
19 Sum-Check Protocol

19.1 Multivariate Polynomials
In the previous sections, we worked with univariate polynomials F[X], which

are polynomials in a single variable. However, in a set of applications such as
Spartan, we need to work with multivariate polynomials F[X1, . . . , Xv] where v
is the number of variables.

Definition 19.1.We define a monomial in v variables as a product of the
form: Xα1

1 . . . Xαv
v where α1, . . . , αv are non-negative integers. The degree

of a monomial is defined as α1 + · · ·+ αv . Multivariate polynomial from
the space F[X1, . . . , Xv] is defined as a finite linear combination of such
monomials where coefficients are from F. The degree of a multivariate
polynomial is defined as the maximum degree of its monomials.

Example 19.1. For example, f(X1, X2, X3) = X3
1 + 3X2

1X
2
2 + X2

3 + X3

is a linear combination of monomials {X3
1 , X

2
1X

2
2 , X

2
3 , X3}, thus it is a

multivariate polynomial in three variables X1, X2, and X3. The maximum
degree has a monomial X2

1X
2
2 which is 4, thus deg(f) = 4.

However, in cryptography, we won’t work with arbitrary multivariate polyno-
mials, compared to the univariate case. What we need is a multilinear polynomial.

Definition 19.2. Amultilinear polynomial f(X1, . . . , Xv) is amultivariate
polynomial which is linear in each variable, meaning that each variable
appears with degree at most 1. In other words, for each variable Xi, function
f(X1, . . . , Xv) is a linear function for fixed values of all other variables
X1, . . . , Xi−1, Xi+1, . . . , Xv :

f(X1, . . . , Xv) = αi(X1, . . . , Xi−1, Xi+1, . . . , Xv) ·Xi

+ βi(X1, . . . , Xi−1, Xi+1, . . . , Xv)

Example 19.2. For example, f(X1, X2, X3) = X1X2 + 3X1X3 +X2X3 is
a multilinear polynomial in three variables X1, X2, and X3. Note that it is
linear in X1. Indeed, it holds

f(X1, X2, X3) = α1(X2, X3)X1 + β1(X2, X3)

for α1(X2, X3) = X2 + 3X3 and β1(X2, X3) = X2X3.
Similarly, f(X1, . . . , Xv) =

∏v
i=1Xi is also a multilinear polynomial in v

variables.

249

19.2 Multilinear Extension
Compared to univariate polynomials, multilinear polynomials can hold infor-

mation with a marge smaller degree. For example, if our interpolation domain
is {0, 1, . . . , n − 1}, then we need up to nth degree univariate polynomial to
interpolate the values over this domain. However, for multilinear polynomials,
we can encode the same domain with only logn-variate multilinear polynomial.
Now, the details.

Definition 19.3. Supposewe are given the function f : {0, 1}v → F, mapping
the value from the v-dimensional hypercube to the field F. We can define the
extension of f as a v-variate polynomial f̃ ∈ F[X1, . . . , Xv] which agrees
with f on the points of the hypercube, meaning that for each b ∈ {0, 1}v it
holds that f(b) = f̃(b).

Example 19.3. A more intuitive way to think about the extension is that
given 2v points of the hypercube, we construct the “interpolation” function
f̃ which agrees with the given values over the hypercube. For example, if
f(0, 0) = 1, f(0, 1) = 2, f(1, 0) = 2, and f(1, 1) = 3, then the extension f̃
can be defined as f̃(X1, X2) = X2

1 +X2
2 + 1.

There are possibly very large number of possible extensions for a given
function f . What we are interested in is the multilinear extension, which turns
out to be unique.

Theorem19.4. Any function over the v-dimensional hypercube f : {0, 1}v →
F has a unique v-variatemultilinear extension f̃ ∈ F[X1, . . . , Xv]. It is defined
using the Lagrange interpolation of multilinear polynomials formula as follows:

f̃(X) =
∑

b∈{0,1}v
f(b) · eq(X; b),

where the set {eq(X; b)}b∈{0,1}v is referred to as the set ofmultilinear Lagrange
basis polynomials over the set {0, 1}v . Each eq(X; b) is defined as:

eq(X; b) ≜
v∏

i=1

{Xibi + (1−Xi)(1− bi)}.

