for establishing product
relationship between Pedersen committed values described in [?, section 12].

18.3.4 Zero-knowledge inner-product protocol

We could extend our Πmul protocol even further to provide zero-knowledge
proof for the inner-product of vectors: ⟨a,b⟩ = v. The main trick is to substitute
polynomials l(x), r(x) ∈ Fp[x] by vector polynomials l(x), r(x) ∈ Fn

p [x] where
constant terms are equal to a and b respectively, taking inner-product ⟨l(x), r(x)⟩
results in polynomial with scalar coefficients where constant term is equal to
⟨a,b⟩.

Example 18.1. Let a = (a1, a2) and b = (b1, b2) be vectors in F2
p. Consider

vector polynomials with vector coefficients:

l(x) = a+ sLx = (a1, a2) + (sL,1, sL,2)x

r(x) = b+ sRx = (b1, b2) + (sR,1, sR,2)x

where sL = (sL,1, sL,2), sR = (sR,1, sR,2).
Their inner-product is a degree two scalar polynomial:

t(x) = ⟨l(x), r(x)⟩
= ⟨a+ sLx, b+ sRx⟩
= ⟨a,b⟩+ ⟨a, sR⟩x+ ⟨sL,b⟩x+ ⟨sL, sR⟩x2

So the constant term is the inner-product ⟨a,b⟩.

Definition 18.5. The zero-knowledge inner-product protocol Πzkip =
(P,V) for the relation

Rzkip =

{
(G,H, G,B,A, V ;a,b, α, γ)|A = ⟨a,G⟩+ ⟨b,H⟩+ [α]B,

V = [⟨a,b⟩]G+ [γ]B

}
where G,H ∈ Gn, G,B ∈ G – independent group generators with prover P
and verifier V is defined as follows:

• Prover P choses blinding vectors sL, sR ∈ Fn
p and computes polynomi-
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als:

l(x) = a+ sLx

r(x) = b+ sRx

t(x) = ⟨l(x), r(x)⟩ = ⟨a,b⟩+ (⟨a, sR⟩+ ⟨sL,b⟩)x+ ⟨sL, sR⟩x2

• Prover P draws blinding factors β, τ1, τ2 ←$ Fp and sends to V the
following commitments for coefficients of l(x), r(x), t(x):

S = ⟨sL,G⟩+ ⟨sR,H⟩+ [β]B

T1 = [⟨a, sR⟩+ ⟨sL,b⟩]G+ [τ1]B

T2 = [⟨sLsR⟩]G+ [τ2]B

(7)

• Verifier V samples and sends to P random evaluation point u←$ Fp

• Prover P evaluates polynomials at u:

lu = a+ sLu αu = α+ βu

ru = b+ sRu τu = τ0 + τ1u+ τ2u
2

tu = ⟨luru⟩
(8)

and sends (lu, ru, tu, αu, τu) to V .
• Verifier V performs checks:

A+ [u]S
?
= ⟨lu,G⟩+ ⟨ru,H⟩+ [αu]B

[tu]G+ [τu]B
?
= V + [u]T1 + [u2]T2

tu
?
= ⟨luru⟩

(9)

The protocol also has perfect completeness, special soundness, perfect honest-
verifier zero-knowledge due to the Definition 18.3, however building the extractor
needs some vector equations we omit for the sake of brevity. Also note that
transcript size is linear in size of vectors lu, ru which is extremely inefficient
when vectors are large. So in the next section we present so called inner-product
argumentwhich is summoned to reduce conversational complexity to logarithmic
in vector length making the last check tu

?
= ⟨luru⟩ quite efficient.

18.4 Inner-product argument
Here we describe the further generalization of Πmul – efficient protocol for

the inner-product argument - core component of the bulletproofs protocol.
After that we will apply it to range proofs and arithmetic circuits. We have already
seen that inner-products are the main ingredients for R1CS language because
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any R1CS relation could be seen as a batch of inner-products though it’s not the
most efficient representation and we’ll see how to amortize all the constraints
into inner-products more efficiently.

The inner-product argument allows to prove that two vectors a,b ∈ Fn
p

satisfy the relation:

Rip = {(G,H, P, c;a,b)|P = ⟨a,G⟩+ ⟨b,H⟩ ∧ ⟨a,b⟩ = c}

We refer to P ∈ G as a binding Pedersen vector commitment to a,b.
One way to prove the relation is to use Πzkip, but as we’ve seen it’s not

efficient due to linear in n size of the proof. We want to build an argument system
for the relationRip with logarithmic in n size of the proof.

Firtsly, let’s combine statements P = ⟨a,G⟩ + ⟨b,H⟩ ∧ ⟨a,b⟩ = c into a
single statement by multiplying the second one by a random r ∈ Fp and some
orthogonal generator B ∈ G, summing up:

R′ip = {(G,H, Q, P ′;a,b)|P ′ = ⟨a,G⟩+ ⟨b,H⟩+ [⟨a,b⟩]Q}

Where P ′ = P + [cr]B,Q = [r]B. Intuitively, if prover P can proveR′ip for all
r ∈ Fp, then it can proveRip for any valid witness. We use such transformation
to compress each vector in half and arrive to the same form of commitment

P ′ = ⟨a,G⟩+ ⟨b,H⟩+ [⟨a,b⟩]Q

Definition 18.6. The inner-product protocol Πip = (P,V) for relation
Rip = {(G,H, P, c;a,b)|P = ⟨a,G⟩ + ⟨b,H⟩ ∧ ⟨a,b⟩ = c} with prover
P , verifier V is defined as follows:

• Parties P,V agree on some group element B ∈ G with unknown
discrete log

• Verifier V samples random r ←$ Fp and sends it to prover P
• Parties P,V compute Q← [r]B and P ′ = P + [c]Q

• Parties run protocol Π′ip for relationR′ip on input (G,H, Q, P ′;a,b)

18.4.1 Inner-product compression

Here we describe inner-product compression algorithm – main building
block of the interactive inner-product protocol. Firstly, assuming that n = 2d

define by Glo = (G1, . . . , Gn/2),Ghi = (Gn/2+1, . . . , Gn) ∈ Gn/2 – lower and
higher halves of vector G and alo = (a1, . . . , an/2),ahi = (an/2+1, . . . , an) ∈
Fn/2
p – lower and higher halves of a ∈ Fn

p .
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Let uk ∈ Fp - be some scalar, define compressed vectors:

a(k−1) = alo · uk + u−1k · ahi
b(k−1) = blo · u−1k + uk · bhi

G(k−1) = Glo · u−1k + uk ·Ghi

H(k−1) = Hlo · uk + u−1k ·Hhi

Define Pk ← P ′ = ⟨a,G⟩ + ⟨b,H⟩ + [⟨a,b⟩]Q – current commitment to
vectors a,b and define Pk−1 using compressed vectors to have the same form as
Pk , but in new basis (G(k−1),H(k−1)):

Pk−1 = ⟨a(k−1),G(k−1)⟩+ ⟨b(k−1),H(k−1)⟩+ [⟨a(k−1),b(k−1)⟩]Q (10)

Or alternatively, expressing Pk−1 in old basis (G(k),H(k)) we get:

