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3 Field Extensions and Elliptic Curves
3.1 Finite Field Extensions
3.1.1 General Definition

Previously, our discussion resolved around the finite field Fp for a prime p. However, many
protocols need more than just a prime field. For example, elliptic curve pairings and certain
STARK constructions require extending Fp to, in a sense, the analogous of complex numbers.

From school and, possibly, university, you might remember how complex numbers C are
constructed. You take two real numbers, say, x, y ∈ R, introduce a new symbol i satisfying
i2 = −1, and define the complex number as z = x + iy . In certain cases, one might encounter
a bit more rigorous and abstract definition of complex numbers as the set of pairs (x, y) ∈ R2
where addition in naturally defined as (x1, y1)+(x2, y2) = (x1+x2, y1+y2), and the multiplication
is:

(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1)5. (32)

In spite of what interpretation you have seen, the complex number is just a tuple of two real
numbers that satisfy a bit different rules of multiplication (since addition is typically defined
in the same way). What is even more important to us, is that C is our first example of the
so-called field extension of R.

Formally, definition of the field extension is very straightforward:

Definition 3.1. Let F be a field and K be another field. We say that K is an extension of
F if F ⊂ K and we denote it as K/F.

Despite just a simplicity of the definition, the field extensions are a very powerful tool in
mathematics. But first, let us consider a few non-trivial examples of field extensions.

Example. Denote by Q(
√
2) = {x + y

√
2 : x, y ∈ Q}. This is a field extension of Q. It is

obvious that Q ⊂ Q(
√
2), but why is Q(

√
2) a field? Addition and multiplication operations

are obviously closed:

(x1 + y1
√
2) + (x2 + y2

√
2) = (x1 + x2) + (y1 + y2)

√
2,

(x1 + y1
√
2) · (x2 + y2

√
2) = (x1x2 + 2y1y2) + (x1y2 + x2y1)

√
2.

(33)

But what about the inverse element? Well, here is the trick:

1

x + y
√
2
=

x − y
√
2

(x + y
√
2)(x − y

√
2)
=
x − y

√
2

x2 − 2y 2 =
x

x2 − 2y 2 −
y

x2 − 2y 2
√
2 ∈ Q(

√
2). (34)

Example. Consider Q(
√
2, i) = {a + bi : a, b ∈ Q(

√
2)} where i2 = −1. This is a field

extension of Q(
√
2) and, consequently, of Q. The representation of the element is:

(a + b
√
2) + (c + d

√
2)i = a + b

√
2 + ci + d

√
2i (35)

5Notice that (x1 + iy1)(x2 + iy2) = x1x2 + iy2x1 + iy1x2 + i2y1y2 = (x1x2 − y1y2) + (x1y2 + x2y1)i .
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Showing that this is a field is a bit more tedious, but still straightforward. Suppose we take
α+ βi ∈ Q(

√
2, i) with α, β ∈ Q(

√
2). Then:

1

α+ βi
=
α− βi
α2 + β2

=
α

α2 + β2
−

β

α2 + β2
i (36)

Since Q(
√
2) is a field, both α

α2+β2
and β

α2+β2
are in Q(

√
2), and, consequently, Q(

√
2, i) is

a field as well.

Remark. Notice that basically, Q(
√
2, i) is just a linear combination of {1,

√
2, i ,
√
2i}. This

has a very important implication: Q(
√
2, i) is a four-dimensional vector space over Q, where

elements {1,
√
2, i ,
√
2i} naturally form basis. We are not going to use it implicitly, but this

observation might make further discussion a bit more intuitive.

Remark. One might have defined Q(
√
2, i) = {x +

√
2y : x, y ∈ Q(i)} instead. Indeed,

Q(
√
2)(i) = Q(i)(

√
2) = Q(

√
2, i).

3.1.2 Polynomial Quotient Ring
Now, we present a more general way to construct field extensions. Notice that when con-

structing C, we used the magical element i that satisfies i2 = −1. But here is another way how
to think of it.

