
Distributed Lab ZKDL Camp

2 Mathematics for Cryptographers II
2.1 Basics of Security Analysis

In many cases, technical papers include the analysis on the key question: “How secure is
this cryptographic algorithm?” or rather “Why this cryptographic algorithm is secure?”. In this
section, we will shortly describe the notation and typical construction for justifying the security
of cryptographic algorithms.

Typically, the cryptographic security is defined in a form of a game between the adversary
(who we call A) and the challenger (who we call Ch). The adversary is trying to break the
security of the cryptographic algorithm using arbitrary (but still efficient) protocol, while the
challenger is following a simple, fixed protocol. The game is played in a form of a challenge,
where the adversary is given some information and is asked to perform some task. The security
of the cryptographic algorithm is defined based on the probability of the adversary to win the
game.

2.1.1 Cipher Semantic Security
Let us get into specifics. Suppose that we want to specify that the encryption scheme is

secure. Recall that cipher E = (E,D) over the space (K,M, C) (here, K is the space containing
all possible keys,M – all possible messages and C – all possible ciphers) consists of two efficiently
computable methods:

• E : K ×M→ C – encryption method, that based on the provided message m ∈ M and
key k ∈ K outputs the cipher c = E(k,m) ∈ C.

• D : K × C →M – decryption method, that based on the provided cipher c ∈ C and key
k ∈ K outputs the message m = D(k, c) ∈M.

Of course, we require the correctness:

(∀k ∈ K) (∀m ∈M) : {D(k, E(k,m)) = m} (24)

Now let us play the following game between adversary A and challenger Ch:
1. A picks any two messages m0, m1 ∈M on his choice.

2. Ch picks a random key k R←− K and random bit b R←− {0, 1} and sends the cipher c =
E(k,mb) to A.

3. A is trying to guess the bit b by using the cipher c .
4. A outputs the guess b̂.
Now, what should happen if our encryption scheme is secure? The adversary should not

be able to guess the bit b with a probability significantly higher than 1/2 (a random guess).
Formally, define the advantage of the adversary A as:

SSAdv[E ,A] :=
∣∣∣∣Pr[b̂ = b]− 12

∣∣∣∣ (25)

We say that the encryption scheme is semantically secure4 if for any efficient adversary A
the advantage SSAdv[A] is negligible. In other words, the adversary cannot guess the bit b with
a probability significantly higher than 1/2.

4This version of definition is called a bit-guessing version.

Page 23

Distributed Lab ZKDL Camp

Challenger Ch Adversary A

Send m0, m1 ∈M, |m0| = |m1|

b
R←− {0, 1}
k
R←− K

c ← E(k,mb)

Send cipher c

Guess bit b̂ ∈ {0, 1}

Figure 5: The game between the adversary A and the challenger Ch for defining the semantic
security.

Page 24

Distributed Lab ZKDL Camp

Now, what negligible means? Let us give the formal definition!

Definition 2.1. A function f : N → R is called negligible if for all c ∈ R>0 there exists
nc ∈ N such that for any n ≥ nc we have |f (n)| < 1/nc .

The alternative definition, which is problably easier to interpret, is the following.

Theorem 2.2. A function f : N→ R is negligible if and only if for any c ∈ R>0, we have

lim
n→∞
f (n)nc = 0 (26)

Example. The function f (n) = 2−n is negligible since for any c ∈ R>0 we have

lim
n→∞
2−nnc = 0 (27)

The function g(n) = 1
n!

is also negligible for similar reasons.

Example. The function h(n) = 1
n

is not negligible since for c = 1 we have

lim
n→∞

1

n
× n = 1 ̸= 0 (28)

Well, that is weird. For some reason we are considering a function the depends on some
natural number n, but what is this number?

Typically, when defining the security of the cryptographic algorithm, we are considering the
security parameter λ (e.g., the length of the key). The function is negligible if the probability
of the adversary to break the security of the cryptographic algorithm is decreasing with the
increasing of the security parameter λ. Moreover, we require that the probability of the adversary
to break the security of the cryptographic algorithm is decreasing faster than any polynomial
function of the security parameter λ.