Pk−1 = ⟨u−1k · a
(k−1),Glo

(k)⟩+ ⟨uk · a(k−1),Ghi
(k)⟩+ ⟨uk · b(k−1),Hlo

(k)⟩

+ ⟨u−1k · b
(k−1),Hhi

(k)⟩+ [⟨a(k−1),b(k−1)⟩]Q
(11)

Substituting compressed vectors and applying bilinearity property of inner
product we get:

Pk−1 =⟨alo,Glo⟩+ ⟨ahi,Ghi⟩ +u2k⟨alo,Ghi⟩+ u−2k ⟨ahi,Glo⟩+
⟨blo,Hlo⟩+ ⟨bhi,Hhi⟩ +u2k⟨bhi,Hlo⟩+ u−2k ⟨blo,Hhi⟩+
[⟨alo,blo⟩+ ⟨ahi,bhi⟩]Q +[u2k⟨alo,bhi⟩+ u−2k ⟨ahi,blo⟩]Q

Note that ⟨alo,Glo⟩+ ⟨ahi,Ghi⟩ = ⟨a,G⟩ so that the first two columns of
Pk−1 definition precisecly contains Pk = P ′:

Pk = ⟨alo,Glo⟩+⟨ahi,Ghi⟩+⟨blo,Hlo⟩+⟨bhi,Hhi⟩+[⟨alo,blo⟩+⟨ahi,bhi⟩]Q

Define cross-terms Lk, Rk of Pk−1 such that:

Pk−1 = Pk + [u2k]Lk + [u−2k ]Rk

Lk = ⟨alo,Ghi⟩+ ⟨bhi,Hlo⟩+ [⟨alo,bhi⟩]Q
Rk = ⟨ahi,Glo⟩+ ⟨blo,Hhi⟩+ [⟨ahi,blo⟩]Q

The first equation Pk−1 = Pk + [u2k]Lk + [u−2k ]Rk could be used as a check
for asserting correctness of next commitment Pk−1 given cross-terms Lk, Rk,
half-sized vectors a(k−1),b(k−1) from which Pk−1 was computed (10) using
updated basisG(k−1),H(k−1) and current commitment value Pk .

But we wish not send a(k−1),b(k−1) directly as this’s inefficient due to still
linear sizes, instead we apply recursion to compress this vectors to just one
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element. Here we come up with some kind of statement compression algorithm
reducing size of all vectors in half per compression step. Repeating compression
algorithm k times we end up with sending vectors a(0),b(0) each of length one
and P0 containing all accumulated cross-terms:

P0 = [a
(0)
1 ]G

(0)
1 + [b

(0)
1 ]H

(0)
1 + [a

(0)
1 b

(0)
1 ]Q

P0 = Pk +

k∑
i=1

([u2i ]Li + [u−2i ]Ri)

Recalling thatPk = P ′, the final compressed statement asserting inner-product
value will have the following form:

P ′ +

k∑
i=1

([u2i ]Li + [u−2i ]Ri) = [a
(0)
1 ]G

(0)
1 + [b

(0)
1 ]H

(0)
1 + [a

(0)
1 b

(0)
1 ]Q (12)

Remark.We take n = 2d without loss of generality, since one could always
pad the vectors with zeroes to make their length a power of two and inner-
product compression would shrink the size of the vectors by a factor of two
per compression step down to one element.

18.4.2 ProvingR′ip
Let’s describe the inner-product protocol Π′ip for relationR′ip.

Definition 18.7. The inner-product protocol Π′ip = (P,V) for relation
R′ip = {(G,H, Q, P ′;a,b)|P ′ = ⟨a,G⟩ + ⟨b,H⟩ + [⟨a,b⟩]Q}, where all
vectors have length n = 2d with prover P , verifier V is defined as follows:

• Prover P sets

(k,a(k),b(k),G(k),H(k), Pk)← (d,a,b,G,H, P ′)

• Verifier V sets

(k,G(k),H(k), Pk)← (d,G,H, P ′)

• While k > 0 then:
– Prover P computes

Lk = ⟨alo(k),Ghi
(k)⟩+ ⟨bhi

(k),Hlo
(k)⟩+ [⟨alo(k),bhi

(k)⟩]Q

Rk = ⟨ahi(k),Glo
(k)⟩+ ⟨blo

(k),Hhi
(k)⟩+ [⟨ahi(k),blo

(k)⟩]Q

– P sends (Lk, Rk) to V
– V draws challenge uk ←$ Fp and sends it to P
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– Both P and V compute:

G(k−1) = Glo
(k) · u−1k + uk ·Ghi

(k)

H(k−1) = Hlo
(k) · uk + u−1k ·Hhi

(k)

– P computes:

a(k−1) = alo
(k) · uk + u−1k · ahi

(k)

b(k−1) = blo
(k) · u−1k + uk · bhi

(k)

• Prover P sends (a, b)← (a
(0)
1 ,b

(0)
1 ) to verifier V

• Verifier performs final check:

P ′ +

d∑
i=1

([u2i ]Li + [u−2i ]Ri) = [a]G
(0)
1 + [b]H

(0)
1 + [ab]Q

outputs accept if equality holds and reject otherwise.
This protocol is illustrated in Figure 18.1.

As we can see, overall communication complexity of Πip is 2 log2 n group
elements plus 2 field elements so we come up with logarithmic proof size for our
inner-product relation Rip. Now one might ask whether Πip has any desired
properties such as completeness, soundness and zero-knowledge. It appears that
the first two holds under some generalizations needed for security proofs but not
zero-knowledge (indeed, if n = 1 then P sends witness pair a, b directly). We’ll
compile efficient inner-product argument Πip with zero-knowledge Πzkip to
achieve efficient zero-knowledge proofs for range proofs and arithmetic circuits.

Theorem 18.8 (Inner-Product Argument). The argument system Πip for
relationRip has perfect completeness and statistical witness-extended emulation
for either extracting a non-trivial discrete logarithm relation betweenG,H, Q
or extracting valid witness a,b.

Proof idea. Perfect completeness of Piip follows because Piip converts
instance ofRip to instance of P ′ip and Π′ip is trivially complete by construction
due to Equation (12). Notation statistical witness-extended emulation generalizes
special soundness in the way applicable for multi-stage complex argument systems
where each step of the protocol could be rewound to extract part of the witness
so that more accurate definition of protocol security is achieved despite special
soundness implies building the whole knowledge extractor which might has
non-polynomial running time for multi-stage protocols.
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Prover P Verifier V

Lk ← ⟨alo
(k),Ghi

(k)⟩+
⟨bhi

(k),Hlo
(k)⟩+ [⟨alo

(k),bhi
(k)⟩]Q

Rk ← ⟨ahi
(k),Glo

(k)⟩+
⟨blo

(k),Hhi
(k)⟩+ [⟨ahi

(k),blo
(k)⟩]Q

Send (Lk, Rk)

uk ←$ Fp

Send uk

G(k−1) ← G
(k)
lo u−1

k + ukG
(k)
hi

H(k−1) ← H
(k)
lo uk + u−1

k H
(k)
hi

a(k−1) ← a
(k)
lo uk + u−1

k a
(k)
hi

b(k−1) ← b
(k)
lo u−1

k + ukb
(k)
hi

G(k−1) ← G
(k)
lo u−1

k + ukG
(k)
hi

H(k−1) ← H
(k)
lo uk + u−1

k H
(k)
hi

Repeat for k ← d..1

Send (a, b) = (a(0),b(0))

Verify:
P ′ +

∑d
i=1([u

2
i ]Li + [u−2i ]Ri) =

[a]G
(0)
1 + [b]H

(0)
1 + [ab]Q

Figure 18.1: Interactive inner-product protocolΠ′ip between proverP and verifier
V for relationR′ip

Here we briefly describe a knowledge extractor E ′ip for a witness (a,b) or
non-trivial discrete logarithm relation for (G,H, Q) for Π′ip.

