
22 Lookup Checks

22.1 Motivation
Suppose you need to develop the zero-knowledge circuit over some “unfriendly”

construction such as AES-128, SHA-256, or pairing implemented on the non-native
finite field. One way to resolve this issue is to use the proving scheme that is
most “native” to the logic needed to implement such constructions (for example,
you might want to switch to STARK instead of Groth16 for implementing hash
functions). However, zero-knowledge world came up with one more way to
resolve this issue without changing the whole system.

Consider the following problem: you have the witness w in which you want
to check whether elements, say, z⃗ := {zi}i∈[n] ⊆ F are contained in the lookup
table t⃗ := {tj}j∈[d] ⊆ F of size d. We write this check as {zi}i∈[n] ⊆ {tj}j∈[d] or
z⃗ ⊆ t⃗ for short.

Example 22.1. As a not very practical example, suppose t⃗ = {0, 1}. Then
the check z⃗ ⊆ t⃗ is read as “check whether each of elements in z⃗ is binary”.
Another trivial example might be the following: set t⃗ := {1, 6, 7, 10}. Then,
for example, z⃗ = {10, 6, 7, 1, 1, 6, 10, 7, 1} should pass the lookup check since
z⃗ consists of elements from t⃗ only. In turn, z⃗∗ = {1, 6, 10, 5} is not a valid
witness corresponding to t⃗ since 5 ̸∈ t⃗.

Modern protocols have the following property: such check costs onlyO(n+d)
constraints. Let us consider why this is significant for many applications in the
wild.

Range Checks. The most obvious application is the range check. Assume that
tj = j and d = 2w . This way, the check {zi}i∈[n] ⊆ {tj}j∈[d] simply corresponds
to checking whether “is each zi indeed a w-bit integer”? Needless to say, this has
significant implications in various ZK applications: privacy-preserving payments,
implementation of non-native arithmetic, or even zkML. In the case of zkML, for
instance, Bionetta uses lookup checks to speed up the computation of the ReLU
function, given by ReLU(x) = max{0, x}, by the factor of up to ×20.

BinaryArithmetic. Suppose you are implementing the SHA256, in which you
need to frequently XOR binary strings. To simplify the problem, instead of XORing
two, say, 256-bit strings, you XOR 8-bit strings: c = a⊕ b for a,b, c ∈ {0, 1}8.
The naive approach is to bit decompose each of a,b, c and verify that the check
holds, but that requires enormous number of constraints. The more clever lookup-
based approach is as follows: compose the table t⃗ := {(t⟨1⟩j , t

⟨2⟩
j , t

⟨3⟩
j)}j∈[d] ⊆ F3

which consists of all distinct valid 8-bit XORs: t⟨1⟩j ⊕ t
⟨2⟩
j = t

⟨3⟩
j . Note that in such

case d = 216 since there are 216 distinct equalities of such form (which simply
enumerate over all possibilities of two 8-bit inputs to the XOR gate). We thus want
to show that z⃗ := {(ai, bi, ci)}i∈[n] ⊆ t⃗where ai, bi, ci are the part of the witness.

277

Now what remains is to show how to reduce this check to the “one-dimensional”
case: recall that lookup protocols can merely check for inclusion for the ordered
set of scalars and not tuples. It is done fairly easy: sample some random α←$ F
and instead of viewing z⃗ as a tuple of three elements, view it as a list z⃗α of n
scalars of form ai + αbi + α2ci. Similarly, each table elements of t⃗α is viewed as
t
⟨1⟩
j + αt

⟨2⟩
j + α2t

⟨3⟩
j . Then, the inclusion check z⃗ ⊆ t⃗ due to Schwartz-Zippel

lemma is equivalent to z⃗α ⊆ t⃗α with overwhelming probability.

22.2 Plookup Protocol
One of the first lookup protocols that became practical in the zero-knowledge

world is the plookup protocol. It is mostly used in Poly-IOPs but can presumably
be compiled to other types of protocols as well, as long as multiset equality check
can be implemented optimally.