Consider the set of polynomials R[x ], then I pick p(x) := x2 + 1 ∈ R[x ] and ask you to find
roots of p(x). Of course, you would claim “hey, this equation has no solutions over R” and that
is totally true. That is why mathematicians introduced a new element i that we formally called
the root of x2 + 1. Note however, that i is not a number in the traditional sense, but rather a
fictional symbol that we artifically introduced to satisfy the equation.

Now, could we have picked another polynomial, say, q(x) = x2 + 4? Sure! As long as its
roots cannot be found in R, we are good to go.

Example. Suppose β is the root of q(x) := x2 + 4. Then we could have defined complex
numbers as a set of x + yβ for x, y ∈ R. In this case, multiplication, for example, would be
defined a bit differently than in the case of C:

(x1 + y1β) · (x2 + y2β) = (x1x2 − 4y1y2) + (x1y2 + x2y1)β. (37)

We shifted to the polynomial consideration for a reason: now, instead of considering the
complex number C as “some” tuple of real numbers (c0, c1), now let us view it as a polynomial6

c0 + c1X modulo polynomial X2 + 1.

Example. Indeed, take, for example, p1(X) := 1 + 2X and p2(X) := 2 + 3X. Addition is
performed as we are used to:

p1 + p2 = (1 + 2X) + (2 + 3X) = 3 + 5X, (38)

6Here, we use X to represent the polynomial variable to avoid confusion with the notation x + y i .
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but multiplication is a bit different:

p1p2 = (1 + 2X) · (2 + 3X) = 2 + 3X + 4X + 6X2 = 6X2 + 7X + 2. (39)

Well, and what next? Recall that we are doing arithmetic modulo X2+1 and for that reason,
we divide the polynomial by X2 + 1:

6X2 + 7X + 2 = 6(X2 + 1) + 7X − 4 =⇒ (6X2 + 7X + 2)mod (X2 + 1) = 7X − 4, (40)

meaning that p1p2 = 7X − 4. Oh wow, hold on! Let us come back to our regular complex
number representation and multiply (1 + 2i)(2 + 3i). We get 2 + 3i + 4i + 6i2 = −4 + 7i .
That is exactly the same result if we change X to i above! In fact, what we have observed
is the fact that our polynomial quotient ring R[X]/(X2 + 1) is isomorphic to C.

So, let us generalize this observation to any field F and any irreducible polynomial µ(x) ∈ F[x ].

Theorem 3.2. Let F be a field and µ(x) — irreducible polynomial over F (sometimes called
a reduction polynomial). Consider a set of polynomials over F[x ] modulo µ(x), formally
denoted as F[x ]/(µ(x)). Then, F[x ]/(µ(x)) is a field.

Example. As we considered above, let F = R, µ(x) = x2+1, then R[X]/(X2+1) (a set of
polynomials modulo X2 + 1) is a field.

Example. Suppose F = Q and µ(x) := x2 − 2. Then, Q[X]/(X2 − 2) is a field isomorphic
to Q(

√
2), considered above.

Example. Suppose F = Q and µ(x) := (x2 + 1)(x2 − 2) = x4 − x2 − 2. Then, Q[X]/(x4 −
x2 − 2) is a field isomorphic to Q(

√
2, i).

Remark. Although we have not defined the isomorphism between two rings/fields, it is
defined similarly to group isomorphism. Suppose we have fields (F,+,×) and (K,⊕,⊗). Bi-
jective function φ : F→ K is called an isomorphism if it preserves additive and multiplicative
structures, that is for all a, b ∈ F:

φ(a + b) = φ(a)⊕ φ(b),
φ(a × b) = φ(a)⊗ φ(b).

(41)

This theorem (aka definition) corresponds to viewing complex numbers as a polynomial
quotient ring R[X]/(X2 + 1). But, we can give a theorem (aka definition) for our classical
representation via magical root i of x2 + 1.