Proof. First, let us show that the provided f̃ is indeed a multilinear polynomial.
Notice that each eq(X; b) is a multilinear polynomial, since it is a product of linear
polynomials in each variable Xi. Thus, f̃ is a linear combination of multilinear
polynomials, hence it is also a multilinear polynomial.

250

Why is it an extension? Notice that the formula for eq(X; b) has the following
property: eq(X; b) = 1 if X = b, and 0 otherwise. Indeed, if Xi ̸= bi, then the
term Xibi + (1−Xi)(1− bi) is equal to 0, and thus the whole product is equal
to 0. If Xi = bi for each i, then each term is equal to 1 and thus the product is 1.
Therefore, f̃(b′) for each b′ ∈ {0, 1}v is equal to:

f̃(b′) =
∑

b∈{0,1}v
f(b)·eq(b′; b) = f(b′)·eq(b′; b′)︸ ︷︷ ︸

=1

+
∑
b̸=b′

f(b)·eq(b′; b)︸ ︷︷ ︸
=0

= f(b′).

Example 19.4. Suppose function f : {0, 1}2 → Fp for p = 11 is given by
f(0, 0) = 3, f(0, 1) = 4, f(1, 0) = 1, and f(1, 1) = 2. We first build the
multilinear Lagrange basis polynomials:
eq(X1, X2; (0, 0)) = (1−X1)(1−X2), eq(X1, X2; (0, 1)) = (1−X1)X2,

eq(X1, X2; (1, 0)) = X1(1−X2), eq(X1, X2; (1, 1)) = X1X2.

The multilinear extension f̃(X1, X2) is thus computed as:
f̃(X1, X2) = 3(1−X1)(1−X2)+4(1−X1)X2+X1(1−X2)+2X1X2 = 3−2X1+X2.

Now, the question is, how fast can we compute the multilinear extension f̃
given 2v values of f? Consider the following lemma.

Lemma 19.5. Fix some positive integer v and let n = 2v . Given an input f(b)
for all b ∈ {0, 1}v and a vector r = (r1, . . . , rv) ∈ Flogn, one can compute
f̃(r) in O(n) time and space.

19.3 The Sum-Check Protocol
19.3.1 Protocol Description

Suppose we are given the v-variate polynomial (possibly non-multilinear)
f : {0, 1}v → F over a finite field F. The main goal of the Sum-Check protocol is
to convince the verifier V that∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

f(b1, . . . , bv) = H

for the given valueH ∈ F. In other words, we can convince that the sum of all the
values of f over the hypercube {0, 1}v (which we further write as

∑
b∈{0,1}v f(b)

for short) is equal to the given valueH . Such check might be useless at first glance,
but as it turns out many protocols can be reduced to the Sum-Check protocol,
similarly how any NP statement can be encoded as a high-degree univariate
polynomial check (see the lecture on QAP).

Why can’t the verifier just compute the sum? Typically, v is a fairly
large number. According to the Definition 19.5, the verifier can compute the

251

multilinear extension f̃ in O(2v) time and space, which is infeasible for large v.
The Sum-Check protocol allows the verifier to check the sum in up to O(v2) time
and space, which is much more adequate for large v.

How does it work? First, the prover P sends the value C1 ∈ F, which he
claims to be the value of the sum (that is, H). The protocol proceeds in v rounds.
For each round j, define the following univariate polynomial in the variable Xj :

fj(Xj) =
∑

(bj+1,...,bv)∈{0,1}v−j

f(r1, . . . , rj−1, Xj , bj+1, . . . , bv),

where values r1, . . . , rj−1 ∈ F are fixed values of the variables X1, . . . , Xj−1
(which are randomnesses selected during previous rounds).