1. E ′ip runs P to the last stage to obtain (L,R)← (L1, R1).
2. E ′ip rewinds the Π′ip final stage four times to obtain four challenges
x1, x2, x3, x4 and responses (a(0)1 ,b

(0)
1 ), (a

(0)
2 ,b

(0)
2 ), (a

(0)
3 ,b

(0)
3 ), (a

(0)
4 ,b

(0)
4 )
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so that the following equation holds for i ∈ {1, 2, 3, 4} (11):

[x2i ]L+ P1 + [x−2i ]R = ⟨x−1i · a
(0)
i ,Glo

(1)⟩+ ⟨xi · a(0)i ,Ghi
(1)⟩

+ ⟨xi · b(0)
i ,Hlo

(1)⟩+ ⟨x−1i · b
(0)
i ,Hhi

(1)⟩+ [⟨a(0)i ,b
(0)
i ⟩]Q

(13)

3. E ′ip choses (v1, v2, v3) ∈ F3
p as a solution for the system of linear equations:

x21v1 + x22v2 + x23v3 = 0

v1 + v2 + v3 = 1

x−21 v1 + x−22 v2 + x−23 v3 = 0

(14)

4. E ′ip takes linear combination of (13) with coefficients vi for i ∈ {1, 2, 3}:

3∑
i=1

[vix
2
i ]L+ [vi]P1 + [vix

−2
i ]R =

3∑
i=1

⟨vix−1i · a
(0)
i ,Glo

(1)⟩+ ⟨vixi · a(0)i ,Ghi
(1)⟩

+ ⟨vixi · b(0)
i ,Hlo

(1)⟩+ ⟨vix−1i · b
(0)
i ,Hhi

(1)⟩+ [vi⟨a(0)i ,b
(0)
i ⟩]Q

Simplifying equation above we get:

P1 = ⟨
3∑

i=1

vix
−1
i · a

(0)
i + vixi · a(0)i ,G(1)⟩+

⟨
3∑

i=1

vixi · b(0)
i + vix

−1
i · b

(0)
i ,H(1)⟩+ [

3∑
i=1

vi⟨a(0)i ,b
(0)
i ⟩]Q

(15)

On the other hand we have an expression for P1 from (10):

P1 = ⟨a(1),G(1)⟩+ ⟨b(1),H(1)⟩+ [⟨a(1),b(1)⟩]Q (16)

5. Asserting equality (15)=(16) the extractor E ′ip sets:

a(1) =

3∑
i=1

vix
−1
i · a

(0)
i + vixi · a(0)i (17)

b(1) =

3∑
i=1

vixi · b(0)
i + vix

−1
i · b

(0)
i (18)

We need the fourth rewinding to assert equality of inner product:

⟨a(1),b(1)⟩ =
3∑

i=1

vi⟨a(0)i ,b
(0)
i ⟩

We won’t describe it fully since it takes some unwieldy technical details
and refer a reader to the original bulletproofs paper [?], where the full proof
of extraction is described in Theorem 1.
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6. The extractor E ′ip recursively extracts a(k+1),b(k+1) from a(k),b(k) us-
ing the method described in steps 2-5 until it reaches the final witness
a(d),b(d) = a,b for which the relationR′ip holds:

P ′ = ⟨a,G⟩+ ⟨b,H⟩+ [⟨a,b⟩]Q

Building the extractor Eip for Πip is quite simple relatively to what we’ve done by
now:

1. Eip runs Πip to the end and applies the extractor E ′ip for Pi′ip to extract the
witness a,b such that the following holds for V ’s challenge r1 ∈ Fp:

P + [r1c]B = ⟨a,G⟩+ ⟨b,H⟩+ [r1 · ⟨a,b⟩]B (19)

2. Eip rewinds the prover P to obtain another challenge from V : r2 ∈ Fp and
yield another witness a′,b′ from E ′ip:

P + [r2c]B = ⟨a′,G⟩+ ⟨b′,H⟩+ [r2 · ⟨a′,b′⟩]B (20)

3. Eip substitute (19) from (20) to get:

[c(r1−r2)]B = ⟨a− a′,G⟩+⟨b− b′,H⟩+[r1·⟨a,b⟩−r2·⟨a′,b′⟩]B (21)

Unless a = a′ and b = b′ we get a non-trivial discrete log relation between
G,H and B, otherwise if equality of witnesses holds we get:

[(r1 − r2)c]B = [(r1 − r2)⟨a,b⟩]B (22)

Hence c = ⟨a,b⟩.
To formally finalize a proof ofwitness-extended emulationwe also need to apply

so-called the forking lemma, we again refer a reader to the original bulletproofs
paper [?] □.

18.4.3 Zero-knowledge extension of inner-product argument

The main approach to make inner-product argument zero-knowledge is to use
Πzkip protocol which original bulletproofs [?] does for range proofs(Section 18.6)
and arithmetic circuits satisfiability(Section 18.7). However, there exists an
alternative elegant construction based on tweaking inner-product argument itself
described in [?, Appendix E.2].

The key idea is to bring a blinding factor δ ∈ Fp with a verifier-provided
random element D ∈ G to the commitment Pk:

Pk = ⟨a(k),G(k)⟩+ ⟨b(k),H(k)⟩+ [⟨a(k),b(k)⟩]Q+ [δ(k)]D

To get Lk, Rk prover draws δ(k)L , δ
(k)
R ←$ Fp and sets:

Pk−1 = Pk + [u2k]Lk + [u−2k ]Rk

Lk = ⟨alo(k),Ghi
(k)⟩+ ⟨bhi

(k),Hlo
(k)⟩+ [⟨alo(k),bhi

(k)⟩]Q+ [δ
(k)
L ]D

Rk = ⟨ahi(k),Glo
(k)⟩+ ⟨blo

(k),Hhi
(k)⟩+ [⟨ahi(k),blo

(k)⟩]Q+ [δ
(k)
R ]D
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Then P updates next-round δ using verifier-provided challenge uk:

δ(k−1) = δ(k) + u2kδ
(k)
L + u−2k δ

(k)
R

On the last step provermust prove that he possesses a = a(0), b = b(0), δ = δ(0)

such that for G = G(0), H = H(0) equality holds:

P0 = Pk +

k∑
i=1

([u2i ]Li + [u−2i ]Ri) = [a]G+ [b]H + [a · b]Q+ [δ]D

P0 = Pk +
∑k

i=1([u
2
i ]Li + [u−2i ]Ri) is a Pedersen commitment to a, b, a · b

with blinding factor δ and could easily be computed by verifier. One could prove
knowledge of an opening (a, b, δ) to that commitment using protocol similar to
Πzkip.