Now, if you recall the P lonK construction, we can check that the multi-
set {s′i}i∈[n] is the permutation of the multiset {si}i∈[n]. This was done by
comparing the products

∏
i∈[n](γ + s′i) =

∏
i∈[n](γ + si) at a random point γ.

Due to Schwartz-Zippel lemma, equality in such case implies si = s′σ(i) with
overwhelming probability for aribtrary i ∈ [n] and some permutation σ ∈ Sn.

The primary issue with the lookup check is that instead of multisets equality,
we need to check whether one multiset is the subset of another, which is a much
trickier problem: we need to show that polynomials Z(X) :=

∏
i∈[n](X − zi)

and T (X) :=
∏

j∈[d](X − tj) have the same roots, ignoring multiplicities. Let us
introduce the following tool which will help to reduce the problem to a simpler
one.

Definition 22.1. The difference set of s⃗ = {si}i∈[n], denoted by δs⃗, is
δs⃗ := {si+1 − si}i∈[n−1]. Additionally, by ∂s⃗ denote the non-zero difference
set: the set δs⃗, but without zero elements.

Example 22.2. Suppose s⃗ = {1, 2, 5, 10, 13}. Then, we have

δs⃗ = {2− 1, 5− 2, 10− 5, 13− 10} = {1, 3, 5, 3} = ∂s⃗

A slightly more motivating example is s⃗ := {1, 1, 4, 4, 8, 8, 8}. Then:

δs⃗ = {0, 3, 0, 4, 0, 0}, ∂s⃗ = {3, 4}.

Now let us get to the initial goal of proving z⃗ = {zi}i∈[n] ⊆ {tj}j∈[d] =: t⃗.
Let us look at a sorted version s⃗ of the values of z⃗ and compare the non-zero
difference sets ∂s⃗ and ∂t⃗. Notice the following: if z⃗ ⊆ t⃗, then ∂s⃗ = ∂t⃗. So
the prover P might want to simply prove this set equality. Unfortunately, the
converse (that is, ∂s⃗ = ∂t⃗ ⇒ z⃗ ⊆ t⃗) is not generally true. Indeed, consider the

278

following example:

t⃗ = {1, 4, 8}, s⃗ = {1, 1, 4, 8, 8, 8}, s⃗ ∗ = {1, 5, 5, 5, 8, 8}.

Note that ∂t⃗ = ∂s⃗ = ∂s⃗ ∗ = {3, 4}, but obviously s⃗ ∗ ̸⊆ t⃗. So we need to
modify our checks to introduce more robust lookup check condition.

Now, consider the following version: let s⃗ be the sorted multiset of concatena-
tion, which we denote by (z⃗, t⃗) = {z0, . . . , zn−1, t0, . . . , td−1}. Now we impose
two checks: (1) s⃗ = (z⃗, t⃗), (2) ∂s⃗ = ∂t⃗. Turns out this condition is necessary and
sufficient.

Proposition 22.2. z⃗ ⊆ t⃗⇔ s⃗ = (z⃗, t⃗) ∧ ∂s⃗ = ∂t⃗.

Proof. ⇒ direction. The first condition holds due to construction. Note that
the second condition holds for the reason that ∂s⃗ contains only differences of
form zi − tj , zi − zj , or ti − tj . If z⃗ ⊆ t⃗ and given s⃗ is sorted, ∂s⃗ contains only
elements of form tj+1 − tj , which is exactly ∂t⃗.
⇐ direction. Given first condition, we know that z⃗ ⊆ s⃗. Thus, if we show

s⃗ ⊆ t⃗, we are done. Suppose, on the contrary, that s⃗ ̸⊆ t⃗. Without loss of
generality, assume thus that there is some h ∈ s⃗ such that ti < h < ti+1 for some
i ∈ [d]. Then, h− ti, ti+1 − h ∈ ∂s⃗ but clearly h− ti, ti+1 − h ̸∈ ∂t⃗ since h ̸∈ t⃗.
Contradiction. Thus z⃗ ⊆ s⃗ ⊆ t⃗.