Theorem 3.3. Let F be a field and µ ∈ F[X] is an irreducible polynomial of degree n and let
K := F[X]/(µ(X)). Let θ ∈ K be the root of µ over K. Then,

K = {c0 + c1θ + · · ·+ cn−1θn−1 : c0, . . . , cn−1 ∈ F} (42)
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Although this definition is quite useful, we will mostly rely on the polynomial quotient ring
definition. Let us define the prime field extension.

Definition 3.4. Suppose p is prime and m ≥ 2. Let µ ∈ Fp[X] be an irreducible polynomial
of degree m. Then, elements of Fpm are polynomials in F(≤m)p [X]. In other words,

Fpm = {c0 + c1X + · · ·+ cm−1Xm−1 : c0, . . . , cm−1 ∈ Fp}, (43)

where all operations are performed modulo µ(X).

Again, let us consider a few examples.

Example. Consider the F24. Then, there are 16 elements in this set:

0, 1, X,X + 1,

X2, X2 + 1, X2 +X,X2 +X + 1,

X3, X3 + 1, X3 +X,X3 +X + 1,

X3 +X2, X3 +X2 + 1, X3 +X2 +X,X3 +X2 +X + 1.

(44)

One might choose the following reduction polynomial: µ(X) = X4 + X + 1 (of degree 4).
Then, operations are performed in the following manner:

• Addition: (X3 +X2 + 1) + (X2 +X + 1) = X3 +X.
• Subtraction: (X3 +X2 + 1)− (X2 +X + 1) = X3 +X.
• Multiplication: (X3 +X2 + 1) · (X2 +X + 1) = X2 + 1 since:

(X3 +X2 + 1) · (X2 +X + 1) = X5 +X + 1 mod (X4 +X + 1) = X2 + 1 (45)

• Inversion: (X3 +X2 + 1)−1 = X2 since (X3 +X2 + 1) ·X2 mod (X4 +X + 1) = 1.

Now, in the subsequent sections, we would need to extend Fp at least to Fp2. A convenient
choice, similarly to the complex numbers, is to take µ(X) = X2 + 1. However, in contrast to
R, equation X2 = −1 (mod p) might have solutions over certain prime numbers p. Thus, we
consider proposition below.

Proposition 3.5. Let p be an odd prime. Then X2 + 1 is irreducible in Fp[X] if and only if
p ≡ 3 (mod 4).

Corollary 3.6. Fp2 = Fp[u]/(u2+1) is a valid prime field extension for odd primes p satisfying
p ≡ 3 (mod 4). In this case, extended elements are of the form c0 + c1u where c0, c1 ∈ Fp
and u2 = −1.

3.1.3 Multiplicative Group of a Finite Field
The non-zero elements of Fp, denoted as F×p , form a multiplicative cyclic group. In other

words, there exist elements f ∈ F×p , called generators, such that

F×p = {f k : 0 ≤ k ≤ p − 2} (46)
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The order of g ∈ F×p is the smallest positive integer r such that gr = 1. It is also not difficult
to show that r | (q − 1).

Definition 3.7. ω ∈ F is the primitive root in the finite field F if ⟨ω⟩ = F×.

Example. ω = 3 is the primitive root of F7. Indeed,

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1. (47)

So clearly ⟨ω⟩ = 7.

In STARKs (and in optimizing operations) for DFT (Discrete Fourier Transform) we would
need the so-called nth primitive roots of unity.

Example. For those who studied complex numbers a bit (it is totally OK if you did not,
so you might skip this example), recall an equation ζn = 1 over C. The solutions are
ζk = cos

(
2πk
n

)
+ i sin

(
2πk
n

)
for k ∈ {0, 1, . . . , n − 1}, so one has exactly n solutions (in

contrast to xn = 1 over R where there are at most 2 solutionsa). For any solution ζk ,
it is true that ζnk = 1, but if one were to consider the subgroup generated by ζk (that is,
{1, ζk , ζ2k , . . . }), then not neccecerily ⟨ζk⟩ would enumerate all the roots of unity {ζj}n−1j=0 .
For that reason, we call ζk the nth primitive root of unity if ⟨ζk⟩ enumerates all roots of unity.
One can show that this is the case if and only if gcd(k, n) = 1. This is always the case for
k = 1, so commonly mathematicians use ζn to denote an expression cos 2π

n
+i sin 2π

n
= e2πi/n.

aThink why.