1. P draws blinders u, v, r, s←$ Fp and sends to V commitments:

A = [r]G+ [s]H + [as+ br]Q+ [u]D

T = [rs]Q+ [v]D

2. V draws challenge c←$ Fp and sends it to P
3. P evaluates and sends to V :

a′ = a+ rc

b′ = b+ sc

δ′ = δ + uc+ vc2

4. V performs check:

[a′]G+ [b′]H + [a′b′]Q+ [δ′]D
?
= P0 + [c]A+ [c2]T

Protocol is knowledge-sound as value δ could easily be extracted from three
accepting transcripts. To argue zero-knowledge we stress that an adversary
couldn’t learn anything from transcript and each prover’s message (Lk, Rk)
could be easily simulated by random element, at the base of recursion simulator
simulates zero-knowledge proof of opening (a, b, δ) to commitment P0.

18.5 Inner-product based polynomial commitment scheme
Here we describe one of the main theoretical applications of the inner-product

argument – polynomial commitment scheme that relies only on discrete
logarithm assumption, while studied before KZG commitment scheme needs
bilinear pairings.
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Definition 18.9. The inner-product non-hiding polynomial commitment
scheme Cip = (Setup,Commit,Open,VerifyOpen) is defined as follows. Let
f(x) =

∑n−1
i=0 aix

i ∈ Fp[x] be a polynomial of degree n− 1.
• Setup returns a vector of independent generatorsG = (G1, . . . , Gn).
• Commit returns polynomial commitment Com(f) = ⟨f ,G⟩ where
f = (a0, . . . , an−1)

• Open given evaluation point u ∈ Fp computes un =
(1, u, u2, . . . , un−1), obtains f(u) = ⟨f ,un⟩ and runs inner-product
argument Πip non-interactively setting

a = f ,b = un, P = Com(f), c = f(u)

to produce an evaluation proof πip
• VerifyOpen given evaluation point u ∈ Fp and commitment Com(f)
validates proof πip running the non-interactive verifier V of inner-
product argument.

Remark. As the second vector b = un is known to the verifier, the prover
don’t have to commit to it using vector H, so the parties might adjust all
the steps eliminating vector H and b vector compression as well. The full
scheme is described here. Note that described scheme is not zero-knowledge
as classic inner-product argument is not zero-knowledge. But we could make
it zero-knowledge usingΠzkip protocol or using alternative construction from
Section 18.4.3.

18.6 Range proofs
Let G,B ∈ G – independent group generators. Let’s consider the relation:

Rrp = {(G,B, V, n; v, γ)|V = [v]G+ [γ]B, v ∈ [0, 2n)}

This relation is often called the range proof relation. It asserts that committed
value v lays in the interval [0, 2n). Range proofs have very significant applications
in various privacy blockchain protocols since them usually imply proving that
transaction inputs or outputs are valid, e.g. have positive value or satisfy other
relations between them.

For the first view it seems very inconspicuous why inner-product argument
is useful for proving the range proof relation, but we’ll show it ab initio.

Firstly, write v in base-2 representation: v =
∑⌊log2 v⌋

i=0 2ivi and aL =
(v0, v1, . . . , vn−1) be the vector of bits padded with zeroes to length n, so the
range validation that v lays in [0, 2n) implies two checks:

• Each bit vi must be either 0 or 1
• The following inner-product equality holds: ⟨aL,2n⟩ = v

We already know how to prove the second one inner product equality – simply
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by taking evaluation point u← 2 in inner-product based polynomial commitment
scheme.

The first relation is a bit more tricky to check algebraically, but still we’ll
manage to do that, note that binary check for vi takes form vi(vi − 1) = 0, or in
vector form:

aR = aL − 1n ⇔ aL − aR − 1n = 0n

aL ◦ aR = 0n

Example 18.2. Let aL = (1, 0, 1, 0), aR = (0,−1, 0,−1), then aL ◦ aR =
(0, 0, 0, 0)

This two checks imply verification that some vector is zero vector, for that we
use some challenge y ∈ Fp and check inner-product equalities

⟨aL ◦ aR,yn⟩ = 0 and ⟨aL − aR − 1n,yn⟩ = 0

This checks are sound because the prover doesn’t know challenge y in advance.
Note that ⟨aL ◦aR,yn⟩ = ⟨aL,aR ◦yn⟩ so the prover could commit to aL,aR

and verifier will adjust commitment for aR using modified generatorsH ◦ y−n.
Here we came up with three inner-product checks:
1. ⟨aL,2n⟩ = v

2. ⟨aL,aR ◦ yn⟩ = 0

3. ⟨aL − aR − 1n,yn⟩ = 0

Here we could soundly combine all three checks into one using random linear
combination with some verifier-provided challenge z ∈ Fp:

z2 · ⟨aL,2n⟩+ z · ⟨aL − aR − 1n,yn⟩+ ⟨aL,aR ◦ yn⟩ = z2v

Remark. Naїve check ⟨aL,2n⟩+ ⟨aL,aR ◦ yn⟩+ ⟨aL − aR − 1n,yn⟩ = v
is not sound as Prover could adjust vectors to be non-zero but still satisfy the
check.
Now simplify this expression having only one inner-product check:

z2 · ⟨aL,2n⟩+ z · ⟨aL − aR − 1n,yn⟩+ ⟨aL,aR ◦ yn⟩ = z2v

z2 · ⟨aL,2n⟩+ z · ⟨aL,yn⟩ − z · ⟨aR,yn⟩ − z · ⟨1n,yn⟩ + ⟨aL,aR ◦ yn⟩ = z2v

z2 · ⟨aL,2n⟩+ ⟨aL, z · yn⟩+ ⟨−aR, z · yn⟩+ ⟨−z · 1n,yn⟩ + ⟨aL,aR ◦ yn⟩ = z2v

z2 · ⟨aL,2n⟩+ ⟨aL, z · yn⟩+ ⟨aR ◦ yn,−z · 1n⟩ + ⟨aL,aR ◦ yn⟩ = z2v + ⟨z · 1n,yn⟩

⟨aL, z2 · 2n + z · yn⟩ + ⟨aR ◦ yn,−z · 1n⟩+ ⟨aL,aR ◦ yn⟩ = z2v + ⟨z · 1n,yn⟩

⟨aL, z2 · 2n + z · yn + aR ◦ yn⟩ + ⟨aR ◦ yn,−z · 1n⟩ = z2v + ⟨z · 1n,yn⟩
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Now adding to both sides ⟨z2 · 2n + z · yn,−z · 1n⟩:

⟨aL, z2 · 2n + z · yn + aR ◦ yn⟩+ ⟨aR ◦ yn,−z · 1n⟩+ ⟨z2 · 2n + z · yn,−z · 1n⟩ =