Consider the first round, when j = 1. In such case, according to the
definition of fj(Xj), the prover P computes the univariate polynomial f1(X1) =∑

(b2,...,bv)∈{0,1}v−1 f(X1, b2, . . . , bv) and sends the claimed polynomial s1(X1)

as the first round message. How can the verifier V be sure that s1(X1) is indeed
the univariate polynomial f1(X1)? Since f1(0) + f1(1) = H , the verifier can
check that s1(0) + s1(1) = C1.

However, this is not enough: there are many univariate polynomials that
satisfy the condition s1(0) + s1(1) = C1. For that reason, we are going to apply
the Schwartz-Zippel lemma, which states that as long as |F| ≫ deg f1, it is safe
to check the equality s1(r1) = f1(r1) at a random point r1 ←$ F. In such case,
the soundness of such check is 1− deg f1/|F|.

However, can the verifier evaulate both s1(r1) and f1(r1) effectively to verify
the equality? Good news is that s1(r1) can be evaluated efficiently: in fact, in
O(deg s1) where typically degree is small (in case of multilinear polynomials,
the degree is at most 1). But what about f1(r1)? Here is the bad news: f1(r1)
is a sum of 2v−1 terms, and thus it cannot be computed efficiently. Another
good news is that we do not need to! The idea of the sumcheck protocol is to
reduce the computation of f1(r1) to the computation of f2, then f3 etc. until the
computation is trivial.

For concrete example, consider the second round. Now, the prover computes
the polynomial f2(X2) =

∑
(b3,...,bv)∈{0,1}v−2 f(r1, X2, b3, . . . , bv) and sends the

claimed polynomial s2(X2). The verifier now checks that s2(0) + s2(1) = s1(r1)
and that s2(r2) = f2(r2) at random point r2 ←$ F. Since computing f2(r2)
consists in adding up 2v−2 terms, it is still infeasible to compute it directly, but
we reduced the problem 4× already.

Recursive definition. For the j-th round, the prover computes fj(Xj) and
sends the claimed polynomial sj(Xj). The verifier checkswhether sj(0)+sj(1) =
sj−1(rj−1). Additionally, the verifier rejects if deg sj is too large (for example,
if deg sj > degj f where degj f is a degree of the polynomial in variable Xj).
During the last round, the prover sends the claimed value sv(rv) and the verifier
checks whether sv(rv) = f(r1, . . . , rv)

15. If the check succeeds, then the verifier
15Here we assume that the verifier has the oracle access to the function f and can compute it at

252

accepts the claim that ∑
b∈{0,1}v

f(b) = H.

Onemight ask: how secure is the Sum-Check protocol? Consider the following
lemma.

Lemma 19.6. Let f ∈ F[X1, . . . , Xv] be a multivariate polynomial of degree
at most d in each variable, defined over the finite field F. For any givenH ∈ F,
let L be the language of all polynomials f (given as an oracle) such that

H =
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

f(b1, . . . , bv).

The sumcheck protocol is an IOP for L with the completness error δC = 0
and the soundness error δS ≤ vd/|F|.

Finally, consider the efficiency of the Sum-Check protocol.

Lemma 19.7. Suppose f is given according to the representation in Lemma
19.6. Then, the following holds:

• Communication consists of O(dv) field elements.
• The verifier V runs in O(vd) + T where T is the cost of the oracle
access to f .

• The prover P runs in O(2vT).

19.3.2 Sum-Check Protocol Implementation

Let us implement this algorithm in SageMath! First, define the multivariate
polynomial ring and the function f : {0, 1}v → F. As an example, we will use
v = 10 while f will be sampled randomly from Fp[X1, . . . , Xv]. As a prime field,
we use p = 231 − 1. Here is the code that sets everything up:

Defining the finite field GF(p) where p is a large prime
p = (1<<31) - 1
Fp = GF(p)