Yet, let us give the broader definition, including the finite fields case.

Definition 3.8. ω is the nth primitive root of unity if ωn = 1 and ωk ̸= 1 for all 1 ≤ k < n.

Note that such ω exists if and only if n | (p − 1).

3.1.4 Algebraic Closure
Consider the following interesting question: suppose we have a field F. Is there an extension

K/F such that K contains all roots of any polynomial in F[X]? The answer is yes, and such a
field is called the algebraic closure of F, although not always this algebraic closure has a nice
form. But first, let us define what it means for field F to be algebraically closed.

Definition 3.9. A field F is called algebraically closed if every non-constant polynomial
p(x) ∈ F[X] has a root in F.

Example. R is not algebraically closed since X2 + 1 has no roots in R. However, C is
algebraically closed, which follows from the fundamental theorem of algebra. Since C is a
field extension of R, it is also an algebraic closure of R. This is commonly denoted as R = C.
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Definition 3.10. A field K is called an algebraic closure of F if K/F is algebraically closed.
This is denoted as F = K.

Since we are doing cryptography and not mathematics, we are interested in the algebraic
closure of Fp. Well, I have two news for you (as always, one is good and one is bad). The
good news is that any finite field Fpm has an algebraic closure. The bad news is that it does
not have a form Fpk for k > m and there are infinitely many elements in it (so in other words,
the algebraic closure of a finite field is not finite). This is due to the following theorem.

Theorem 3.11. No finite field F is algebraically closed.

Proof. Suppose f1, f2, . . . , fn ∈ F are all elements of F. Consider the following polynomial:

p(x) =

n∏
i=1

(x − fi) + 1 = (x − f1)(x − f2) · · · (x − fn) + 1. (48)

Clearly, p(x) is a non-constant polynomial and has no roots in F, since for any f ∈ F, one
has p(f ) = 1. ■

But what form does the Fp have? Well, it is a union of all Fpk for k ≥ 1. This is formally
written as:

Fp =
⋃
k∈N

Fpk . (49)

Remark. But this definition is super counter-intuitive! So here how we usually interpret it.
Suppose I tell you that polynomial q(x) has a root in Fp. What that means is that there
exists some extension Fpm such that for some α ∈ Fpm , q(α) = 0. We do not know how
large this m is, but we know that it exists. For that reason, Fp is defined as an infinite union
of all possible field extensions.

3.2 Elliptic Curves
3.2.1 Classical Definition

Probably, there is no need to explain the importance of elliptic curves. Essentially, the main
group being used for cryptographic protocols is the group of points on an elliptic curve. If
elliptic curve is “good enough”, then the discrete logarithm problem assumption, Diffie-Hellman
assumption and other core cryptographic assumptions hold. Moreover, this group does not
require a large field size, which is a huge advantage for many cryptographic protocols.

So, let us formally define what an elliptic curve is. Further assume that, when speaking of the
finite field Fp, the underlying prime number is greater than 3.7. The definition is the following.

Definition 3.12. Suppose that K is a field. An elliptic curve E over K is defined as a set
of points (x, y) ∈ K2:

y 2 = x3 + ax + b, (50)

called a Short Weierstrass equation, where a, b ∈ K and 4a3+27b2 ̸= 0. We denote E/K
to denote the elliptic curve over field K.

7Note that, for example, for F2n equation of elliptic curve is very different, but usually we do not deal with
binary field elements.
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Remark. One might wonder why 4a3 + 27b2 ̸= 0. This is due to the fact that the curve
y 2 = x3+ax +b might have certain degeneracies and special points, which are not desirable
for us. So we require this condition to make E/K “good”.