Example 22.3. Again, consider the following lookup table and (sorted) witness
elements:

t⃗ = {1, 4, 8}, z⃗ = {1, 1, 4, 8, 8, 8}, z⃗ ∗ = {1, 5, 5, 5, 8, 8}.

Now consider the sorted multisets of concatenations:

s⃗ = {1, 1, 1, 4, 4, 8, 8, 8, 8}, s⃗ ∗ = {1, 1, 4, 5, 5, 5, 8, 8, 8}

Let us check whether both conditions are satisfied. The first condition is
satisfied for both s⃗ and s⃗ ∗ due to construction. The second condition, though,
is satisfied only for s⃗. Indeed:

∂t⃗ = {3, 4} = ∂s⃗ ̸= ∂s⃗ ∗ = {1, 3}

Reducing two checks to one. At this point, one can apply the P lonK-based
protocol to check whether s⃗ = (z⃗, t⃗) and ∂s⃗ = ∂t⃗. However, plookup allows to
use just a single one. Here how it works.

Definition 22.3. The randomized difference set with randomness β ∈ F×

279

of multiset s⃗ = {si}i∈[n], further denoted as ∂β s⃗, is defined as follows:

∂β s⃗ ≜ {si + βsi+1}i∈[n−1].

Remark. Note that ∂−1s⃗ corresponds to the difference set of s⃗ (albeit with
the negative sign).

Now, the verifier chooses a random β ←$ F× and it suffices to impose a
single multiset check between ∂β s⃗ and ((1 + β)z⃗, ∂β t⃗). We provide the following
proposition (without proof).

Proposition 22.4. z⃗ ⊆ t⃗ if and only if ∂β s⃗ = ((1 + β)z⃗, ∂β t⃗) for β ←$ F×.

Intuition. Such proposition came out of nowhere, so let us explain why
(intuitively) it works. First, let us see how ∂β s⃗ for z⃗ ⊆ t⃗ looks like. Compared
to ∂s⃗, two same consecutive elements si, si+1 with si = si+1 don’t get zeroed:
instead, one gets (1 + β)si. So at least we know where 1 + β coefficient comes
from! Other than same elements, in ∂β s⃗, one gets coefficients of form ti + βti+1,
which is exactly ∂β t⃗ by definition. This way ∂β s⃗ consists of:

• Expressions of form (1 + β)zi, which together form (1 + β)z⃗.
• Expressions of form ti + βti+1, which together form ∂β t⃗.

Thus we naturally require ∂β s⃗ = ((1+β)z⃗, ∂β t⃗). Why this condition is sufficient
is less obvious, so we leave it without proof.

Example 22.4. Once again, consider the following lookup table and (sorted)
witness elements:

t⃗ = {1, 4, 8}, z⃗ = {1, 1, 4, 8, 8, 8}.

As previously shown, the sorted concatenation is s⃗ = {1, 1, 1, 4, 4, 8, 8, 8, 8}.
Now, suppose we have sampled some random β ←$ F×. Then we have:

∂β s⃗ = {1+ β, 1+ β, 1+ 4β, (1+ β)4, 4+ 8β, (1+ β)8, (1+ β)8, (1+ β)8}

Now note that for (1 + β)z⃗ and ∂β t⃗ we have:

(1+β)z⃗ = {1+β, 1+β, (1+β)4, (1+β)8, (1+β)8, (1+β)8}, ∂β t⃗ = {1+4β, 4+8β}

Clearly, ∂β s⃗ = ((1 + β)z⃗, ∂β t⃗).

22.2.1 plookup Precise Scheme

Fix integers n, d — witness size and lookup table size. Given witness z ∈ Fn

and lookup table t ∈ Fd, we want to ensure z ⊆ t. Let Ω = {ωj}j∈[n] ≤ F× be a
280

multiplicative field subgroup. We say z ⊆ t is sorted by t when values appear in
the same order in z as they do in t.

