
20 GKR Protocol

20.1 Motivation
Previous discussion, while giving certain applications of the Sum-Check

protocol, still provides quite “artificial” constructions not directly applicable in
the real-world use-cases. For instance, the #SAT problem is not very practical as
the prover P cannot even compute the value H in polynomial time. Ideally, we
would like to have a protocol that allows the prover to compute the value H is
the polynomial time, while the verifier V should be able to verify the correctness
of the claimed value H in the logarithmic time.

Goldwasser, Kalai, and Rothblum (GKR) described a protocol which solves
exactly this issue over the arithmetical circuits, which we solved using QAP→NILP
reduction in Groth16. Here we take the Sum-Check approach.

Suppose we are given the layered arithmetical circuit C : Fn → Fm of size S
(number of gates). The layered here means that the circuit C can be decomposed
into d layers (note that GKR can be generalized to the unstructured arithmetical
circuits as well). The GKR protocol allows to achieve the following performance:

• The communication consists of O(d · polylog(S)) field elements.
• The verifier runs in O(n+ d · polylog(S)) time.
• The prover runs in O(poly(S)) time.
• The soundness error is just O(d log(S)/|F|).

20.2 Protocol Description
20.2.1 Circuit Representation

Again, assume we are given the circuit C : Fn → Fm of size S, depth d, and
fan-in two (i.e., each gate has at most two inputs, but might have multiple outputs).
Let us number the layers of the circuit from 0 to d where 0 denotes the output
layer while d is the input layer (notice that the layers are numbered in the reverse
order compared to the usual circuit notation). Assume the number of gates in the
layer i is Si and without the loss of generality, we assume that Si is the power of
two: Si = 2vi . Now, we are going to introduce certain functions to further build
up the Sum-Check.

Gates Encodings. SupposeWi : {0, 1}vi → F is structured so that it outputs
the value of the i-th layer gate given the gate label. As usual, we denote the
multilinear extension ofWi as W̃i : Fvi → F.

WiringPredicates. We introduce thewiring predicates in1,i, in2,i : {0, 1}vi →
{0, 1}vi+1 which indicate which pairs of wairing are connected to the i-th layer
gate from the layer i+ 1. It takes the label of the gate in the layer i (say, a) and
the function in1,i(a) outputs the label of the first input connected to the gate a in
the layer i+ 1, while in2,i(a) outputs the label of the second input connected to
the gate a in the layer i+ 1.

264

Operations Encodings. Define two functions: add,mul : {0, 1}vi+2vi+1 →
{0, 1} which take three gate labels (say, (a, b, c)) and return 1 if and only if
(b, c) = (in1,i(a), in2,i(a)) (that is, the gate a in the layer i is connected to the
gates b and c in the layer i+ 1) and a is an addition gate. Similarly, mul(a, b, c)
returns 1 if and only if (b, c) = (in1,i(a), in2,i(a)) and a is a multiplication
gate. We denote the MLEs of these functions as ãdd and m̃ul : Fvi+2vi+1 → F,
respectively.

Example. Consider the following circuit with d = 3 layers:

Layer 3 (Inputs)
S3 = 8, v3 = 3

Layer 2
S2 = 4, v2 = 2

Layer 1
S1 = 4, v1 = 2

Layer 0 (Output)
S0 = 2, v0 = 1

x1

x2

x3

x4

x5

x6

x7

x8

+

×

+

×

×

+

×

+

+

+

Figure 20.1: Example of a layered arithmetical circuit C : F8 → F2 with d = 3
layers.

Let us assume that we have inputted the values x⟨3⟩ = (1, 2, 0, 1, 0, 2, 0, 1).
Then, the value of the layer 2 is x⟨2⟩ = (3, 0, 2, 0) and the layer 1 is x⟨1⟩ =
(0, 2, 6, 0). Finally, the output layer is x⟨0⟩ = (2, 6). Let us now see how to encode
gates, wiring predicates, and operations encodings on this circuit. Consider
W1 : {0, 1}2 → F. We have

W1(0, 0) = 0, W1(0, 1) = 2, W1(1, 0) = 6, W1(1, 1) = 0.

Therefore, the multilinear extension ofW1 is W̃1(X1, X2) = 2(1−X1)X2 +
6X1(1−X2).