= z2v + ⟨z · 1n,yn⟩+ ⟨z2 · 2n + z · yn,−z · 1n⟩

⟨aL, z2 · 2n + z · yn + aR ◦ yn⟩+ ⟨z2 · 2n + z · yn + aR ◦ yn,−z · 1n⟩ =

= z2v + ⟨z · 1n,yn⟩+ ⟨z2 · 2n + z · yn,−z · 1n⟩

⟨aL − z · 1n, z2 · 2n + z · yn + aR ◦ yn⟩ = z2v + δ(y, z)

Where δ(y, z) could easily be computed by verifier:

δ(y, z) = ⟨z ·1n,yn⟩+⟨z2 ·2n+z ·yn,−z ·1n⟩ = (z−z2)⟨1n,yn⟩−z3⟨1n,2n⟩

Now we have only one inner-product check left:

⟨aL − z · 1n, z2 · 2n + z · yn + aR ◦ yn⟩ = z2v + δ(y, z) (23)

We will use a technique presented in Πzkip to provide zero-knowledge and
inner-product argument to achieve logarithmic size-proof. One key problem is
that the verifier must adjust commitments to compensate auxiliary terms.

Firstly, construct the blinding polynomials for aL and aR with substitution:

a′L ← aL + sLx a′R ← aR + sRx

Compute polynomials l(x) = l0 + l1x, r(x) = r0 + r1x:

l(x) = a′L − z · 1n = (aL + sLx)− z · 1n = aL − z · 1n + sLx

r(x) = z2 · 2n + z · yn + a′R ◦ yn = z2 · 2n + z · yn + (aR + sRx) ◦ yn

= z2 · 2n + z · yn + aR ◦ yn + sR ◦ ynx

So that ⟨l0, r0⟩ = z2v + δ(y, z) – inner product that we want to prove using a bit
modified Πzkip.

Definition 18.10. The range proof protocol Πrp = (Setup,P,V) for the
relationRrp = {(G,B, V, n; v, γ)|V = [v]G+[γ]B, v ∈ [0, 2n)}with prover
P and verifier V is defined as follows:

• Setup returns vectors of group generators with unknown discrete log
relationsG,H ∈ Gn

• Prover does bit decomposition of v to obtain vectors aL ← v,bL ←
aL − 1n and choses blinding terms sL, sR ∈ Fn

p , α, β ∈ Fp computing
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and sending commitments:

A = ⟨aL,G⟩+ ⟨bL,H⟩+ [α]B

S = ⟨sL,G⟩+ ⟨sR,H⟩+ [β]B

• Verifier V samples challenges y, z ←$ Fp and sends them to P
• Prover P combines the three inner products into one using provided
challenges y, z (23) and reconstructs vector polynomials l(x), r(x), t(x):

l(x) = aL − z · 1n + sLx

r(x) = z2 · 2n + z · yn + aR ◦ yn + sR ◦ ynx

t(x) = ⟨l(x), r(x)⟩ = t0 + t1x+ t2x
2

Where
t0 = ⟨aL − z · 1n, z2 · 2n + z · yn + aR ◦ yn⟩ = z2v + δ(y, z)

t1 = ⟨aL − z · 1n,yn ◦ sR⟩+ ⟨yn ◦ (aR + z · 1n) + z2 · 2n, sL⟩
t2 = ⟨sL,yn ◦ sR⟩

• Prover P draws blinding factors τ1, τ2 ←$ Fp and sends to V the
following commitments for coefficients of t(x):

T1 = [t1]G+ [τ1]B

T2 = [t2]G+ [τ2]B
(24)

Note: prover does not have to send commitment to t0 as it’s the inner-
product we want to prove and it could be computed from high-level
commitment V .

• Verifier V samples and sends to P random evaluation point u←$ Fp

• Prover P evaluates polynomials at u:

lu = l(u) αu = α+ βu

ru = r(u) τu = z2γ + τ1u+ τ2u
2

tu = t(u) = z2v + δ(y, z) + t1u+ t2u
2

(25)
and sends (lu, ru, tu, αu, τu) to V .

• Verifier V performs checks:

A+ [u]S + ⟨−z · 1n,G⟩+ ⟨z · yn + z2 · 2n,y−n ◦H⟩
?
= ⟨lu,G⟩+ ⟨ru,y−n ◦H⟩+ [αu]B

[tu]G+ [τu]B
?
= [z2]V + [δ(y, z)]G+ [u]T1 + [u2]T2

tu
?
= ⟨luru⟩

(26)
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Remark. The last two steps ofΠrp could be substituted with an inner-product
argument Πip to provide logarithmic size-proof with the following steps:

• After P evaluates polynomials at u he sends (tu, αu, τu to V) and
computes commitment:

P = ⟨lu,G⟩+ ⟨ru,y−n ◦H⟩

• V performs check [tu]G+[τu]B
?
= [z2]V +[δ(y, z)]G+[u]T1+[u2]T2,

halts if it fails and reconstructs commitment P otherwise:

P = A+ [u]S + ⟨−z · 1n,G⟩+ ⟨z · yn + z2 · 2n,y−n ◦H⟩ − [αu]B

• Parties run inner-product argument Πip on (G,y−n ◦H, P, tu; lu, ru)

Theorem18.11. The range proof protocolΠrp has perfect completeness, com-
putational extended witness emulation, perfect honest-verifier zero-knowledge

Proof idea. Perfect completeness
Expand LHS of the polynomial correctness check:

A+ [u]S + ⟨−z · 1n,G⟩+ ⟨z · yn + z2 · 2n,y−n ◦H⟩ =
⟨aL,G⟩+ ⟨bL,H⟩+ [α]B + u · ⟨sL,G⟩+ u · ⟨sR,H⟩+ [uβ]B+

⟨−z · 1n,G⟩+ ⟨z · yn + z2 · 2n,y−n ◦H⟩ =
⟨aL,G⟩+ ⟨bL,H⟩+ u · ⟨sL,G⟩+ u · ⟨sR,H⟩+
⟨−z · 1n,G⟩+ ⟨z · 1n,H⟩+ ⟨z2 · 2n,y−n ◦H⟩+ [α+ uβ]B

Expand RHS of the polynomial correctness check:

⟨lu,G⟩+ ⟨ru,y−n ◦H⟩+ [αu]B =

⟨aL − z · 1n + sL · u,G⟩+ ⟨z2 · 2n + z · yn + aR ◦ yn + sR ◦ yn · u,y−n ◦H⟩
+ [α+ uβ]B =

⟨aL,G⟩+ ⟨−z · 1n,G⟩+ u · ⟨sL,G⟩+ ⟨z2 · 2n,y−n ◦H⟩+ ⟨z · 1n,H⟩+
⟨aR,H⟩+ u · ⟨sR,H⟩+ [α+ uβ]B

We could see that LHS is equal to RHS so the first check pass.
Taking the t0 correctness check:

[tu]G+ [τu]B
?
=[z2]V + δ(y, z) + [u]T1 + [u2]T2

[tu]G+(((((((((
[z2γ + τ1u+ τ2u

2]B
?
=[z2v]G+����[z2γ]B + [δ(y, z)]G+

[ut1]G+����[uτ1]B + [t2u
2]G+����[τ2u

2]B

[tu]G
?
=[z2v + δ(y, z) + t1u+ t2u

2]G
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Which holds since tu = t(u) = z2v+δ(y, z)+t1u+t2u
2. The third inner-product

also holds as tu = ⟨luru⟩.
Perfect honest-verifier zero-knowledge follows from the zero-knowledge con-

struction of Πzkip protocol as Verifier learns no information about aL,aR.
Computational extended witness emulation implies building extractor that

combines extractors for two subprotocols: Eip extracts witness (lu, ru) from Πip

than the extractor Ezkip extracts high-level witness (aL,aR) from Πzkip □
The proof size of range-proof protocol is 2 log2 n+ 4 group G elements and

5 field Fp elements.