Now, given t ∈ Fd, z ∈ Fn, and s ∈ Fn+d, define bi-variate polynomials Z
and T as follows:

Z(β, γ) ≜ (1 + β)n
∏
i∈[n]

(γ + zi)
∏

i∈[d−1]

(γ(1 + β) + ti + βti+1)

T (β, γ) ≜
∏

i∈[n+d−1]

(γ(1 + β) + si + βsi+1)

Why on Earth do we need these two polynomials? Consider the following
proposition:

Proposition 22.5. Z ≡ T if and only if z ⊆ t and s is (z, t) sorted by t.

Now, this fact is completely unobvious, and you can see the proof in the
original plookup paper. This motivates us to formulate the following protocol.
Without loss of generality, assume d = n + 1 (if d ≤ n, pad t with n − d + 1
repetitions of the last element).

Preprocessing. Compute the polynomial t(X) that encodes the values of lookup
table t ∈ Fn+1 over the domain Ω: that is, t(ωj) = tj .

Inputs. Polynomial z(X), encoding vector z ∈ Fn over Ω: that is, z(ωj) = zj .
Protocol.
1. P computes s = (z, t) ∈ F2n+1 sorted by t. Interpolate two polynomials
h1, h2 ∈ F<(n+1)[X] as follows: h1(ωj) = sj for j ∈ [n+1] and h2(ωj) =
sn+j for j ∈ [n+1]. That is, h1 interpolates first n+1 elements of s, while
h2 the remaining n.

2. P sends commitments of h1 and h2 to verifier V (namely, so that V will
have an oracle access to both h1 and h2).

3. V picks random β, γ ←$ F and sends them to P .
4. P computes a polynomial F ∈ F<(n+1)[X] that aggregate the value
Z(β, γ)/T (β, γ) where Z, T are as described above. Specifically, let:
(a) F (ω) = 1.
(b) For each 2 ≤ j ≤ n, compute:

F (ωi) =
(1 + β)i−1

∏
j<i(γ + zj)

∏
1≤j<i(γ(1 + β) + tj + βtj+1)∏

1≤j<i(γ(1 + β) + sj + βsj+1)(γ(1 + β) + sn+j + βsn+j+1)

(c) F (ωn+1) = 1.
5. P sends commitment of F to V .
6. V checks that F is of the form described above, and that F (ωn+1) = 1.

More precisely, V checks the following identities for each ωj ∈ Ω:
(a) L1(ω

j)(F (ωj)− 1) = 0.
281

https://eprint.iacr.org/2020/315.pdf

(b) (ωj−ωn+1)F (ωj)(1+β)(γ+z(ωj))(γ(1+β)+t(ωj)+βt(ω ·ωj)) =
(ωj −ωn+1)F (ω ·ωj)(γ(1+ β)+ h1(ω

j)+ βh1(ω ·ωj))(γ(1+ β)+
h2(ω

j) + βh2(ω · ωj)).
(c) Ln+1(ω

j)(h1(ω
j)− h2(ω · ωj)) = 0.

(d) Ln+1(ω
j)(F (ωj)− 1) = 0.

Recall that Lj(X) is the Lagrange basis polynomial: that is, Lj(ω
i) = δi,j .

Intuition. Four checks that V imposes are not very obvious (especially the
second one). So here is the brief explanation of their meaning:

1. First equation checks whetherF (ω) = 1: note that sinceL1(ω
j) is non-zero

only for j = 1, the equation essentially reduces to F (ω)− 1 = 0.
2. This is the main verification that is needed to check whether Z(β, γ) ≡
T (β, γ). However, since both Z and T are high-degree polynomials, we
cannot directly check their equivalence. For that reason, we introduce the
“accumulator” polynomial F that should satisfy F (ω) = F (ωn+1) = 1 and
recursive condition

F (ωj+1)

F (ωj)
=

(1 + β)(γ + zj)(γ(1 + β) + tj + βtj+1)

(γ(1 + β) + sj + βsj+1)(γ(1 + β) + sn+j + βsn+j+1)

Note that given F (ω) = 1 and this recursive relation, by taking the product
of both sides from 1 to n one obtains F (ωn+1) = Z(β, γ)/T (β, γ) which
is one, according to the previously specified lemma.