So all in all, we can define the semantic security as follows.

Definition 2.3. The encryption scheme E with a security paramter λ ∈ N is semantically
secure if for any efficient adversary A we have:∣∣∣∣∣∣∣Pr

 m0, m1 ← A, k
R←− K, b R←− {0, 1}

b = b̂ c ← E(k,mb)
b̂ ← A(c)

− 1
2

∣∣∣∣∣∣∣ < negl(λ) (29)

Do not be afraid of such complex notation, it is quite simple. Notation Pr[A | B] means
“the probability of A, given that B occurred”. So our inner probability is read as “the probability
that the guessed bit b̂ equals b given the setup on the right”. Then, on the right we define the
setup: first we generate two messages m0, m1 ∈M, then we choose a random bit b and a key
k , cipher the message mb, send it to the adversary and the adversary, based on provided cipher,
gives b̂ as an output. We then claim that the probability of the adversary to guess the bit b is

Page 25

Distributed Lab ZKDL Camp

close to 1/2.
Let us see some more examples of how to define the security of certain crypographic objects.

2.1.2 Discrete Logarithm Assumption (DL)
Now, let us define the fundamental assumption used in cryptography formally: the Discrete

Logarithm Assumption (DL).

Definition 2.4. Assume that G is a cyclic group of prime order r generated by g ∈ G. Define
the following game:

1. Both challenger Ch and adversary A take a description G as an input: order r and
generator g ∈ G.

2. Ch computes α R←− Zr , u ← gα and sends u ∈ G to A.
3. The adversary A outputs α̂ ∈ Zr .

We define A’s advantage in solving the discrete logarithm problem in G, denoted as
DLadv[A,G], as the probability that α̂ = α.

Definition 2.5. The Discrete Logarithm Assumption holds in the group G if for any effi-
cient adversary A the advantage DLadv[A,G] is negligible.

Informally, this assumption means that given u, it is very hard to find α such that u = gα.
But now we can write down this formally!

2.1.3 Computational Diffie-Hellman (CDH)
Another fundamental problem in cryptography is the Computational Diffie-Hellman (CDH)

problem. It states that given gα, gβ it is hard to find gαβ. This property is frequently used in
the construction of cryptographic protocols such as the Diffie-Hellman key exchange.

Let us define this problem formally.

Definition 2.6. Let G be a cyclic group of prime order r generated by g ∈ G. Define the
following game:

1. Both challenger Ch and adversary A take a description G as an input: order r and
generator g ∈ G.

2. Ch computes α, β R←− Zr , u ← gα, v ← gβ, w ← gαβ and sends u, v ∈ G to A.
3. The adversary A outputs ŵ ∈ G.

We define A’s advantage in solving the computational Diffie-Hellman problem in G,
denoted as CDHadv[A,G], as the probability that ŵ = w .

Definition 2.7. The Computational Diffie-Hellman Assumption holds in the group G if
for any efficient adversary A the advantage CDHadv[A,G] is negligible.

2.2 Decisional Diffie-Hellman (DDH)
Now, we loosen the requirements a bit. The Decisional Diffie-Hellman (DDH) problem

states that given gα, gβ, gαβ it is “hard” to distinguish gαβ from a random element in G. For-

Page 26

Distributed Lab ZKDL Camp

mally, we define this problem as follows.

Definition 2.8. Let G be a cyclic group of prime order r generated by g ∈ G. Define the
following game:

1. Both challenger Ch and adversary A take a description G as an input: order r and
generator g ∈ G.

2. Ch computes α, β, γ R←− Zr , u ← gα, v ← gβ, w0 ← gαβ, w1 ← gγ. Then, Ch flips a
coin b R←− {0, 1} and sends u, v , wb to A.

