
Distributed Lab ZKDL Camp

4 Projective Coordinates and Pairing
4.1 Relations

Before delving into the projective coordinates and further zero-knowledge topics, let us first
discuss the concept of relations, which will be intensively used from now on. Now, what is a
relation? The definition is incredibly concise.

Definition 4.1. Let X ,Y be some sets. Then, R is a relation if

R ⊂ X × Y = {(x, y) : x ∈ X , y ∈ Y} (55)

Interpretation is approximately the following: suppose we have sets X and Y. Then, relation
R gives a set of pairs (x, y), telling that x ∈ X and y ∈ Y are related.

Example. Let X = {Oleksandr,Phat,Anton} and Y = {Backend,Frontend,Research}. De-
fine the following relation of “person x works in field y ”:

R = {(Oleksandr,Research), (Phat,Frontend), (Anton,Backend)} (56)

Obviously, R ⊂ X × Y, so R is a relation.

Remark. There are many ways to express that (x, y) ∈ R. Most common are xRy and
x ∼ y . Also, sometimes, one might encounter relation definition as a boolean function
R : X × Y → {0, 1}, where R(x, y) is 1 if (x, y) is in the relation, and 0 otherwise.
Further, we will use notation x ∼ y to denote that (x, y) ∈ R.

Example. Let E be a cyclic group of points on the Elliptic Curve of order r ≥ 2 with a
generator ⟨G⟩ = E. Let X = Zr and Y = E. Define a relation R ⊂ X × Y by:

R = {(α, P ) ∈ Zr × E : [α]G = P} (57)

Essentially, such a relation is a set of secret keys α and corresponding public keys P . In this
case, for example, 0RO and 1RG or 0 ∼ O and 1 ∼ G.

Remark. When we say that ∼ is a relation on a set X , we mean that ∼ is a relation R on
the following Cartesian product: R ⊂ X ×X .

Remark. The provided example is relevant in most cases (ecdsa, eddsa, schnorr signatures
etc.). But for some algorithms, the relation between secret key α and public key P can be
defined as:

R = {(α, P ) ∈ Zr × E : −[α]G = P} (58)

for DSTU 4145 standard or even:

R = {(α, P ) ∈ Zr × E : [α]−1G = P} (59)

for twisted ElGamal algorithm.

Page 46



Distributed Lab ZKDL Camp

Now, let us formally define the term equivalence relation.

Definition 4.2. Let X be a set. A relation ∼ on X is called an equivalence relation if it
satisfies the following properties:

1. Reflexivity: x ∼ x for all x ∈ X .
2. Symmetry: If x ∼ y , then y ∼ x for all x, y ∈ X .
3. Transitivity: If x ∼ y and y ∼ z , then x ∼ z for all x, y , z ∈ X .

Example. Let X be the set of all people. Define a relation ∼ on X by x ∼ y if x, y ∈ X
have the same birthday. Then ∼ is an equivalence relation on X . Let us demonstrate that:

1. Reflexivity: x ∼ x since x has the same birthday as x .
2. Symmetry: If x ∼ y , then y ∼ x since x has the same birthday as y .
3. Transitivity: If x ∼ y and y ∼ z , then x ∼ z since x has the same birthday as y and
y has the same birthday as z .

Example. Suppose X = Z and n is some fixed integer. Let a ∼ b mean that a ≡ b (mod n).
It is easy to verify that ∼ is an equivalence relation:

1. Reflexivity: a ≡ a (mod n), so a ∼ a.
2. Symmetry: If a ≡ b (mod n), then b ≡ a (mod n), so b ∼ a.
3. Transitivity: If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n). It is not

that obvious, so we can prove it: from the first equality we have ∃q ∈ Z : a− b = nq.
From the second, ∃r ∈ Z : b−c = nr . Adding both we get (a−b)+(b−c) = n(r+q)
or, equivalently, a − c = n(r + q), meaning a ≡ c (mod n).

The example below is less obvious with a bit more difficult proof, which we will skip. Yet, it
is quite curious, so here it is.

Example. Let G be the set of all possible groups. Define a relation ∼ on G by G ∼ H if
G ∼= H (in other words, G and H are isomorphic). Then ∼ is an equivalence relation.

Now, suppose I give you a set X with some equivalence relation ∼ (say, X = Z and a ≡ b
(mod n)). Notice that you can find some subset X ′ ⊂ X in which all elements are equivalent
(and any other element from X\X ′ is not). In the case of modulo relation above, X ′ could be the
set of all integers that are congruent to 1 modulo n, so X ′ = {. . . ,−n+1, 1, n+1, 2n+1, . . . }.
This way, we can partition the set X into disjoint subsets, where all elements in each subset are
equivalent. Such subsets are called equivalence classes. Now, let us give a formal definition.