Defining the multivariate polynomial ring over the finite field GF(p)
v = 10 # Degree of the polynomial
variable_names = [f'x{i}' for i in range(v)]
R = PolynomialRing(Fp, names=variable_names)
variables = R.gens()

any randomly selected point.
253

Now, let us define f and find the corresponding valueH =
∑

b∈{0,1}v f(b).
For that, we simply take the random element of the polynomial ring R and
manually add up all 2v values over the boolean hypercube {0, 1}v .

def boolean_hypercube_sum(f: PolynomialRing) -> Fp:
"""
Computes the sum of the polynomial f over the boolean hypercube {0,1}^v.
The boolean hypercube is represented by evaluating the polynomial at all
combinations of 0 and 1 for each variable.
"""

total_sum = Fp(0)
for i in range(1<<v):

Convert i to a binary representation of length v
binary_representation = [(i >> j) & 1 for j in range(v)]
Evaluate the polynomial at this point
point_value = f(*binary_representation)
total_sum += point_value

return total_sum

f = R.random_element(degree=v) # Random polynomial
H = boolean_hypercube_sum(f)

The SageMath generated the following f and H :

f(X1, . . . , X10) = 226921892X3
2X3X

2
4X5X6X

2
8 + 274566947X0X

2
1X

2
2X4X

2
7X8X9

+ 850030718X2
1X4X

3
6X

2
7X8X9 + 560601732X0X3X5X6X7X8X

4
9 − 390725845X2

0X
3
2X3X

3
9

H =
∑

b∈{0,1}10
f(b) = 1053620759.

Now, we are going to implement the prover algorithm. For that, we need to
define the univariate polynomial fj(Xj) for each round j and compute the claimed
polynomial sj(Xj) based on previously sampled randomness values r1, . . . , rj−1.
Since our protocol is a public-coin protocol, we can apply the Fiat-Shamir transform
to make the randomness values r1, . . . , rv deterministically computable by the
prover (thus making the protocol non-interactive). For that, we will compute the
challenge rj as H(s1, s2, . . . , sj−1) where H : {0, 1}∗ → Fp is a cryptographic
hash function (SHA256 in our case). That said, we defineH as follows:

def fiat_shamir_sample(input_string: str) -> Fp:
"""
Samples a random value from the finite field GF(p) using the Fiat-Shamir heuristic.
The input string is hashed to produce a random value.
"""

fs_hash = hashlib.sha256(input_string.encode('utf-8')).hexdigest()
254

return Fp(int(fs_hash, 16) % p)

Finally, the verifier logic is even more simple: the verifier checks that (a)
randomnesses {rj}j∈{1,...,10} are sampled correctly, (b) the claimed polynomials
sj(Xj) satisfy the conditions sj(0)+sj(1) = sj−1(rj−1) for each j ∈ {1, . . . , 10}
(instead of s0, we simply use the claimed value H), and (c) the final check
sv(rv) = f(r1, . . . , rv) holds. Additionally, we should check the degrees of each
sj , but we omit this check for simplicity. Here is the implementation of the prover
and verifier:

class SumCheckProtocol:
"""
Prover and Verifier for the Sum Check protocol.
"""

def __init__(
self,
polynomial: PolynomialRing,
claimed_sum: Fp

) -> None:
"""
Initializes the SumCheck protocol with a polynomial and the claimed sum.

Args:
polynomial (PolynomialRing): The polynomial to be checked.
claimed_sum (Fp): The sum claimed by the prover over the boolean hypercube.

"""

self.f = polynomial
self.H = claimed_sum

@staticmethod
def fiat_shamir_from_polynomials(polynomials: list[PolynomialRing]) -> Fp:

"""
Samples a random value from the finite field GF(p) using the Fiat-Shamir heuristic
based on the provided polynomials.

Args:
polynomials (list[PolynomialRing]): List of polynomials to be used for sampling.

Returns:
Fp: A random value from the finite field GF(p).

"""

fs_input = ''.join(str(poly) for poly in polynomials)
return fiat_shamir_sample(fs_input)

255

def prove(self) -> dict:
"""
Prover generates the transcript of the polynomial and the claimed sum.

Returns:
dict: A transcript containing the polynomial, claimed sum, random values, and polynomials.