Remark. Range proofs could be efficiently aggregated: e.g. one could prove
the relation using slightly modified range proof protocol Πrp

Rrpm = {(G,B, V⃗ , n; v⃗, γ⃗)|∀i ∈ 1..m : Vi = [vi]G+ [γi]B, vi ∈ [0, 2n)}

Where v⃗ = (v1, v2, . . . , vm) and γ⃗ = (γ1, γ2, . . . , γm) – respectively secrets
and blinding factors. Detail explanation of aggregation protocol could be
found in original bulletproofs paper [?]

Example 18.3. One of the most famous NP-complete problems is the subset-
sum problem: given a set of numbers presented as vector s and number
v ∈ N, does a some subset sums up to v. It turns out that we could use
our range-proof protocol for this problem. One could simply replace first
inner-product check ⟨aL,2n⟩ = v with ⟨aL, s⟩ = v where aL is the secret
vector of bits that encode positions of s that sum up to v.
For example take s = (6, 8, 2, 3) and v = 14. Then setting aL = (1, 1, 0, 0)
we could use Πrp to prove that there exists a subset of s that sums up to
v = 14 without disclosing that subset.
Therefore, bulletproofs range proof protocol is capable to prove a knowl-
edge of witness to any NP -problem as they all could be reduced to the
subset-sum problem

18.7 Arithmetic circuits proofs
Bulletproofs presents not only range proofs, but also efficient proofs for

arithmetic circuits satisfiability. As we could see before, inner-product relation is
quite powerful tool and could be used to prove a knowledge of witness to any
NP -problem. But here we present a more convenient way to compile arithmetic
circuits into inner-product relation.

18.7.1 Arithmetization

Bulletproofs arithmetization slightly differs from the classic R1CS we studied
before at Section 13, however it could be transformed vice-versa easily. Also
bulletproofs arithmetization ismore convenient and human-friendly for encoding
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most of the arithmetic circuits than the R1CS.
There are two types of variables in bulletproofs constraint system: low-level and

high-level. Typically high-level variables are provided with Pedersen commitments
V ∈ Gm as the private witness inputs v ∈ Fm

p to the circuit, while low-level
variables aL,aR,aO ∈ Fn

p are the intermediate witness values of computation.
We will define circuit as a set of multiplication constraints operating with low-level
variables and set of linear constraints which links low-level variables between
each other and high-level variables as well.

Multiplication constraints are defined with one vector equation:

aL ◦ aR = aO

Linear constraints are defined via:

WL · aL +WR · aR +WO · aO = WV · v + c

Where aL,aR,aO – vectors of left and right inputs for multiplication gates
and output values (all of them are low-level variables). WL,WR,WO ∈
Fq×n
p ,WV ∈ Fq×m

p – public matrices of weights for linear constraints(obviously
known to verifier). c ∈ Fq

p – public vector of constants. Typically they encode
wiring of the circuit and other linear relations between variables.

Example 18.4. Consider the following elliptic curve membership circuit.
Here witness (v1, v2) should satisfy elliptic curve equation:

y2 = x3 + ax+ b

The arithmetization for this circuit is as follows:
Low-level variables:

aL =

xx
y

 , aR =

 xx2
y

 , aO =

x2x3
y2


High-level variables:

v =

[
v1
v2

]
Multiplication constraints:

aL ◦ aR = aO ⇒

 x · x = x2

x · x2 = x3

y · y = y2


Linear constraints:
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a
(1)
L = v1

a
(1)
R = v1

a
(2)
L − a

(1)
L = 0

a
(2)
R − a

(1)
O = 0

a
(3)
L = v2

a
(3)
R = v2

a
(3)
O − a

(2)
O − a · a

(1)
L = b

WL · aL +WR · aR +WO · aO = WV · v + c

Where:

WL =



1 0 0
0 0 0
−1 1 0
0 0 0
0 0 1
0 0 0
−a 0 0


, WR =



0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0


, WO =



0 0 0
0 0 0
0 0 0
−1 0 0
0 0 0
0 0 0
0 −1 1


,

WV =



1 0
1 0
0 0
0 0
0 1
0 1
0 0


, c =



0
0
0
0
0
0
b


Classic R1CS arithmetization:
We can also represent the same circuit using the classic R1CS formalism:

(A ·w) ◦ (B ·w) = (C ·w)

where w is extended witness vector w = (1, x, y, x2, x3, y2)
The R1CS constraints for the circuit y2 = x3 + ax+ b are:

Constraint 1: x× x = x2

Constraint 2: x2 × x = x3

Constraint 3: y × y = y2

Constraint 4: x3 + ax+ b = y2
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Explicitly, the R1CS matrices are:

A =


0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0



B =


0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 a 0 0 0 0



C =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1


18.7.2 Proving a circuit satisfiability

In this section we build an argument system for the following arithmetic
circuit satisfiability relation:

Rsat =


(G,B,V,WL,WR,WO,WV , c;aL,aR,aO,v, r)|
∀i = 1..m : Vi = [vi]G+ [ri]B∧
aL ◦ aR = aO∧
WL · aL +WR · aR +WO · aO = WV · v + c

 (27)

Where aL,aR,aO ∈ Fn
p , v, r ∈ Fm

p , WL,WR,WO ∈ Fq×n
p , WV ∈ Fq×m

p ,
c ∈ Fq

p. Informally this relation states that there exists a valid witness v that
satisfies all constraints of the circuit. For the verifier witness is presented only as
commitments vectorV.

We could use similar to range-proofs technique to compile constraints of the
circuit into inner-product relation. For multiplicative constraints take random
y ∈ Fp and apply zero check:

⟨aL ◦ aR − aO,y
n⟩ = 0

Do the same for linear constraints, but for different randomness z ∈ Fp:

⟨WL · aL +WR · aR +WO · aO −WV · v − c, zq⟩ = 0

Combine this two checks to one using the same randomness z:

⟨aL ◦ aR − aO,y
n⟩+ z · ⟨WL · aL +WR · aR +WO · aO −WV · v − c, zq⟩ = 0

⟨aL ◦ aR − aO,y
n⟩+ ⟨z · zq,WL · aL +WR · aR +WO · aO −WV · v − c⟩ = 0

This check is sound as typically a prover could not control values of y, z before
he commits to aL,aR,aO and v.