Definition 4.3. Let X be a set and ∼ be an equivalence relation on X . For any x ∈ X , the
equivalence class of x is the set

[x ] = {y ∈ X : x ∼ y} (60)

The set of all equivalence classes is denoted by X/∼ (or, if the relationR is given explicitly,
then X/R), which is read as “X modulo relation ∼”.

Page 47



Distributed Lab ZKDL Camp

Example. Let X = Z and n be some fixed integer. Define ∼ on X by x ∼ y if x ≡ y

(mod n). Then the equivalence class of x is the set

[x ] = {y ∈ Z : x ≡ y (mod n)} (61)

For example, [0] = {. . . ,−2n,−n, 0, n, 2n, . . .} while [1] = {. . . ,−2n + 1,−n + 1, 1, n +
1, 2n + 1, . . .}. Note that a set {[0]}

Now, as we have said before, a set of all equivalence classes form a partition of the set
X . This means that any element x ∈ X belongs to exactly one equivalence class. This is a
very important property, which we will use in the next section. Formally, we have the following
lemma.

Lemma 4.4. Let X be a set and ∼ be an equivalence relation on X . Then,
1. For each x ∈ X , x ∈ [x ] (quite obvious, follows from reflexivity).
2. For each x, y ∈ X , x ∼ y if and only if [x ] = [y ].
3. For each x, y ∈ X , either [x ] = [y ] or [x ] ∩ [y ] = ∅.

Example. Let n ∈ N and, again, X = Z with a “modulo n” equivalence relation Rn. Define
the equivalence class of x by [x ]n = {y ∈ Z : x ≡ y (mod n)}. Then,

Z/Rn = {[0]n, [1]n, [2]n, . . . , [n − 2]n, [n − 1]n} (62)

forms a partition of Z, that is
n−1⋃
i=0

[i ]n = Z, (63)

and for all i , j ∈ {0, 1, . . . , n − 1}, if i ̸= j , then [i ]n ∩ [j ]n = ∅. Commonly, we denote the
set of all equivalence classes as Z/nZ or, as we got used to, Zn. Moreover, we can naturally
define the addition as:

[x ]n + [y ]n = [x + y ]n (64)

Then, the set (Z/nZ,+) with the defined addition is a group.

The primary reason we considered equivalence relations is that we will define the projective
space as a set of equivalence classes. Besides this, when defining proofs of knowledge, argument
of knowledge and zero-knowledge protocols, we will use the concept of relations and equivalence
relations intensively.

4.2 Elliptic Curve in Projective Coordinates
4.2.1 Projective Space

Recall that we defined the elliptic curve as

E(Fp) := {(x, y) ∈ A2(Fp) : y 2 = x3 + ax + b} ∪ {O} (65)

The above definition is the definition of the elliptic curve in the affine space. However, notice
that in this case we need to append a somewhat artificial point O to the curve. This is done

Page 48



Distributed Lab ZKDL Camp

to make the curve a group since without this point it is unclear how to define addition of two,
say, negative points on the curve (since the resultant vertical line does not intersect the curve
at any other point). The way to unify all the points E/Fp with this magical point at infinity O
is to use the projective space.

Essentially, instead of working with points in affine n-space (in our case, with two-dimensional
points A2(K)), we work with lines that pass through the origin in (n+1)-dimensional space (in
our case, 3-dimensional space A3(K)). We say that two points from this (n + 1)-dimensional
space are equivalent if they lie on the same line that passes through the origin (we will show
the illustration a bit later).

It seems strange that we need to work with 3-dimensional space to describe 2-dimensional
points, but this is the way to unify all the points on the curve. Because, in this case, the point
at infinity is represented by a set of points on the line that passes through the origin and is
parallel to the y -axis. We will get to understanding how to interpret that. Moreover, by defining
operations on the projective space, we can make the operations on the curve more efficient.

Now, to the formal definition.

Definition 4.5. Projective coordinate, denoted as P2(K) (or sometimes simply KP2) is a
triple of elements (X : Y : Z) from A3(K) \ {0} modulo the equivalence relationa:

(X1 : Y1 : Z1) ∼ (X2 : Y2 : Z2) iff ∃λ ∈ K : (X1 : Y1 : Z1) = (λX2 : λY2 : λZ2) (66)

aAlthough we specify the definition for n = 2, the definition can be generalized to any Pn(K).