"""

Initialize the transcript representing the
interaction between the prover and verifier.
transcript = {

'polynomial': self.f,
'claimed_sum': self.H,
'random_values': [],
'polynomials': []

}

for j in range(v):
The protocol consists of v rounds.
Finding polynomial s_j that represents the sum of f over the boolean hypercube
Rj = PolynomialRing(Fp, 'x')
x = Rj.gen()
s_j = Rj.zero()

for i in range(2**(v-j-1)):
Convert i to a binary representation of length v-j-1
binary_representation = [(i >> k) & 1 for k in range(v-j-1)]
Evaluate the polynomial at this point
point_value = self.f(*transcript['random_values'][:j], variables[j], *binary_representation)
univariate_poly = point_value.subs({variables[j]: x})
s_j += univariate_poly

Append the polynomial s_j to the transcript
transcript['polynomials'].append(s_j)

Sample the random value using Fiat-Shamir heuristic
random_value = SumCheckProtocol.fiat_shamir_from_polynomials(

polynomials=transcript['polynomials']
)
transcript['random_values'].append(random_value)

return transcript

def verify(self, transcript: dict) -> bool:
"""
Verifier checks the validity of the transcript.

256

Args:
transcript (dict): The transcript generated by the prover.

Returns:
bool: True if the claimed sum is valid, False otherwise.

"""

Decipher the transcript
H = transcript['claimed_sum']
f = transcript['polynomial']
random_values = transcript['random_values']
polynomials = transcript['polynomials']

Assert that random_values is formed correctly using Fiat-Shamir heuristic
if len(random_values) != v:

print("Invalid number of random values in the transcript.")
return False

for i in range(v):
if random_values[i] != self.fiat_shamir_from_polynomials(polynomials[:i+1]):

print(f"Random value at index {i} does not match the Fiat-Shamir sample.")
return False

Assert that each s_r(0) + s_r(1) matches the claimed sum H
for j in range(v):

During the first round, simply check that s_1(0) + s_1(1) = H
if j == 0:

s_1 = polynomials[0]
if s_1(0) + s_1(1) != H:

print(f"""First round sum {s_1(0) + s_1(1)}
does not match the claimed sum {H}.""")

return False
continue

For subsequent rounds, check that the sum of the polynomials matches the claimed sum
s, s_previous = polynomials[j], polynomials[j-1]
if s(0) + s(1) != s_previous(random_values[j-1]):

print(f"""Round {j} sum {s(0) + s(1)} does not match the
previous round's output {s_previous(random_values[j-1])}.""")

return False

Final round checks whether f(r) = s_v(r_v)
last_polynomial = polynomials[-1]
last_random = random_values[-1]

if last_polynomial(last_random) != f(*random_values):
print(f"Final check failed: {last_polynomial(last_random)} != {f(*random_values)}")
return False

return True

257

protocol = SumCheckProtocol(f, H)
transcript = protocol.prove()
print(f'Prover has the transcript: {transcript}')
print(f'Verifier checks the proof: {protocol.verify(transcript)}')

The example transcript is the following:

s1(X) = 763349684X2 + 238898491X + 25686292, r1 = 493136960

s2(X) = 1430156880X2 + 361631142, r2 = 2831006

s3(X) = 658473518X3 + 208437747X2 + 1648222287, r3 = 321757611

s4(X) = 111234379X + 1501686780, r4 = 1835658

s5(X) = 2135686754X2 + 1501686780X + 1698421434, r5 = 1970078146

s6(X) = 53232575X + 259099570, r6 = 1616339175

s7(X) = 669263002X3 + 514137765X + 1942401931, r7 = 887816643

s8(X) = 1524551309X2 + 1551518026X + 55160592, r8 = 421872749

s9(X) = 1766229428X2 + 826393776X + 1291949229, r9 = 1169032581

s10(X) = 2030644729X4 + 1291949229X3 + 560585988X + 1720313399,

r10 = 1461328437

19.4 Sumcheck Applications
As of now, the Sum-Check protocol seems too abstract and not very useful: why

do we even need to sum some random multivariate polynomial over the boolean
hypercube? In this section, we provide some (rather theoretic) applications of the
Sum-Check protocol, but as we go further, it will become more clear why it is so
important.