241



Then split the second inner product and factor-out public terms to RHS:

⟨aL ◦ aR − aO,y
n⟩+ ⟨z · zq,WL · aL⟩+ ⟨z · zq,WR · aR⟩+ ⟨z · zq,WO · aO⟩

−⟨z · zq,WV · v⟩ − ⟨z · zq, c⟩ = 0

⟨aL ◦ aR − aO,y
n⟩+ ⟨z · zq,WL · aL⟩+ ⟨z · zq,WR · aR⟩+ ⟨z · zq,WO · aO⟩

−⟨z · zq,WV · v⟩ = ⟨z · zq, c⟩

Applying conjugation rule(ifA– linear operator andAT – its transpose(conjugate)
then ⟨a, Ab⟩ = ⟨ATa,b⟩) to the second inner product we get:

⟨aL ◦ aR − aO,y
n⟩+ ⟨WT

L · (z · zq),aL⟩+ ⟨WT
R · (z · zq),aR⟩+

⟨WT
O · (z · zq),aO⟩ − ⟨WT

V · (z · zq),v⟩ = ⟨z · zq, c⟩

Denote wc = ⟨z · zq, c⟩ and flattened linear constraints(still public and easily
computed by verifier):

wL = WT
L · (z · zq)

wR = WT
R · (z · zq)

wO = WT
O · (z · zq)

wV = WT
V · (z · zq)

Now we could finally rewrite the equation as:

⟨aL ◦ aR − aO,y
n⟩+ ⟨wL,aL⟩+ ⟨wR,aR⟩+ ⟨wO,aO⟩ − ⟨wV ,v⟩ = wc

Then rearrange and combine terms so that aL, aO be on the left side and aR
on the right side:

⟨aL ◦ aR,yn⟩ − ⟨aO,yn⟩+ ⟨wL,aL⟩+ ⟨wR,aR⟩+ ⟨wO,aO⟩ = ⟨wV ,v⟩+ wc

⟨aL,yn ◦ aR⟩+ ⟨aO,−yn +wO⟩+ ⟨wL,aL⟩+ ⟨wR,aR⟩ = ⟨wV ,v⟩+ wc

⟨aL,yn ◦ aR⟩+ ⟨aO,−yn +wO⟩+ ⟨wL,aL⟩+ ⟨yn ◦ aR,y−n ◦wR⟩ = ⟨wV ,v⟩+ wc

⟨aL + y−n ◦wR,y
n ◦ aR⟩+ ⟨aO,−yn +wO⟩+ ⟨wL,aL⟩ = ⟨wV ,v⟩+ wc

Add δ(y, z) = ⟨y−n ◦wR,wL⟩ to both sides:

wc + ⟨wV ,v⟩+ δ(y, z) = ⟨aL + y−n ◦wR,y
n ◦ aR⟩+ ⟨aL,wL⟩+

⟨aO,−yn +wO⟩+ ⟨y−n ◦wR,wL⟩
wc + ⟨wV ,v⟩+ δ(y, z) = ⟨aL + y−n ◦wR,y

n ◦ aR⟩+ ⟨aL + y−n ◦wR,wL⟩+
⟨aO,−yn +wO⟩

wc + ⟨wV ,v⟩+ δ(y, z) = ⟨aL + y−n ◦wR,y
n ◦ aR +wL⟩+ ⟨aO,−yn +wO⟩

Now it seems we are stuck as there is two separate inner products so one could
not simply linearly blind witness parts, multiply corresponding polynomials and
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obtain desired inner product in constant term just as we did in the range-proof
case. But fortunately we could take polynomials of higher degree and obtain
desired sum of inner-products as some coefficient of the product of polynomials:

⟨ax+cx2,d+bx⟩ = s1x+s2x
2+s3x

3 = x·⟨a,d⟩+x2·(⟨a,b⟩+⟨c,d⟩)+x3·⟨c,b⟩
(28)

So take:
a← aL + y−n ◦wR b← yn ◦ aR +wL

c← aO d← −yn +wO

(29)

So thanwe could get desired sum of inner products as the second-degree coefficient
s2:

wc + ⟨wV ,v⟩+ δ(y, z) = s2

In order to obtain final polynomials l(x), r(x) we must firstly blind aL,aR:

aL ← aL + sLx
2 aR ← aR + sRx

2 (30)

Remark.We multiplied blinders sL, sR with the second power of challenge
x2 because we want the blinding terms to do not interfere with other parts of
inner-product.
aO does not need separate blinding as it’s located on the left side of the
inner-product (28) along with aL, which is already blinded by sL.

Now we could compute polynomials l(x), r(x) from (28) using assignments
from (29) and blinders from (30):

l(x) = (aL + sL · x2) · x+ y−n ◦wR · x+ aO · x2

= aL · x+ sL · x3 + y−n ◦wR · x+ aO · x2

= sL · x3 + aO · x2 + (aL + y−n ◦wR) · x
r(x) = yn ◦ (aR + sR · x2) · x+wL · x− yn +wO

= yn ◦ aR · x+ yn ◦ sR · x3 +wL · x− yn +wO

= yn ◦ sR · x3 + (yn ◦ aR +wL) · x− yn +wO

(31)
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Now we could compute the polynomial t(x) = ⟨l(x), r(x)⟩:

t(x) = ⟨l(x), r(x)⟩ = t1x+ t2x
2 + t3x

3 + t4x
4 + t5x

5 + t6x
6 =

6∑
i=1

tix
i

t1 = ⟨aL + y−n ◦wR,−yn +wO⟩
t2 = ⟨aL + y−n ◦wR,y

n ◦ aR +wL⟩+ ⟨aO,−yn +wO⟩
= ⟨aL ◦ aR,yn⟩ − ⟨aO,yn⟩+ ⟨wL,aL⟩+ ⟨wR,aR⟩+ ⟨wO,aO⟩+ δ(y, z)

= wc + ⟨wV ,v⟩+ δ(y, z)

t3 = ⟨sL,−yn +wO⟩+ ⟨aO,yn ◦ aR +wL⟩
t4 = ⟨sL,yn ◦ aR +wL⟩+ ⟨aL + y−n ◦wR,y

n ◦ sR⟩
t5 = ⟨aO,yn ◦ sR⟩
t6 = ⟨sL,yn ◦ sR⟩

(32)
Our proving strategy is the same as in the range-proof case:

• Prove that l(x), r(x) are correct using binding commitments to their coeffi-
cients.

• Prove that t2 is correct (as it’s the inner-product we want to prove) using
evaluation at challenge point u.

• Apply inner-product argument to compress the proof of evaluation of t(x)
at challenge point u.

Definition 18.12. The arithmetic circuit satisfiability protocol Πsat =
(Setup,P,V) for the relationRsat with prover P and verifier V is defined as
follows:

• Setup: returns vector of group generators with unknown discrete log
relationsG,H ∈ Gn.