This definition on itself might be a bit too abstract, so let us consider the concrete example
for projective space P2(R).

Example. Consider the projective space P2(R). Then, two points (x1, y1, z1), (x2, y2, z2) ∈
R3 are equivalent if there exists λ ∈ R such that (x1, y1, z1) = (λx2, λy2, λz2). For example,
(1, 2, 3) ∼ (2, 4, 6) since (1, 2, 3) = 0.5(2, 4, 6).

Page 49



Distributed Lab ZKDL Camp

Example. Now, how to geometrically interpret P2(R)? Consider the Figure below.

Illustration: Geometric interpretation of P2(R), the same scene from different perspectives. The red line is represented by
equation (2t, 3t, t), blue line by (−2t, 3t, 3t), and green line is represented by (t,−2t, 5t) for parameter t ∈ R.

Here, the figure demonstrates three equivalence classes, being a set of points on the red,
blue, and green lines (except for the origin).
The reason why geometrically the set of equivalence classes lie on the same line that passes
through the origin is following: suppose we have a point v⃗0 = (x0, y0, z0) ∈ R3, represented
as a vector. Then, the set of all points that are equivalent to (x0, y0, z0) is the set of all
points (λx0, λy0, λz0) = λv⃗0 for λ ∈ R \ {0}. So v⃗0 is the representative of equivalence
class [v⃗0] = {λv⃗0 : λ ∈ R, λ ̸= 0}. Now notice, that this is a parametric equation of a line
that passes through the origin and the point v⃗0: notice that for λ = 0 (if we assume that
expression is also defined for zero λ) we have the origin 0⃗, while for λ = 1 we have the point
v⃗0. Then, any other values of λ in-between [0, 1] or outside define the set of points lying on
the same line.

Now, projective coordinates are not that useful unless we can come back to the affine space.
This is done by defining the map φ : P2(K)→ A2(K) as follows: φ : (X : Y : Z) 7→ (X/Z, Y/Z).
If, in turn, we want to go from the affine space to the projective space, we can define the map
ψ : A2(K)→ P2(K) as follows: ψ : (x, y) 7→ (x : y : 1). Geometrically, map φ means that we
take a point (X : Y : Z) and project it onto the plane Z = 1.

Page 50



Distributed Lab ZKDL Camp

Example. Again, consider three lines from the previous example. Now, we additionally draw
a plane π : z = 1 in our 3-dimensional space (see Illustration below).

Illustration: Geometric interpretation of converting projective form to the affine form.

By using the map (X : Y : Z) 7→ (X/Z, Y/Z), all points on the line get mapped to the
itersection of the line with the plane π : z = 1. This way, for example, points on the red line
ℓred get mapped to the point A′ = (2, 3, 1), corresponding to (2, 3) in affine coordinates. So,
for example, point (6, 9, 3) ∈ ℓred, lying on the same line, gets mapped to (6/3, 9/3) = (2, 3).
Similarly, all blue line points get mapped to the point B′ = (−2/3, 1, 1), while all green line
points get mapped to the point C ′ = (0.2,−0.4, 1)a.

aOne can verify that based on the equations provided from the previous example

4.2.2 Elliptic Curve Equation in Projective Form
Now, quite an interesting question is following: how to represent (basically, rewrite) the

“affine” elliptic curve equation9

EA(Fp) : y 2 = x3 + ax + b, a, b ∈ Fp (67)

in the projective form? Since currently, we defined the curve as the 2D curve, but now we are
working in 3D space! The answer is following: recall that if (X : Y : Z) ∈ P2(Fp) lies on the
curve, so does the point (X/Z, Y/Z). The condition on the latter point to lie on EA(Fp) is
following: (

Y

Z

)2
=

(
X

Z

)3
+ a ·

X

Z
+ b (68)

But now multiply both sides by Z3 to get rid of the fractions:

EP(Fp) : Y 2Z = X3 + aXZ2 + bZ3 (69)

This is an equation of the elliptic curve in projective form.

9Further, we will use notation EA to represent the elliptic curve equation in the affine form, and EP to represent
the elliptic curve in the projective form.

Page 51



Distributed Lab ZKDL Camp

Now, one of the motivations to work with the projective form was to unify affine points
EA/Fp and the point at infinity O, which acted as an identity element in the group EA(Fp). So
how do we encode the point at infinity in the projective form?