19.4.1 The #SAT Problem

Let C : {0, 1}ℓ → {0, 1} be any boolean formula of size S = O(poly(ℓ)). In
the #SAT problem, the goal is to compute the number of satisfying (boolean)
assignments of C, that is, find the value H =

∑
b∈{0,1}ℓ C(b). Such problem is

believed to be very difficult with the fastest known algorithm to still run in the
exponential time: that is, no much better than brute-force the formula in time
O(2ℓS). Even determining whetherH > 0 is widely believed to be NP-hard. But
suppose we have a prover P who does knowH and wants to prove any verifier V
that H was computed correctly in the polynomial time.

Now, similarly to how it is done in R1CS, we arithmetize the circuit C to be
computable over the finite field F (let us call it C̃ : Fℓ → F). Here how it goes:

• Instead of the gate x ∧ y, we use the multiplication x · y.
• Instead of the gate x ∨ y, we use the addition x+ y − x · y.

258

• Instead of the gate ¬x, we use the subtraction 1− x.
• Instead of the gate x⊕ y, we use the addition x+ y − 2xy.
As an example, suppose we have the circuit:

C(x1, x2, x3, x4) = (¬x1 ∧ x2) ∧ (x3 ∨ x4)

The extension C̃ of the circuit C is

C̃(X1, X2, X3, X4) = (1−X1)X2(X3 +X4 −X3X4).

It is fairly easy to see that C̃(b) = C(b) for all b ∈ {0, 1}ℓ with ℓ = 4. Then, we
can apply the sum-check protocol over C̃ to prove thatH was computed correctly.
In such case, the prover runs in O(S22ℓ) time, while the verifier in time O(S).

19.4.2 Matrix Multiplication Verification (MatMul Check-Sum Protocol)

Now, here is the application which gets much more interesting. Consider two
matrices A,B ∈ Fn×n and the goal is to verify that the product C = A · B is
computed correctly. The naive way is to make verifier compute the product, taking
O(n3) time, and then compare the result with the claimed value C . However, it is
possible to verify the correctness of the product in O(n2) time and space using
the Freivelds’ protocol by the simple observation that we can sample a random
challenge α ←$ Fn and verify that A(Bα) = Cα (idea is pretty similar to the
Schwartz-Zippel lemma where we check the polynomial equation at a random
point). However, is there any better way to do that? Sumcheck protocol can help
to keep the same assymptotics, but do not reveal the whole matrices A,B to the
verifier.

Protocol. Here is where multilinear extension comes into play. Instead of
perceiving matrices A,B,C as n2 field elements, we perceive them as functions
fA, fB , fC : {0, 1}logn × {0, 1}logn → F, mapping two indices of the matrix to
the corresponding value. This way, for instance:

fA(i, j) = Ai,j , where i = (i1, . . . , ilogn), j = (j1, . . . , jlogn).

Denote by f̃A, f̃B , f̃C : Flogn × Flogn → F the multilinear extensions of the
functions fA, fB , fC . Now, how to reduce the seemingly difficult check C = AB
into the Sum-Check protocol? Consider the following lemma.

Lemma 19.8. f̃C(x,y) =
∑

b∈{0,1}log n f̃A(x, b)f̃B(b,y).

Proof. Obviously, both left and right-hand sides are multilinear polynomials
in x and y. Since multilinear extension of C is unique, it suffices to check that
the equality holds for all boolean assignments i, j ∈ {0, 1}logn. Indeed, we have
f̃C(i, j) =

∑
b∈{0,1}log n f̃A(i, b)f̃B(b, j). But notice that this check literally

259

checks whether Ci,j =
∑n

b=1Ai,bBb,j which is exactly the definition of matrix
multiplication!