Now, let us define the wiring predicates in1,2, in2,2 : {0, 1}2 → {0, 1}3.
Consider the 2nd gate (2 = (1, 0)) in layer 2. It is connected to the 5th and 6th
gates in layer 3 (the input layer). Since 5 = (1, 0, 1) and 6 = (1, 1, 0) in the binary
form, we have

in1,2(1, 0) = (1, 0, 1), in2,2(1, 0) = (1, 1, 0).

265

Now, consider the operation encodings add2 and mul2 : {0, 1}8 → {0, 1}.
The addition gate is non-zero only on the following inputs:

((0, 0), (0, 0, 0), (0, 0, 1)), ((1, 0), (1, 0, 0), (1, 0, 1)).

Therefore, the multilinear extension of add2 is

ãdd2(X1, X2, Y1, Y2, Y3, Z1, Z2, Z3) = (1−X1)(1−X2)(1− Y1)(1− Y2)
· (1− Y3)(1− Z1)(1− Z2)Z3

+X1(1−X2)Y1(1− Y2)(1− Y3)Z1(1− Z2)Z3

Similarly, the multiplication encoding mul2 is non-zero only on the following
inputs:

((0, 1), (0, 1, 0), (0, 1, 1)), ((1, 1), (1, 1, 0), (1, 1, 1)),

The multilinear extension of mul2 is

m̃ul2(X1, X2, Y1, Y2, Y3, Z1, Z2, Z3) = (1−X1)X2(1− Y1)Y2(1− Y3)(1− Z1)Z2Z3

+X1X2Y1Y2(1− Y3)Z1Z2Z3.

Remark. Note that the operations encodings addi and muli (and thus MLEs
ãddi and m̃uli) do not depend on the solution witness {x⟨i⟩}i∈[d+1], while the
gates encodingsWi do depend.

20.2.2 Protocol Specification

The GKR protocol consists of d rounds, one for each layer of the circuit. In the
i-th round, the prover P claims a value for W̃i(ri) at the randomly selected point
ri ←$ Fvi .

At the start of the 1st round, this claim is made about the circuit outputs.
Namely, if we have S0 = 2v0 gates in the output layer, let D : {0, 1}v0 → F
denote the function which maps the gate label to the claimed output value, sent by
the prover P . The verifier picks a random point r0 ←$ Fv0 and evaluates D̃(r0)

in timeO(S0). By the Schwartz-Zippel lemma, if D̃(r0) = W̃0(r0), then with the
soundness error of v0/|F|v0 the verifier is assured that these two polynomials are
indeed equal. However, for obvious reasons, the verifier cannot compute W̃0(r0)
without the prover’s help. So the core idea of GKR is to reduce the claim about
the value of W̃i(ri) to a claim about the value of W̃i+1(ri+1) for some randomly
chosen ri+1 ←$ Fvi+1 . How? Consider the following lemma.

266

Lemma 20.1. The following statement holds:

W̃i(z) =
∑

b,c∈{0,1}vi+1

(
ãddi(z,a, b)(W̃i+1(b) + W̃i+1(c))

+ m̃uli(z, b, c)W̃i+1(b)W̃i+1(c)
)
.

Proof. Since both sides are multilinear polynomials, it suffices to check that
the equality holds for all boolean assignments z ∈ {0, 1}vi . Fix some concrete
z0 ∈ {0, 1}vi and without the loss of generality, assume that z0 is the addition
gate in the layer i (the case of multiplication gate is similar). In such case, all the
terms m̃uli(z, b, c) will be zero, so we can reduce the sum down to:

W̃i(z0) =
∑

b,c∈{0,1}vi+1

ãddi(z0,a, b)(W̃i+1(b) + W̃i+1(c))

Now, according to the definition of the ãddi predicate, the ãddi(z0, b, c) is
non-zero (equals to 1) only if (b, c) = (in1,i(z0), in2,i(z0)). Since we know that z0
is an addition gate, we can conclude that two such gates b and c exist. Therefore,
we can rewrite the sum as:

W̃i+1(in1,i(z0)) + W̃i+1(in2,i(z0)) = W̃i(z0).

That said, to check the P ’s claim about W̃i(ri), the verifier can apply the
Sum-Check protocol on the function

fi(b, c; ri) = ãddi(ri, b, c)(W̃i+1(b)+W̃i+1(c))+m̃uli(ri, b, c)W̃i+1(b)W̃i+1(c).