• Prover P choses blinding factors α, β, γ ∈ Fp, sL, sR ∈ Fn
p and sends

the following commitments to V :

AI = ⟨aL,G⟩+ ⟨aR,H⟩+ [α]B

AO = ⟨aO,G⟩+ [γ]B

S = ⟨sL,G⟩+ ⟨sR,H⟩+ [β]B

• Verifier samples challenges y, z ←$ Fp and sends them to P .
• Using provided challenges y, z prover forms polynomials l(x), r(x):

l(x) = sL · x3 + aO · x2 + (aL + y−n ◦wR) · x
r(x) = yn ◦ sR · x3 + (yn ◦ aR +wL) · x− yn +wO

computes

t(x) = ⟨l(x), r(x)⟩ = t1x+ t2x
2 + t3x

3 + t4x
4 + t5x

5 + t6x
6

244



choses random blinding factors τ1, τ3, τ4, τ5, τ6 ∈ Fp and sends to V
commitments to its coefficients:

T1 = [t1]G+ [τ1]B

T3 = [t3]G+ [τ3]B

T4 = [t4]G+ [τ4]B

T5 = [t5]G+ [τ5]B

T6 = [t6]G+ [τ6]B

Note: Prover does not send separate commitment to t2 as the verifier
could derive it fromV and the circuit public parameters:

t2 = wc + ⟨wV ,v⟩+ δ(y, z)

T2 = ⟨wV ,V⟩+ [δ(y, z) + wc]G

• Verifier samples and sends to P random evaluation point u←$ Fp.
• Prover evaluates polynomials at u:

lu = l(u)

ru = r(u)

tu = ⟨lu, ru⟩ = t(u)

τu = τ1 · u+ ⟨wV , r⟩u2 + τ3 · u3 + τ4 · u4 + τ5 · u5 + τ6 · u6

αu = αu+ γu2 + βu3

and sends (lu, ru, tu, αu, τu) to V .
• Verifier performs checks:

[u]AI + [u2]AO + [u3]S − ⟨1,H⟩+
u · (⟨y−n ◦wL,G⟩+ ⟨y−n ◦wR,H⟩) + ⟨y−n ◦wO,H⟩
?
= ⟨lu,G⟩+ ⟨ru,y−n ◦H⟩+ [αu]B

[tu]G+ [τu]B
?
= [u]T1 + u2 · (⟨wV ,V⟩+ [δ(y, z) + wc]G)+

[u3]T3 + [u4]T4 + [u5]T5 + [u6]T6

tu
?
= ⟨lu, ru⟩

Remark. As in the range proof protocol case the last two steps of Πsat could
be substituted with an inner-product argument Πip to provide logarithmic
size-proof with the following steps:

• After P evaluates polynomials at u he sends (tu, αu, τu to V) and
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computes commitment:

P = ⟨lu,G⟩+ ⟨ru,y−n ◦H⟩

• V performs check:

[tu]G+ [τu]B
?
=

6∑
k=1,k ̸=2

[uk]Tk + u2 · (⟨wV ,V⟩+ [δ(y, z) + wc]G)

halts if it fails and reconstructs commitment P otherwise:

P =[u]AI + [u2]AO + [u3]S − ⟨1,H⟩+
u · (⟨y−n ◦wL,G⟩+ ⟨y−n ◦wR,H⟩) + ⟨y−n ◦wO,H⟩ − [αu]B

• Parties run inner-product argument Πip on (G,y−n ◦H, P, tu; lu, ru)

Theorem 18.13. The arithmetic circuit satisfiability protocol Πsat has
perfect completeness, computational extended witness emulation, perfect honest-
verifier zero-knowledge

Proof idea. Perfect completeness
• Polynomial correctness check:

LHS = [u]AI + [u2]AO + [u3]S − ⟨1,H⟩+
u · (⟨y−n ◦wL,G⟩+ ⟨y−n ◦wR,H⟩) + ⟨y−n ◦wO,H⟩
= u · ⟨aL,G⟩+ u · ⟨aR,H⟩+ [αu]B + u2 · ⟨aO,G⟩+ [γu2]B+

+ u3 · ⟨sL,G⟩+ u3 · ⟨sR,H⟩+ [βu3]B−⟨1,H⟩+
+ u · ⟨y−n ◦wL,G⟩+ u · ⟨y−n ◦wR,H⟩+ ⟨y−n ◦wO,H⟩

RHS = ⟨lu,G⟩+ ⟨ru,y−n ◦H⟩+ [αu]B

= u3 · ⟨sL,G⟩+ u2 · ⟨aO,G⟩+ u · ⟨aL + y−n ◦wR,G⟩+
+ u3 · ⟨yn ◦ sR,y−n ◦H⟩+ u · ⟨yn ◦ aR,y−n ◦H⟩+ u · ⟨wL,y

n ◦H⟩
− ⟨yn,y−n ◦H⟩+ ⟨wO,y

−n ◦H⟩+ [αu+ γu2 + βu3]B

= u3 · ⟨sL,G⟩+ u2 · ⟨aO,G⟩+ u · ⟨aL,G⟩+ u · ⟨y−n ◦wR,G⟩+
+ u3 · ⟨sR,H⟩+ u · ⟨aR,H⟩+ u · ⟨wL,y

n ◦H⟩
−⟨1n,H⟩+ ⟨wO,y

−n ◦H⟩+ [αu]B + [γu2]B + [βu3]B

As we see LHS = RHS so the check holds.
• t2 correctness check:

[tu]G+ [τu]B
?
= [u]T1 + u2 · (⟨wV ,V⟩+ [δ(y, z) + wc]G)+

+ [u3]T3 + [u4]T4 + [u5]T5 + [u6]T6
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Note that

⟨wV ,V⟩ =
m∑
i=1

[wV,i]Vi =

n∑
i=1

([wi,k · vi]G+ [wV,i · ri]B)

= [

m∑
i=1

wV,i · vi]G+ [

m∑
i=1

wV,i · ri]B

= [⟨wV ,v⟩]G+ [⟨wV , r⟩]B

so simplifying the LHS we get:

[tu]G+ [τu]B =

[t1u+ (wc + ⟨wV ,v⟩+ δ(y, z))u2 + t3u
3 + t4u

4 + t5u
5 + t6u

6]G+

[τ1u+ ⟨wV , r⟩u2 + τ3u
3 + τ4u

4 + τ5u
5 + τ6u

6]B =

[u]T1 + u2 · (⟨wV ,V⟩+ [δ(y, z) + wc]G)+

+ [u3]T3 + [u4]T4 + [u5]T5 + [u6]T6 = RHS □

Perfect honest-verifier zero-knowledge follows from the zero-knowledge con-
struction of Πzkip protocol as Verifier learns no information about aL,aR,v.

Computational extended witness emulation implies building extractor that
combines extractors for two subprotocols: Eip extracts witness (lu, ru) from Πip

than the extractor built on top of Ezkip extracts high-level witness (aL,aR,aO,v)
from Πzkip □

The proof size of arithmetic circuit satisfiability protocol is 2 log2 n+ 8
group G elements and 5 field Fp elements.

Usually the number of multipliers n is not a power of 2 so that the intermediate
witness vectors aL,aR,aO must be padded with zeroes to the next power of 2 in
order to apply the inner-product argument efficiently.

Remark. TheΠsat protocol could be slightly modified to provide intermediate
random challenges inside the circuit. For example it would allow proving
permutation check: {a, b} = {c, d} ⇔ (a − x) · (b − x) = (c − x) · (d − x)
for some random challenge x.
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