3. The adversary A outputs the predicted bit b̂ ∈ {0, 1}.
We define A’s advantage in solving the Decisional Diffie-Hellman problem in G, denoted
as DDHadv[A,G], as

DDHadv[A,G] :=
∣∣∣∣Pr[b = b̂]− 12

∣∣∣∣ (30)

Now, let us break this assumption for some quite generic group! Consider the following
example.

Theorem 2.9. Suppose that G is a cyclic group of an even order. Then, the Decision Diffie-
Hellman Assumption does not hold in G. In fact, there is an efficient adversary A that can
distinguish gαβ from a random element in G with an advantage 1/4.

Proof. If |G| = 2n for n ∈ N, it means that we can split the group into two subgroups
of order n, say, G1 and G2. The first subgroup consists of elements in a form g2k , while the
second subgroup consists of elements in a form g2k+1.

Now, if we could efficiently determine, based on group element g ∈ G, whether g ∈ G1 or
g ∈ G2, we essentially could solve the problem. Fortunately, there is such a method! Consider
the following lemma.

Lemma 2.10. Suppose u = gα. Then, α is even if and only if un = 1.

Proof. If α is even, then α = 2α′ and thus

un = (g2α
′
)n = g2nα

′
= (g2n)α

′
= 1α

′
= 1 (31)

Conversely, if un = 1 then uαn = 1, meaning that 2n | αn, implying that α is even. Lemma
is proven.

Now, we can construct our adversary A as follows. Suppose A is given (u, v , w). Then,
1. Based on u, get the parity of α, say pα ∈ {even, odd}.
2. Based on v , get the parity of β, say pβ ∈ {even, odd}.
3. Based on w , get the parity of γ, say pγ ∈ {even, odd}.
4. Calculate p′γ ∈ {even, odd} — parity of αβ.

5. Return b̂ = 0 if p′γ = pγ, and b̂ = 1, otherwise.
Suppose γ is indeed α × β. Then, condition p′γ = pγ will always hold. If γ is a random

element, then the probability that p′γ = pγ is 1/2. Therefore, the probability that A will guess
the bit b correctly is 3/4, and the advantage is 1/4 therefore. ■

Page 27

Distributed Lab ZKDL Camp

2.2.1 Why this is needed?
Typically, it is impossible to prove the predicate “for every efficient adversary A this probability

is negligible” and therefore we need to make assumptions, such as the Discrete Logarithm
Assumption or the Computational Diffie-Hellman Assumption. In turn, proving the statement
“if X is secure then Y is also secure” is manageable and does not require solving any fundamental
problems. So, for example, knowing that the probability of the adversary to break the Diffie-
Hellman assumption is negligible, we can prove that the Diffie-Hellman key exchange is secure.

2.3 Basic Number Theory
2.3.1 Primes

Primes are often used when doing almost any cryptographic computation. A prime number
is a natural number (N) that is not a product of two smaller natural number. In other words,
the prime number is divisible only by itself and 1. The first primes are: 2, 3, 5, 7, 11...

2.3.2 Deterministic prime tests
A primality test is deterministic if it outputs True when the number is a prime and False

when the input is composite with probability 1. An example of a deterministic prime test is
Trial_Division_Test. Here is an example implementation in Rust:

1 fn is_prime(n: u32) -> bool {
2 let square_root = (n as f64).sqrt() as u32;
3
4 for i in 2.. = square_root {
5 if n % i == 0 {
6 return false;
7 }
8 }
9

10 true
11 }

Deterministic tests often lack efficiency. For instance, even with square root optimization,
the asymptotic complexity is O(

√
N). While further optimizations are possible, they do not

change the overall asymptotic complexity.
In cryptography, N can be extremely large — 256 bits, 512 bits, or even 6144 bits. An

algorithm is impractical when dealing with such large numbers.