However, note that the verifier V does not know the polynomial W̃i+1. However,
note that he does not need to know it until the last round, during which V
has to make the oracle request Ofi to compute the value of fi at the randomly
selected point (b∗, c∗) ←$ F2vi+1 . Evaluating fi(b∗, c∗; ri) requires evaluating
ãddi(ri, b

∗, c∗), m̃uli(ri, b
∗, c∗), and W̃i+1(b

∗) with W̃i+1(c
∗). Note that eval-

uating the first two terms can be done by the verifier V in O(poly(vi, vi+1)).
However, evaluating the last two terms requires the prover P to assist the verifier.
So we are going to do the following: the prover P sends the values zb = W̃i+1(b

∗)

and zc = W̃i+1(c
∗) to the verifier V . Now the verifier has to check both these

values are correct. However, here is the issue: during the sum-check protocol, the
verifier can only use a single random point ri+1 ∈ Fvi+1 . So how do we check
both conditions using one random point? Here is the trick.

Proposition 20.2. Let ℓ : F → Fvi+1 be the line such that ℓ(0) = b∗ and
ℓ(1) = c∗. Then, the prover P sends the univariate polynomial q(X) claimed
to be equal to W̃i+1 ◦ ℓ — the restriction of W̃i+1 to the line ℓ. V checks

267

whether indeed ℓ(0) = zb and ℓ(1) = zc, then chooses a random point
r∗ ←$ Fvi+1 and checks whether W̃i+1(ℓ(r

∗)) = q(r∗).

This way, the interaction between the prover and the verifier at this round
ends with the new claim about the value of W̃i+1(ri+1) with ri+1 := ℓ(r∗).

Finally, we need to define the last round of the protocol. Here, the V simply
evaluates W̃d(rd) on his own, costing O(n) time.

Proposition 20.3.We finally summarize the GKR protocol:
• At the start of the first round, P sends a function D : {0, 1}v0 → F
claimed to equal W0 (that is, he essentially sends the values of the
output layer gates).

• V picks a random point r0 ←$ Fv0 and findsm0 ← D̃(r0).
• For each i ∈ [d] we do the following:

– Define the 2vi-variate polynomial:

fi(b, c; ri) = ãddi(ri, b, c)(W̃i+1(b) + W̃i+1(c))

+ m̃uli(ri, b, c)W̃i+1(b)W̃i+1(c).

– P sends the valuemi claimed to equal
∑

b,c∈{0,1}vi+1 fi(b, c; ri).
– V applies the Sum-Check protocol on the function fi(·; ri) up until

the last round, where the V has to compute the value fi(b∗, c∗; ri)
at random (b∗, c∗) ∈ F2vi+1 .

– Both prover and the verifier computes the line ℓ : F→ Fvi+1 such
that ℓ(0) = b∗ and ℓ(1) = c∗. P sends the univariate polynomial
q(X) claimed to equal W̃i+1 ◦ ℓ.

– V computes the required value fi(b∗, c∗; ri) using q(0) and q(1)
instead of W̃i+1(b

∗) and W̃i+1(c
∗).

– V chooses a random point r∗ ←$ Fvi+1 and sets ri+1 ← ℓ(r∗) and
mi+1 ← q(ri+1).

– The check reduces to verifying that W̃i+1(ri+1) = mi+1, so
proceed to the next step.

• At the last round, V directly checks whethermd = W̃d(rd).

268

21 Offline Memory Checking

21.1 Sum-Check-based Grand Product Protocol
This subsection describes a transparent SNARK, whichmay be used for proving

grand product relations of the following form:

RGP =
{
(p ∈ F,v ∈ Fm) : p =

m∏
i=0

vi
}

(33)

Without loss of generality, assume that m is a power of 2. We can think of v
as a vector of evaluations of a logm-variate multilinear polynomial v(x) over
{0, 1}logm in a natural fashion. We assume the prover first opens p and then
commits to v(x); the following protocol then verifies both the polynomial’s validity
and the corresponding grand-product equality derived from that commitment.

Lemma 21.1. A scalar p and a vector v satisfies the relationRGP if and only
if there exists a multilinear polynomial f in logm + 1 variables such that
f(1, . . . , 1, 0) = p and ∀x ∈ {0, 1}logm the following hold:

f(0, x) = v(x)

f(1, x) = f(x, 0) · f(x, 1)

Such polynomial f has the following construction:
• f(1, . . . , 1) = 0

• For all ℓ ∈ [logm] and x ∈ {0, 1}logm−ℓ:
f(1ℓ, 0, x) =

∏
y∈{0,1}ℓ

v(x, y)

One can simply visualize the structure of f as a binary tree.