Now, the interactive proof is immediate: sample random r1, r2 ←$ Flogn,
and apply the sum-check on g(z) := f̃A(r1, z)f̃B(z, r2) to prove that it equals
f̃C(r1, r2).

It can be shown that both the prover’s and verifier’s time is O(n2), while the
proof size is O(logn) (compared to O(n2) for the naive approach).

19.4.3 MatMul Sum-Check Protocol Implementation

Now, let us implement the matrix multiplication verification protocol in
SageMath! For simplicity, we assume that the matrix has a size n = 2v so that
MLE of matrices are of degree 2v. Also, we will work over the small prime field
F11 this time to make outputs somewhat more readable. So here we go:

Defining the finite field GF(p) where p is a large prime
p = 11
Fp = GF(p)

Assume for simplicity that matrices are of size 2^v x 2^v
v = 2 # Matrix of size 4x4
n = 1<<v

Defining how MLE are computed
variable_names = [f'x{i}' for i in range(2*v)]
R = PolynomialRing(Fp, names=variable_names)
variables = R.gens()

Now, for concreteness, we initialize the matrices A,B and C = AB.

Generate two random matrices A and B over the finite field GF(p)
A = Matrix(Fp, n, n, [Fp.random_element() for _ in range(n*n)])
B = Matrix(Fp, n, n, [Fp.random_element() for _ in range(n*n)])

Find the product matrix C=A*B
C = A * B
print(f'Matrix A:\n{A}')
print(f'Matrix B:\n{B}')
print(f'Matrix C:\n{C}')

Here, we obtained the following matrices:

A =


1 1 3 10
5 6 4 5
1 8 3 4
6 2 2 7

 , B =


2 7 9 5
5 10 0 10
5 0 2 3
2 6 6 6

 , C =


9 0 9 7
4 4 6 6
10 1 6 8
2 5 1 10


260

Now, we need to build the multilinear extensions f̃A, f̃B , f̃C : F2×2 → F. To
achieve that, we first write down the function to compute the MLE given the set
of values {(b, f(b))}b∈{0,1}ℓ given interpolation formula from Theorem 19.4.

def mle_from_hypercube(hypercube: list) -> R:
"""
Computes the Multivariate Linear Extension (MLE) of a hypercube.
The hypercube is represented as a list of tuples, where each tuple
contains the coordinates of a point in the hypercube.

Args:
hypercube (list): A list of tuples representing points in the hypercube.

Each tuple should have length equal to the dimension dim.
"""

Create a polynomial for each point in the hypercube
mle = R.zero()
for point, value in hypercube:

eq_poly = R(1)
for i, bit in enumerate(point):

eq_poly *= bit*variables[i] + (1-bit)*(1-variables[i])

mle += eq_poly * value

return mle

We can verify the correctness of this function by running the Example in the
first section. Indeed:

print('Example MLE:', mle_from_hypercube([
((0, 0), Fp(3)),
((0, 1), Fp(4)),
((1, 0), Fp(1)),
((1, 1), Fp(2))

])) # Output: -2*x0 + x1 + 3

At this point, we can finally derive the MLEs. We simply iterate through
all indices (i, j), bit-decompose them to get bit-vectors i = (i1, i2) and j =
(j1, j2), and then interpolate the MLEs: for matrix A, for instance, we have
{(i1, i2, j1, j2), Ai,j}i,j∈[n]2 .

def mle_from_matrix(matrix: Matrix) -> R:
"""
Computes the Multivariate Linear Extension (MLE) of a matrix.
The MLE is a polynomial that represents the matrix entries as variables.
"""

261

assert matrix.nrows() == matrix.ncols(), "Matrix must be square."
assert matrix.nrows() == n, "Matrix size must be 1<<v"

Range over all indices, bit-decompose them, and build the mle
hypercube = []
for i in range(n):

for j in range(n):
Convert i and j to binary representation of length v
point = [(i >> k) & 1 for k in range(v)] + [(j >> k) & 1 for k in range(v)]
hypercube.append((tuple(point), matrix[i, j]))

return mle_from_hypercube(hypercube)