3. Since Ln+1(ω
j) is non-zero only for j = n + 1, this check verifies that

h1(ω
n+1) = h2(ω

n+2). This is the consistency check for h1 and h2 that
checks whether h1 and h2 are properly “glued” together to encode s.

4. Finally, the last check verifies whether F (ωn+1) = 1.

Lemma 22.6. Soundness of the above protocol is at least 1− (5n+ 4)/|F|.

22.3 Logup
While plookup is the Poly-IOP-based protocol, logup allows to prove the lookup

inclusion using SumCheck and rather more algebraic (compared to plookup)
approach. Let’s see how it works.

22.3.1 Preliminaries

Compared to previously discussed Sum-Check protocol, to stick with the
original logup notation, we consider a slighly different hypercube: instead of
boolean version {0, 1}n, we consider the hypercube {−1, 1}n = {±1}n, which
we denote by Qn for short. Note that the SumCheck protocol is exactly the same
as for the boolean case, but we need to use “−1” instead of “0”. Besides, the

282

multilinear lagrange basis polynomials have a much nicer form:

eq(x;y) =
1

2n

n∏
j=1

(1 + xjyj)

22.3.2 Logarithmic Derivative

One of the ideas of the logup protocol is to reduce the polynomial check to
the fractional one. To show this transition, we need a couple of formalities before
we proceed.

Definition 22.7. Given a polynomial q(X) :=
∑d

j=0 qjX
j ∈ F[X], its

formal derivative, in a similar fashion to calculus, is given by q′(X) ≜∑d
j=1 jqjX

j−1.

Example 22.5. For instance, given q(X) = 1 + 2X + 3X2, the formal
derivative is q′(X) = 2 + 6X .

It can be shown that the formal derivative obeys all the usual rules taught in
calculus. Now, one more definition.

Definition 22.8. For a function q(X)/r(X) from the rational function field
F(X), the formal derivative is defined as:(

q(X)

r(X)

)′
≜
q′(X)r(X)− q(X)r′(X)

r(X)2

For the further derivation, we will be interested in particular cases when
derivatives turn out to be zero: that is q′(X) = 0 for the polynomial case
or
(

q(X)
r(X)

)′
= 0 for a rational one. If polynomials are given in the real field,

then these conditions immediately imply q(X) ≡ const for polynomial case
and q(X) = cr(X) with c = const for the rational case. Surprisingly, when
considering the field F of finite characteristic p, these results are not generally true.
Fortunately for us, they turn out to be false only for extreme case when degrees
of polynomials are more than p, which, as you can imagine, never happens in
practice. So we give the following lemma.

Lemma 22.9. Assume q(X) and r(X) are polynomials of degree less than p.
Then:

• If q′(X) = 0, then q is constant.
• If (q(X)/r(X))′ = 0, then q(X)/r(X) = c for some c ∈ F.

283

Finally, the logarithmic derivative.

Definition 22.10. The logarithmic derivative of q(X) ∈ F[X] is given by
the rational function q′(X)/q(X).

Remark. The name “logarithmic” comes from the fact that in calculus, for a
function f : R→ R, the derivative of log f(x) is given by f ′(x)/f(x) by the
chain rule.
One reason why logarithmic derivatives are attractive for our application is

the following: the logarithmic derivative of q(X)r(X) is the sum of logarithmic
derivatives of q(X) and r(X). Indeed, note that the logarithmic derivative of
q(X)r(X) is nothing but:

(q(X)r(X))′

q(X)r(X)
=
q′(X)r(X) + q(X)r′(X)

q(X)r(X)
=
q′(X)

q(X)
+
r′(X)

r(X)

In particular, logarithmic derivative of
∏n

j=1(X+ zj) is given by
∑n

j=1
1

X+zj
.