Example 21.1. Let m = 4 (logm = 2), v = {1, 2, 3, 4}, consequently
p = 1× 2× 3× 4 = 24, then:

v(x1, x2) = 1 + 2x1 + x2

v(x1, x2) : v(0, 0) = 1, v(0, 1) = 2, v(1, 0) = 3, v(1, 1) = 4.

Now, we define f as follows:

f(0, 0, 0) = 1, f(0, 0, 1) = 2, f(0, 1, 0) = 3, f(0, 1, 1) = 4,

269

and:

f(1, 0, 0) = f(0, 0, 0)× f(0, 0, 1) = 1× 2 = 2,

f(1, 0, 1) = f(0, 1, 0)× f(0, 1, 1) = 3× 4 = 12,

f(1, 1, 0) = f(1, 0, 0)× f(1, 0, 1) = 2× 12 = 24 = p,

f(1, 1, 1) = 0.

f(1, 1, 0) = 24

f(1, 0, 0) = 2

f(0, 0, 0)

v(0, 0) = 1

f(0, 0, 1)

v(0, 1) = 2

f(1, 0, 1) = 12

f(0, 1, 0)

v(1, 0) = 3

f(0, 1, 1)

v(1, 1) = 4

Illustration: Binary tree of the Grand Product constraints for
v(x1, x2) = 1 + 2x1 + x2.

Then, to check that ∀x ∈ {0, 1}logm the equation f(1, x) = f(x, 0) · f(x, 1)
holds, we can use a sum-check protocol to prove the evaluation of g that is referred
to a MLE of f(1, x)− f(x, 0) · f(x, 1):

g(t) =
∑

x∈{0,1}log m

ẽq(t, x) · (f(1, x)− f(x, 0) · f(x, 1))

By the Schwartz–Zippel lemma, except for a soundness error of logm
|F| (which

should be negligible), g(τ) = 0 for τ uniformly random in Flogm if and only if
g = 0, which implies that f(1, x)− f(x, 0) · f(x, 1) = 0 for all x ∈ {0, 1}logm.

Similarly, to prove that v(x) = f(0, x) for all x ∈ {0, 1}logm it suffices to
prove that v(γ) = f(0, γ) for a public coin γ ∈ Flogm.

Thus, to prove the existence of f and hence the grand product relationship, it

270

suffices to prove, for some verifier selected random τ, γ ∈ Fℓ, that:

0 =
∑

x∈{0,1}log m

ẽq(x, τ) · (f(1, x)− f(x, 0) · f(x, 1)) (34)

f(0, γ) = v(γ) (35)
f(1, . . . , 1, 0) = p (36)

This can be achieved by running the sum-check protocol between P and V , where
V has oracle access to v and f . Additionally, V evaluates the f, v at the random
point γ to verify that f(0, x) = v(x). So, the sum-check-based protocol for the
grand products looks as follows:
Algorithm 5: Sum-Check-based Protocol for Grand Products
1 P : Compute polynomials v ∈ Flogm[x], f ∈ Flogm+1[x] such that

p =
∏

x∈{0,1}log m

v(x) and f, v satisfy (34), (35), (36).

2 P : Cf ← Commit(f); Cv ← Commit(v); send Cf , Cv to V .
3 V : Choose random τ, γ ∈ Flogm and send them to P .
4 P : Compute

g(x) = ẽq(x, τ)
(
f(1, x)− f(x, 0) f(x, 1)

)
.

5 P & V : Run SumCheckProtocol(0, g, Cf)
/* we assume this sum-check runs over the commitment to f, not

directly on g. */
6 V : r ← Query(Cf , (1, . . . , 1, 0)).
7 if r ̸= p then
8 V rejects.
9 end

10 V : a← Query(Cf , (0, γ)), v(γ)← Query(Cv, γ).
11 if a ̸= v(γ) then
12 V rejects.
13 end

Remark. Note, that during the call to the sum-check protocol, we pass the
polynomial g in a couple with the commitment to f . Here we assume that
each invocation of the Query method to g inside the sum-check instance will
be more complex: instead of evaluating a single function and returning
result, we evaluate f at three different points, check the proofs and
return results according to the construction of g.

21.2 Randomized Permutation Check
The goal of the randomized permutation check is to verify, with high proba-

bility, whether two sequences of tuples are permutations of each other, without
271

performing a full sort or pairwise comparison.