2.3.3 Probabilistic prime tests
A primality test is probabilistic if it outputs True when the number is a prime and False when

the input is composite with probability less than 1. Such test is often called a pseudoprimality
test. Fermat Primality and Miller-Rabin Primality Tests are examples of probabilistic primality
test. Both of them use the idea of Fermat’s Little Theorem:

Theorem 2.11. Let p be a prime number and a be an integer not divisible by p. Then
ap−1 − 1 is always divisible by p: ap−1 ≡ 1 (mod p)

Page 28

Distributed Lab ZKDL Camp

The key idea behind the Fermat Primality Test is that if for some a not divisible by n we have
an−1 ̸≡ 1 (mod n) then n is definitely NOT prime. Athough, with such an approach, we might
get a false positive, as you cannot state for sure that n is prime. For example, consider n = 15
and a = 4. 415−1 ≡ 1 (mod 15), but n = 15 = 3 · 5 is composite. To solve this issue, a is
picked many times, decreasing the chances of a false positive. The probability that a composite

number is mistakenly called prime for k iterations is 2−k =
1

2k
.

There exists a problem with such an algorithm in the form of Carmichael numbers, which
are numbers that are Fermat pseudoprime to all bases. To put it simply, no matter how many
times you check whether the number is prime using this type of primality test, it will always stay
positive, even though the number is composite. The good thing is that Carmichael numbers
are pretty rare. The bad thing is that there are infinitely many of them.

Even though this algorithm is probabilistic (which does not guarantee the correctness of the
output) and has a vulnerability in the form of Carmichael numbers, it runs with an asymptotic
complexity O(log3 n). This is much better for large numbers and is often used in cryptography.
Here is a pseudocode implementation of this algorithm:

1 # n = number to be tested for primality
2 # k = number of times the test will be repeated
3 def is_prime(n, k):
4 i = 1
5 while i <= k:
6 a = rand(2, n - 1)
7
8 if a^(n - 1) != 1 (mod n):
9 return False

10
11 i++
12
13 return True

Miller-Rabin primality test, is a more advanced form of Fermat primality test. The main
difference is it is not vulnerable to Carmichael numbers, which makes it much better to use in
practice.

2.3.4 Greatest Common Divisor
Greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest

positive integer that divides each of the integers.

Example. gcd(8, 12) = 4, gcd(3, 15) = 3, gcd(15, 10) = 5.

Computing GCD using Euclid’s algorithm. The is based on the fact that, given two positive
integers a and b such that a > b, the common divisors of a and b are the same as the common
divisors of a − b and b. It can be observed, that it can be further optimized, by using amodb,
instead of a − b. For example, gcd(26, 8) = gcd(18, 8) = gcd(10, 8) = gcd(2, 8) can be
optimized to gcd(26, 8) = gcd(26 (mod 8), 8) => gcd(2, 8) Algorithm can be implemented
using recursion. Base of the recursion is gcd(a, 0) = a.

Page 29

Distributed Lab ZKDL Camp

1 int gcd(a, b):
2 if (b == 0):
3 return a
4 return gcd(b, a % b)

Provided algorithm work with O(log(N)) asymptotic complexity.

2.3.5 Least common multiple
Least common multiple (LCM) of two integers a and b, is the smallest positive integer that

is divisible by both a and b.
The least common multiple can be computed from the greatest common divisor with the

formula: lcm(a, b) = |ab|
gcd(a,b)

1 int lcm(a, b):
2 return a * (b / gcd(a, b))

2.3.6 Modular inverse
Modular multiplicative inverse of an integer a is an integer b such that a · b ≡ 1 (mod m).

In prime fields it is commonly used as a division operation.
One of the ways to compute the modular inverse is by using Euler‘s theorem:
aφ(m) ≡ 1 (mod m), where φ is Euler’s totient function.
For prime numbers, where φ(m) = m − 1:
am−2 ≡ a−1 (mod m).

1 a_inverse = powmod(a, m-2, m) # where powmod(base , power ,
↪→ modulus)

2.3.7 Reed-Solomon codes
Reed-Solomon codes allows to restore lost or corrupted data, implement threshold secret

sharing and is used in some ZK protocols. Given a vector of data V a polynomial P is constructed
using Lagrange interpolation. Polynomial with degree n can be uniquely defined using (n + 1)
unique points. Defining more points on the same polynomial add a redundancy, which can be
used to restore the polynomial even if some points are missing. Common choices for a set of
evaluation points include 0, 1, 2, ..., n − 1.