Definition 3.13. We say that P = (xP , yP ) ∈ A2(K) is the affine representation of the
point on the elliptic curve E/K if it satisfies the equation y 2P = x

3
P + axP + b.

Example. Consider the curve E/Q : y 2 = x3 − x + 9. This is an elliptic curve. Consider
P = (0, 3), Q = (−1,−3) ∈ A2(Q): both are valid affine points on the curve. See Figure 6.

-4 -2 0 2 4

-6

-4

-2

0

2

4

6

x

y

Figure 6: Elliptic curve E/Q : y 2 = x3−x+9 with points P = (0, 3), Q = (−1,−3) depicted
on it.

Typically, our elliptic curve is defined over a finite field Fp, so we are interested in this paricular
case.

Remark. Although, in many cases one might encounter the definition where an elliptic curve
E is defined over the algebraic closure of Fp, that is E/Fp. This is typically important when
considering elliptic curve pairings. However, for the sake of simplicity, we will consider elliptic
curves over Fp and corresponding finite extensions Fpm as of now.

Remark. It is easy to see that if (x, y) ∈ E/K, then (x,−y) ∈ E/K. We will use this fact
intensively further.

Now, elliptic curves are useless without any operation defined on top of them. But as will be
seen later, it is quite unclear how to define the identity element. For that reason, we introduce
a bit different definition of a set of points on the curve.
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Definition 3.14. The set of points on the curve, denoted as Ea,b(K), is defined as:

Ea,b(K) = {(x, y) ∈ A2(K) : y 2 = x3 + ax + b} ∪ {O}, (51)

where O is the so-called point at infinity.

Remark. The difference between E(K) and E/K is that the former includes the point at
infinity, while the latter does not. We also omit the index a, b, so instead of Ea,b(K) we
write simply E(K).

Now, the reason we introduced the point at infinity O is because it allows us to define
the group binary operation ⊕ on the elliptic curve. The operation is sometimes called the
chord-tangent law. Let us define it.

Definition 3.15. Consider the curve E(Fpm). We define O as the identity element of the
group. That is, for all points P , we set P ⊕ O = O ⊕ P = P . For any other non-identity
elements P = (xP , yP ), Q = (xQ, yQ) ∈ E(Fpm), define the P ⊕Q = (xR, yR) as follows:

1. If xP ̸= xQ, use the chord method. Define λ := yP−yQ
xP−xQ — the slope between P and Q.

Set the resultant coordinates as:

xR := λ
2 − xP − xQ, yR := λ(xP − xR)− yP . (52)

2. If xP = xQ ∧ yP = yQ (that is, P = Q), use the tangent method. Define the slope of
the tangent at P as λ := 3x2P+a

2yP
and set

xR := λ
2 − 2xP , yR := λ(xP − xR)− yP . (53)

3. Otherwise, define P ⊕Q := O.

The aforementioned definition is illustrated in the Figure below8.

8Illustration taken from “Pairing for Beginners”
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Example. Consider E/R : y 2 = x3 − 2x . The points (−1,−1), (0, 0), (2, 2) are all on
E and also on the line ℓ : y = x . Therefore, (−1, 1) ⊕ (0, 0) = (2,−2) or, similarly,
(2, 2)⊕ (−1,−1) = (0, 0).
Now, let us compute [2](−1,−1). Calculate the tangent slope as λ := 3·(−1)2−2

2·(−1) = −1
2
.

Thus, the tangent line has an equation ℓ′ : y = −1
2
x + c . Substituting (−1,−1) into the

equation, we get c = −3
2
. Therefore, the equation of the tangent line is y = −1

2
x − 3

2
. The

intersection of the curve and the line is
(
9
4
,−21

8

)
, yielding [2](−1,−1) =

(
9
4
,−21

8

)
.