Definition 21.2 (Reed-Solomon Fingerprinting). Let a ∈ Fn, then for a
random γ ∈ F, the Reed-Solomon fingerprinting of a is defined as:

hγ(a) =
∑
i∈n

ai · γi.

hγ(a) uniquely identifies the sequence awith high probability, i.e., let b ∈ Fn

and a ̸= b, then, according to the Schwartz-Zippel lemma:

Pr[hγ(a) = hγ(b)] ≤
n

|F|
.

Definition 21.3 (Randomized Permutation Check). Let A and B be two
multisets of tuples in Fn. Define

Hτ,γ(X) =
∏
x∈X

(
hγ(x)− τ

)
.

Then comparingHτ,γ(A) andHτ,γ(B) yields a randomized test for whether
A and B are permutations of one another. Concretely:

• (Completeness) If A = B (as multisets), then

Hτ,γ(A) = Hτ,γ(B)

with probability 1 over uniform τ, γ ∈ F.
• (Soundness) If A ̸= B, then

Pr [Hτ,γ(A) = Hτ,γ(B)] ≤ max(|A|, |B|)
|F|

.

In other words, by first “hashing” each tuple via the map function hγ and then
taking the τ -shifted product, one obtains a fingerprint that is invariant under
permutation but unlikely to collide on distinct sets.

Example 21.2. Consider all operations in F7, and set n = 3, τ = 5, and γ = 3.
Let

A = {(1, 2, 3), (4, 0, 6)}, B = {(4, 0, 6), (1, 2, 3)},

First compute the Reed–Solomon fingerprints modulo 7:

hγ(1, 2, 3) = 1 · 30 + 2 · 31 + 3 · 32 = 1 + 6 + 6 = 13 ≡ 6,

hγ(4, 0, 6) = 4 · 1 + 0 · 3 + 6 · 2 = 4 + 0 + 12 = 16 ≡ 2.

272

Now form the shifted products:

Hτ,γ(A) = (6− 5) (2− 5) = 1 · (−3) ≡ 4,

Hτ,γ(B) = (2− 5) (6− 5) = (−3) · 1 ≡ 4,

so the test accepts A vs. B (they are indeed permutations).

Now consider a non-permutation B′:

B′ = {(1, 2, 3), (2, 1, 3)}.

hγ(2, 1, 3) = 2 · 1 + 1 · 3 + 3 · 2 = 2 + 3 + 6 = 11 ≡ 4.

Hτ,γ(B
′) = (6− 5) (4− 5) = 1 · (−1) ≡ 6 ̸= 4,

so the test rejects A vs. B′. In this way a single choice of (γ, τ) distinguishes
permutations from non-permutations.

21.3 Offline Memory Checking
This protocol lets you, after doing a bunch of read/writes from an untrusted

memory, verify in one quick algebraic step that every answer really came from
the same original contents – without re-running any reads.

For the first time it’s not so obvious, why we may need need such a protocol,
so let’s start with a simple example.

Example 21.3. Consider Alice, who stores two values on Bob’s dedicated
server at addresses 0 and 1. Initially, Bob’s memory contains

M = {(0, 100), (1, 200)}.
Alice then performs the following operations in sequence:

1. Alice writes a new value 150 at address 0. Bob updates his memory to
{(0, 150), (1, 200)}.

2. Alice reads from address 0 and obtains the reply 150.
3. Alice reads from address 1 and (honestly) obtains 200.

At this point, both replies individually look correct. However, Bob can cheat
on the very last step by returning, say, 300 instead of 200:

(1, 200) −→ (1, 300).

Alice only sees the single read result “300 at address 1,” which could simply
be the true value after some write she missed—and she has no immediate way
to detect the inconsistency.

In other words, without keeping an auditable record of all reads, Al-
ice cannot later prove that all replies came from a single, immutable memory

273

state. This gap is exactly what an offline memory check fills: after all reads
are done, Alice runs one fast verification that guarantees “every read you
saw really did come from one fixed initial memory + your writes,” and thus
catches any cheating by Bob.

Each memory cell can be described as a tuple (addr, val, counter), where addr
is the address of the memory cell, val is the value stored at that address, and
counter is the number of times the memory cell has been accessed. You can think
of a counter as a timestamp. The memory is a vector of memory cels.