From all previously mentioned facts we can finally formulate some useful facts
about lookup checks. Let us start from the simple observation.

Lemma 22.11. Let a⃗ = {ai}i∈[n] and b⃗ = {bi}i∈[n] be two sequences of
elements from F. To verify with overwhelming probability whether two
multisets are equal, it suffices to check

n∑
j=1

1

γ + aj
=

n∑
j=1

1

γ + bj

for randomly chosen γ ←$ F.

Proof. Recall that two multisets are equal with overwhelming probability
if for randomly selected γ ←$ F, we have

∏n
j=1(aj + γ) =

∏n
j=1(bj + γ).

Thus it suffices to show that imposing this product equality is equivalent to
the statement in the lemma. Notice that if products are indeed the same,
so are their logarithmic derivatives (with respect to γ), so we immediately
get

∑n
j=1

1
γ+aj

=
∑n

j=1
1

γ+bj
. To show the opposite direction, assume that

logarithmic derivatives of qa⃗(X) =
∏n

j=1(X + aj) and q⃗b(X) =
∏n

j=1(X + bj)

are the same, so q′a⃗(X)
qa⃗(X) =

q′
b⃗
(X)

q⃗
b
(X) . Then:(

qa⃗(X)

q⃗b(X)

)′
=
q′a⃗(X)q⃗b(X)− qa⃗(X)q′

b⃗
(X)

q⃗b(X)2
= 0

Thus qa⃗(X)
q⃗
b
(X) = c for constant c ∈ F. Since the leading coefficients of both

qa⃗(X) and q⃗b(X) are 1, we conclude that c = 1, which immediately implies
284

∏n
j=1(aj + γ) =

∏n
j=1(bj + γ).

The consequence of this fact is the following.

Lemma 22.12. Given two sequences of elements {ti}i∈[d] and {zi}i∈[n], the
inclusion check {zi}i∈[n] ⊆ {ti}i∈[d] is satisfied if and only if there exist the
set of multiplicities {µi}i∈[d] where µi = #{j ∈ [n] : zj = ti} such that:∑

i∈[n]

1

X + zi
=
∑
i∈[d]

µi

X + ti

In particular, checking such equality at random point from F results in the
soundness error of up to (n + d)/|F|, which becomes negligible for fairly
large |F|.

22.3.3 Applying SumCheck

Now we need to build the SumCheck equation. Instead of considering the
inclusion check for scalars, we consider the inclusion check for multivariate
polynomials. Notice that the lookup table t⃗ = {tj}j∈[d] for d = 2v can be viewed
as a function t : Qv → F. However, here is the issue: our witness vector
z⃗ = {zi}i∈[n] typically has a significantly larger size than t⃗, so we cannot view z⃗
as a function Qv → F since the input domain size is too small (also quite obvious
remark — we cannot have two different hypercubes for the sumcheck protocol).
For that reason, we consider a list ofm := ⌈n/d⌉ functions z1, . . . , zm : Qv → F
that encode all n values of {zi}i∈[n].

This way, wewant to check whether
⋃

i∈[m]{zi(x)}x∈Qv
⊆ {t(x)}x∈Qv

. This
way, we can rewrite our condition

∑
i∈[n]

1
X+zi

=
∑

i∈[d]
µi

X+ti
in the “sumcheck”

world as follows: ∑
x∈Qv

∑
i∈[m]

1

γ + zi(x)
=
∑
x∈Qv

µ(x)

γ + t(x)

Here, µ(x) (if it is injective, which is typically the case) gives the number of
occurancies of t(x) in z1, . . . , zm altogether, i.e. µ(x) =

∑
i∈[m] #{y ∈ Qv :

zi(y) = t(x)}.
Now, the idea of logup is to sample random γ ←$ F and apply the SumCheck

on the function:
ζ(x) =

∑
i∈[m]