The whole illustration is depicted in Figure 7.
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Figure 7: Illustration of the group law on the elliptic curve E/R : y 2 = x3 − 2x . In red we
marked points lying on the line ℓ : y = x . In dashed red, we marked the line ℓ, while in
dashed green — the tangent line ℓ′ at (−1,−1), which is used to calculate [2](−1, 1).

Theorem 3.16. (E(Fpm),⊕) forms an abelian group.

Proof Sketch. The identity element is O. Every point O ̸= P = (xP , yP ) ∈ E(Fpm) has
an additive inverse: indeed, ⊖P := (xP ,−yP ). Finally, a bit of algebra might show that the
operation is associative. It is also clearly commutative: even geometrically it is evident, that
the result of P ⊕Q does not depend on the order of P and Q (“drawing a line between P and
Q” and “drawing a line between Q and P ” are equivalent statements). ■

Now, let us talk a bit about the group order. The group order is the number of elements in
the group. For elliptic curves, the group order is typically denoted as r or n, but we are going
to use r . Also, the following theorem is quite important.

Theorem 3.17. Define r := |E(Fpm)|. Then, r = pm + 1− t for some integer |t| ≤ 2
√
pm.

A bit more intuitive explanation: the number of points on the curve is close to pm +1. This
theorem is commonly called the Hasse’s theorem on elliptic curves, and the value t is
called the trace of Frobenius.

Remark. In fact, r = |E(Fpm)| can be computed in O(log(pm)), so the number of points
can be computed efficiently even for fairly large primes p.
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Finally, let us define the scalar multiplication operation.

Definition 3.18. Let P ∈ E(Fpm) and α ∈ Zr . Define the scalar multiplication [α]P as:

[α]P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
α times

. (54)

Question. Why do we restrict α to Zr and not to Z?

3.2.2 Discrete Logarithm Problem on Elliptic Curves
Finally, as defined in the previous section, the discrete logarithm problem on the elliptic

curve is the following: typically, E(Fp) is cyclic, meaning there exist some point G ∈ E(Fp),
called the generator, such that ⟨G⟩ = E(Fp). Given P ∈ E(Fp), the problem consists in finding
such a scalar α ∈ Zr such that [α]G = P .

Now, if the curve is “good”, then the discrete logarithm problem is hard. In fact, the best-
known algorithms have a complexity O(

√
r). However, there are certain cases when the discrete

log problem is much easier.
1. If r is composite, and all its prime factors are less than some bound rmax, then the discrete

log problem can be solved in O(
√
rmax). For this very reason, typically r is prime.

2. If |E(Fp)| = p, then the discrete logarithm can be solved in polynomial time. These curves
are called anomalous curves.

3. Suppose that there is some small integer τ > 0 such that r | (pτ − 1). The discrete log
in that case reduces to the discrete log in the finite field Fpτ , which is typically not hard
for small enough τ .

3.3 Exercises
Warmup (Oleksandr in search of perfect field extension)

Exercise 1. Oleksandr decided to build F49 as F7[i ]/(i2 + 1). Compute (3 + i)(4 + i).
a) 6 + i .
b) 6.
c) 4 + i .
d) 4.
e) 2 + 4i .
Exercise 2. Oleksandr came up with yet another extension Fp2 = Fp[i ]/(i2 + 2). He asked

interns to calculate 2/i . Based on five answers given below, help Oleksandr to find the correct
one.

a) 1.
b) p − 2.
c) (p − 3)i .
d) (p − 1)i .
e) p − 1.
Exercise 3*. After endless tries, Oleksandr has finally found the perfect field extension:

Fp2 := Fp[v ]/(v 2 + v + 1). However, Oleksandr became very frustrated since not for any p
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this would be a valid field extension. For which of the following values p such construction
would not be a valid field extension? Use the fact that equation ω3 = 1 over Fp has non-trivial
solutions (meaning, two others except for ω = 1) if p ≡ 1 (mod 3). You can assume that listed
numbers are primes.

a) 8431.
b) 9173.
c) 9419.
d) 6947.