Now we find the MLEs of matrices A, B, and C :

A_mle = mle_from_matrix(A)
B_mle = mle_from_matrix(B)
C_mle = mle_from_matrix(C)
print(f'MLE of A:\n{A_mle}')
print(f'MLE of B:\n{B_mle}')
print(f'MLE of C:\n{C_mle}')

The results are the following:

f̃A(X1, X2, Y1, Y2) = −X1X2Y1 − 3X1X2Y2 + 4X1Y1Y2 − 2X2Y1Y2

+X1X2 +X1Y1 − 4X2Y1 − 3X1Y2 − 4Y1Y2

+ 4X1 + 2Y2 + 1

f̃B(X1, X2, Y1, Y2) = −2X1X2Y1Y2 − 2X1X2Y1 − 3X1X2Y2 + 3X1Y1Y2

+ 4X2Y1Y2 + 5X1X2 +X2Y1 −X1Y2 +X2Y2

+ 2Y1Y2 + 3X1 + 3X2 + 5Y1 − 4Y2 + 2

f̃C(X1, X2, Y1, Y2) = 2X1X2Y1Y2 + 3X1X2Y1 +X1X2Y2 + 4X1Y1Y2

+ 4X2Y1Y2 − 3X1X2 − 2X1Y1 + 2X1Y2 − 4X2Y2

− 4Y1Y2 − 5X1 +X2 + 2Y1 − 2

One can easily check that they indeed encode the matrices A, B, and C as
expected. For example, it is trivial to check the upper left element in all three
cases:

f̃A(0, 0, 0, 0) = 1, f̃B(0, 0, 0, 0) = 2, f̃C(0, 0, 0, 0) = 9.

Now, we can implement the Sum-Check protocol to verify that C = AB holds.
We first sample randomnesses r1, r2 ←$ F2

11:

Now, we are going to apply the sumcheck protocol. First,
262

sample two random vectors r1 and r2 of size v = log(n)
r1 = [Fp.random_element() for _ in range(v)]
r2 = [Fp.random_element() for _ in range(v)]

Then, we define the function g(z) = f̃A(r1, z)f̃B(z, r2) and apply the Sum-
Check protocol to prove that it equals f̃C(r1, r2). For that, we first define the
function g:

claimed_sum = C_mle(*(r1 + r2))
g = A_mle.subs({

variables[i]: r1[i] for i in range(v)
}).subs({

variables[v+i]: variables[i] for i in range(v)
}) * B_mle.subs({

variables[i+v]: r2[i] for i in range(v)
})

Turnes out that the claimed sum is H = 6 while the polynomial is:

g(X1, X2) = 5X2
1X

2
2−5X2

1X2+3X1X
2
2+3X2

1+4X1X2−3X2
2+4X1−3X2+2

So the only thing left is to run the already implemented Sum-Check protocol.
Here how it goes:

Defining a smaller polynomial ring for the protocol (since g
is polynomial in v variables instead of 2*v)
Q = PolynomialRing(Fp, names=variable_names)
variables = Q.gens()
g = Q(g)

Running the sum-check protocol
protocol = SumCheckProtocol(Fp, Q, g, claimed_sum, degree=v)
transcript = protocol.prove()
print_transcript(transcript)
verification_result = protocol.verify(transcript)
print(f'Verification result: {verification_result}')

Our interaction consisted of only two polynomials (since v = 2):

s1(X) = 6X2 + 4X + 9, r1 = 4

s2(X) = X2 + 10X, r2 = 2

The final verification result is True, meaning prover has successfully proved
that C = AB holds.

263

	IV Sum-Check-based Protocols and Lookup Checks
	Sum-Check Protocol
	Multivariate Polynomials
	Multilinear Extension
	The Sum-Check Protocol
	Protocol Description
	Sum-Check Protocol Implementation

	Sumcheck Applications
	The #SAT Problem
	Matrix Multiplication Verification (MatMul Check-Sum Protocol)
	MatMul Sum-Check Protocol Implementation