1

γ + z̃i(x)
− µ̃(x)

γ + t̃(x)
,

where by t̃i we denoted the multilinear extension, that is:

t̃(x) =
∑
y∈Qv

t(y)eq(x;y) =
1

2v

∑
y∈Qv

t(y)

v∏
j=1

(1 + xjyj)

285

The only issue left is that sumcheck protocol cannot work with rational
functions, which is the case here for ζ(x). For that reason, roughly, the prover
P will divide the sum ofm terms into ℓ chunks and provide multilinear helper
functions for each such sum. Note that ℓ is chosen depending on the chosen
polynomial commitment scheme.

Namely, suppose we split [m] =
⋃

j∈[k] Ij into k = ⌈m/ℓ⌉ subintervals.
Suppose

ζj(x) =
∑
i∈Ij

µi(x)

ϕi(x)
, j ∈ [k],

is the respective partial sum of consecutive terms in the overall expression
µ(x)

γ+t̃(x)
−
∑

i∈[m]
1

γ+z̃i(x)
. That is, we used the notation µ0(x) = µ(x) and

µi(x) ≡ −1 for i > 0. Similarly, ϕ0(x) = γ + t̃(x) and ϕi(x) = γ + z̃i−1(x) for
i > 0.

Then, the prover provides oracles for {ζi}i∈[k] subject to
∑

x∈Qv

∑
i∈[k] ζi(x) =

0 and the domain identities:

ζj(x)
∏
i∈Ij

ϕi(x) =
∑
i∈Ij

µi(x)
∏

k∈Ij\{i}

ϕj(x)

These identities are finally checked using SumCheck protocol and then
combined into a single one using random scalars λ0, . . . , λk−1 ←$ F.

22.3.4 Precise Scheme

Suppose the prover P wants to convince the verifier V that {zi}i∈[n] ⊆
{tj}j∈[d]. Assume d = 2v .

Preprocessing stage. Compute multilinear extension t̃ : Fv → F that encodes
the lookup table {tj}j∈[d] and, if needed, multilinear Lagrange basis polynomials
{eq(x;y)}y∈Qv

.
Protocol. Interaction between P and V proceeds as follows:
1. P divides witness into k = ⌈n/d⌉ pieces and perceives values {zi}i∈[n]

as a set of m functions zj : {±1}v → F. Additionally, P computes the
multilinear extensions {z̃j(x)}j∈[m].

2. P computes the multiplicity function multilinear extension µ̃ and sends the
oracle access to it Oµ(·) to the verifier V .

3. V samples the challenge γ ←$ F and sends to P .
4. P computes k = ⌈m/ℓ⌉ functions {ζj(x)}j∈[k] according to constraints

above and sends oracle access Oζ0(·),Oζ1(·), . . . ,Oζk−1(·) to the verifier
V .

5. V respondswith a randomvectorα←$ Fn and randomscalarsλ0, . . . , λk−1 ←$

F. Now, both P and V engage in the sumcheck protocol for:∑
x∈Qv

G(x, eq(x;α), µ(x), ϕ0(x), . . . , ϕm−1(x), ζ0(x), . . . , ζk−1(x)) = 0,

286

where the function G is defined as follows:

G(x, ⋆) =
∑
r∈[k]

ζr(x)+eq(x;α)λr

ζr ∏
i∈Ir

ϕi(x)−
∑
i∈Ir

µi(x)
∏

j∈Ir\{i}

ϕj(x)


During sumcheck, V uses oracles provided by P .

Lemma22.13. The cost for running the protocol isO(nℓ) fieldmultiplications,
while the communication size is O(m/ℓ) oracles of size O(d).

287

	IV Sum-Check-based Protocols and Lookup Checks
	Lookup Checks
	Motivation
	Plookup Protocol
	plookup Precise Scheme

	Logup
	Preliminaries
	Logarithmic Derivative
	Applying SumCheck
	Precise Scheme