Exercises 4-9. Tower of Extensions

You are given the passage explaining the topic of tower of extensions. The text has gaps
that you need to fill in with the correct statement among the provided choices.

This question demonstrates the concept of the so-called tower of extensions. Suppose
we want to build an extension field Fp4. Of course, we can find some irreducible polynomial
p(X) of degree 4 over Fp and build Fp4 as Fp[X]/(p(X)). However, this method is very
inconvenient since implementing the full 4-degree polynomial arithmetic is inconvenient.
Moreover, if we were to implement arithmetic over, say, Fp24, that would make the matters
worse. For this reason, we will build Fp4 as Fp2[j ]/(q(j)) where q(j) is an irreducible
polynomial of degree 2 over Fp2, which itself is represented as Fp[i ]/(r(i)) for some
suitable irreducible quadratic polynomial r(i). This way, we can first implement Fp2, then
Fp4, relying on the implementation of Fp2 and so on.

For illustration purposes, let us pick p := 5. As noted above, we want to build F52 first.
A valid way to represent F52 would be to set F52 := 4 . Given this representation, the
zero of a linear polynomial f (x) = ix − (i + 3), defined over F52, is 5 .

Now, assume that we represent F54 as F52[j ]/(j2−ξ) for ξ = i+1. Given such representa-
tion, the value of j4 is 6 . Finally, given c0+ c1j ∈ F54 we call c0 ∈ F52 a real part, while
c1 ∈ F52 an imaginary part. For example, the imaginary part of number j3 + 2i2ξ is 7 ,
while the real part of (a0 + a1j)b1j is 8 . Similarly to complex numbers, it motivates us
to define the number’s conjugate: for z = c0+c1j , define the conjugate as z := c0−c1j .
The expression zz is then 9 .
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Exercise 4.
a) F5[i ]/(i2 + 1)
b) F5[i ]/(i2 + 2)
c) F5[i ]/(i2 + 4)
d) F5[i ]/(i2 + 2i + 1)
e) F5[i ]/(i2 + 4i + 4)

Exercise 5.
a) 1 + i
b) 1 + 2i
c) 1 + 4i
d) 2 + 3i
e) 3 + i

Exercise 6.
a) 4 + 2i
b) 4i
c) 1
d) 1 + 2i
e) 2 + 4i

Exercise 7.
a) equal to zero.
b) equal to one.
c) equal to the real part.
d) 2(1 + i)
e) −4

Exercise 8.
a) a1b1
b) a1b1ξ
c) a0b1
d) a0b1ξ
e) a0a1

Exercise 9.
a) c20 + c

2
1

b) c20 − c21ξ
c) c20 + c

2
1ξ
2

d) (c20 + c
2
1ξ)j

e) (c20 − c21 )j

Elliptic Curves
Exercise 10. Suppose that elliptic curve is defined as E/F7 : y 2 = x3 + b. Suppose (2, 3)

lies on the curve. What is the value of b?
Exercise 11. Sum of which of the following pairs of points on the elliptic curve E/F11 is

equal to the point at infinity O for any valid curve equation?
a) P = (2, 3), Q = (2, 8).
b) P = (9, 2), Q = (2, 8).
c) P = (9, 9), Q = (5, 7).
d) P = O, Q = (2, 3).
e) P = [10]G,Q = G where G is a generator.
Exercise 12. Consider an elliptic curve E over F1672. Denote by r the order of the group of

points on E (that is, r = |E|). Which of the following can be the value of r?
a) 1672 − 5
b) 1672 − 1000
c) 1672 + 5 · 167
d) 1702

e) 1602

Exercise 13. Suppose that for some elliptic curve E the order is |E| = qr where both q and
r are prime numbers. Among listed, what is the most optimal complexity of algorithm to solve
the discrete logarithm problem on E?

a) O(qr)
b) O(

√
qr)

c) O(
√
max{q, r})

d) O(
√
min{q, r})

e) O(max{q, r})
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