The protocol utilizes four sets of tuples:
• init – contains the initial memory state, where all counters are set to 0;
• write – contains memory cels that represent write operations, where val is
the value stored at the memory address addr after the specified counter;

• read – contains memory cels that represent read operations, where val is
the value read from the memory address addr at the specified counter;

• final – contains the final memory state, where all counters are set to the
last value after the last read/write operation.

At the beginning, init is populated with the initial memory state, where
all counters are set to 0, indicating that the values were first accessed during
the initialization phase, while the read,write are empty. Then, for each read
operation, the untrustedmemory is queried at addr, returning a pair (val, counter),
and writing a tuple (addr, val, counter) to the read set. For each write operation
a corresponding tuple (addr, newval, counter + 1), where newval is a value being
written, is added, with counter incremented by one, to the write set.

We assume that before each write operation, the read operation is performed.
And the read operation is always followed by a write operation to the same
address. Thus, to make a plain read operation, the prover first reads the value
from the memory, then writes it back to the memory.

After all reads and writes are done, the final set is populated with the final
memory state. Now, the verifier can check the consistency of all the operations
by verifying the following equation:

read ∪ final = write ∪ init.

Thus, using randomized permutation check, one can rewrite the equation as

274

follows:
Hτ,γ(read) · Hτ,γ(final) = Hτ,γ(write) · Hτ,γ(init),∏

(a,v,t)∈read

(
hγ(a, v, t)− τ

) ∏
(a,v,t)∈final

(
hγ(a, v, t)− τ

)
=

=
∏

(a,v,t)∈write

(
hγ(a, v, t)− τ

) ∏
(a,v,t)∈init

(
hγ(a, v, t)− τ

)
,

∏
(a,v,t)∈read

(
(aγ2 + vγ + t)− τ

) ∏
(a,v,t)∈final

(
(aγ2 + vγ + t)− τ

)
=

=
∏

(a,v,t)∈write

(
(aγ2 + vγ + t)− τ

) ∏
(a,v,t)∈init

(
(aγ2 + vγ + t)− τ

)
.

Example 21.4. Suppose the we track a single row-memory, the algorithm
performs three reads and two writes, the initial memory is given by the
following table:

Address 0 1 2 3
Value 2 5 7 9

Initial memory (counter 0):

init = {(0, 2, 0), (1, 5, 0), (2, 7, 0), (3, 9, 0)},

while
read = ∅ and write = ∅.

Trace 1 - consistent execution
step operation ∆readstep ∆writestep
1 read(1)→ (5, 0) (1, 5, 0) -
2 write((1,6)) - (1, 6, 1)
3 read(2)→ (7, 0) (2, 7, 0) -
4 write((2,7)) - (2, 7, 1)

After the four steps

read = {(1, 5, 0), (2, 7, 0)},
write = {(1, 6, 1), (2, 7, 1)}.

And we can fill final as:

final = {(0, 2, 0), (1, 6, 1), (2, 7, 1), (3, 9, 0)}

One can clearly see that read ∪ final = write ∪ init.

{(1, 5, 0), (2, 7, 0)} ∪ {(0, 2, 0), (1, 6, 1), (2, 7, 1), (3, 9, 0)} =
= {(1, 6, 1), (2, 7, 1)} ∪ {(0, 2, 0), (1, 5, 0), (2, 7, 0), (3, 9, 0)}

275

Trace 2 - inconsistent execution
Let the second reading return a wrong value – a, instead of 5. So, the new
trace would look like:

step operation ∆readstep ∆writestep
1 read(1)→ (a, 0) (1, a, 0) -
2 write((1,6)) - (1, 6, 1)

After the two steps
read = {(1, a, 0)},
write = {(1, 6, 1)},

The verifier checks read ∪ final = write ∪ init:

{(1, a, 0)} ∪ {(0, 2, 0), (1, 6, 1), (2, 7, 0), (3, 9, 0)} ̸=
̸= {(1, 6, 1)} ∪ {(0, 2, 0), (1, 5, 0), (2, 7, 0), (3, 9, 0)}

and rejects.

Actually, no multiset final that depends on the valid values and addresses can
reconcile them.

276

	IV Sum-Check-based Protocols and Lookup Checks
	GKR Protocol
	Motivation
	Protocol Description
	Circuit Representation
	Protocol Specification

	Offline Memory Checking
	Sum-Check-based Grand Product Protocol
	Randomized Permutation Check
	Offline Memory Checking