The error-correcting ability of a Reed-Solomon code is n− k , the measure of redundancy in
the block. If the locations of the error symbols are not known in advance, then a Reed-Solomon
code can correct up to n − k/2 erroneous symbols, i.e., it can correct half as many errors as
there are redundant symbols added to the block.

2.3.8 Schwartz-Zippel Lemma

Lemma 2.12. Let F be a field. Let f (x1, x2, ..., xn) be a polynomial of total degree d . Sup-
pose that f is not the zero polynomial. Let S be a finite subset of F. Let r1, r2, ...rn be chosen
at random uniformly and independently from S. Then the probability that f (r1, r2, ..., rn) = 0

Page 30

Distributed Lab ZKDL Camp

is ≤ d
|S| .

Example. Let F = F3, f (x) = x2 − 5x + 6, S = F , r R←− F3.
Schwartz-Zippel lemma says that the probability that f (r) = 0 is ≤ 2

3
.

Given two polynomials P,Q with degree d in a field Fp, for r R←− F3: Pr[P (r) == Q(r)] ≤ d
p
.

For large fields, where d
p

is negligible, this property allows to succinctly check the equality of
polynomials. Let H(x) := P (x) − Q(x). Than for each P (x) = Q(x) → H(x) = 0. Applying
Schwartz-Zippel lemma, the probability of H(x) = 0 for x R←− F is ≤ d

|S| .

2.4 Exercises
Exercise 1. Suppose that for the given cipher with a security parameter λ, the adversary

A can deduce the least significant bit of the plaintext from the ciphertext. Recall that the
advantage of a bit-guessing game is defined as SSAdv[A] =

∣∣Pr[b = b̂]− 1
2

∣∣, where b is the
randomly chosen bit of a challenger, while b̂ is the adversary’s guess. What is the maximal
advantage of A in this case?

Hint: The adversary can choose which messages to send to challenger to further distinguish
the plaintexts.

a) 1
b) 1

2

c) 1
4

d) 0
e) Negligible value (negl(λ)).
Exercise 2. Consider the cipher E = (E,D) with encryption function E : K ×M→ C over

the message space M, ciphertext space C, and key space K. We want to define the security
that, based on the cipher, the adversary A cannot restore the message (security against message
recovery). For that reason, we define the following game:

1. Challenger chooses random m R←−M, k R←− K.
2. Challenger computes the ciphertext c ← E(k,m) and sends to A.
3. Adversary outputs m̂, and wins if m̂ = m.
We say that the cipher E is secure against message recovery if the message recovery

advantage, denoted as MRadv[A, E] is negligible. Which of the following statements is a valid
interpretation of the message recovery advantage?

a) MRadv[A, E] :=
∣∣Pr[m = m̂]− 1

2

∣∣
b) MRadv[A, E] := |Pr[m = m̂]− 1|.
c) MRadv[A, E] := Pr[m = m̂]

d) MRadv[A, E] :=
∣∣∣Pr[m = m̂]− 1

|M|

∣∣∣
Exercise 3. Suppose that f and g are negligible functions. Which of the following functions

is not neccessarily negligible?
a) f + g

Page 31

Distributed Lab ZKDL Camp

b) f × g
c) f − g
d) f /g

e) h(λ) :=

{
1/f (λ) if 0 < λ < 100000

g(λ) if λ ≥ 100000
Exercise 4. Suppose that f ∈ Fp[x] is a d-degree polynomial with d distinct roots in Fp.

What is the probability that, when evaluating f at n random points, the polynomial will be zero
at all of them?

a) Exactly (d/p)n.
b) Strictly less that (d/p)n.
c) Exactly nd/p.
d) Exactly d/np.

Page 32