Well, notice the following observation: all points (0 : λ : 0) always lie on the curve EP(Fp).
Moreover, the map from the projective form to the affine form is ill-defined for such points,
since we would need to divide by zero. So, we can naturally make the points (0 : λ : 0) to be
the set of points at infinity. This way, we can define the point at infinity as O = (0 : 1 : 0).

Finally, let us summarize what we have observed so far.

Definition 4.6. The homogenous projective form of the elliptic curve EP(Fp) is defined
as the set of all points (X : Y : Z) ∈ P2(Fp) in the projective space that satisfy the equation

EP(Fp) : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Fp, (70)

where the point at infinity is encoded as O = (0 : 1 : 0).

Example. Consider the BN254 curve y 2 = x3 + 3 over reals R. Its projective form is given
by the equation Y 2Z = X3 + 3Z3, which gives a surface, depicted below.

Illustration: BN254 Curve Elliptic Curve in Projective Form over R. In gray is the surface, while red points are the points on the
affine curve (lying on the plane π : z = 1).

Points P ′ ≈ (0 : 2.165 : 1.25) and P ′′ ≈ (0 : 1.3 : 0.75) in projective form both lie on the
curve and get mapped to the same point P ≈ (0, 1.732) in affine coordinates.

4.2.3 General Projective Coordinates
Hold on, but why did we use the term homogenous? The reason why is because we defined

equivalence as follows: (X : Y : Z) ∼ (λX : λY : λZ) for some λ ∈ K, called homogenous

Page 52



Distributed Lab ZKDL Camp

coordinates. However, this is not the only way to define equivalence. Consider a more general
form of equivalence relation:

(X : Y : Z) ∼ (X ′ : Y ′ : Z ′) iff ∃λ ∈ K : (X, Y, Z) = (λnX ′, λmY ′, λZ ′) (71)

In this case, to come back to the affine form, we need to use the map φ : (X : Y : Z) 7→
(X/Zn, Y/Zm).

Example. The case n = 2, m = 3 is called the Jacobian Projective Coordinates. An
Elliptic Curve equation might be then rewritten as:

Y 2 = X3 + aXZ4 + bZ6 (72)

The reason why we might want to use such coordinates is that they can be more efficient
in some operations, such as point addition. However, we will not delve into this topic much
further.

Example. Consider the BN254 curve y 2 = x3+3 over reals R, again. Its Jacobian projective
form is given by the equation Y 2 = X3 + 3Z6, which gives a surface, depicted below.

Illustration: BN254 Curve Elliptic Curve in Jacobian Projective Form over R. In gray is the surface, while red points are the
points on the affine curve (lying on the plane π : z = 1).

Notice that now, under the map (X : Y : Z) 7→ (X/Z2, Y/Z3), points in the same equivalence
class (in R3) do not lie on the same line, but rather on the same curve. Namely, equivalence
class has a form [(x0, y0, z0)] = {t2x0, t3y0, tz0 : t ∈ R \ {0}}.

4.2.4 Fast Addition
Let us come back to the affine case and assume that the underlying field is the prime field Fp.

Recall that for adding two points P = (xP , yP ) and Q = (xQ, yQ) to get R = (xR, yR)← P ⊕Q

Page 53



Distributed Lab ZKDL Camp

one used the following formulas (there is no need to understand the derivation fully, just take
it as a fact):

xR ←
(
yQ − yP
xQ − xP

)2
− xP − xQ, yR ←

(
yQ − yP
xQ − xP

)
(xP − xR)− yP (73)

Denote by M the cost of multiplication, by S the cost of squaring, and by I the cost of inverse
operation in Fp. Note that we do not count addition/inverse costs as they are significantly lower
than operations listed. Then, the cost of additing two points using above formula is 2M+1S+1I.
Indeed, our computation can proceed as follows:

1. Calculate t1 ← (xQ − xP )−1, costing 1I.
2. Calculate λ← (yQ − yP )t1, costing 1M.
3. Calculate t2 ← λ2, costing 1S.
4. Calculate xR ← t2 − xP − xQ, costing almost nothing.
5. Calculate yR ← λ(xP − xR)− yP , costing 1M.
Well, there are just 4 operations in total, so what can go wrong? The problem is that we

need to calculate the inverse of (xQ−xP ), which is a very, very costly operation. In fact, typically
1I≫ 20M or even worse, the ratio might reach 80 in certain cases.

Now imagine we want to add 4 points, say P1⊕ P2⊕ P3⊕ P4: this costs 6M+3S+3I. Now
we have 3 inverses, which is a lot. Finally, if we are to add much larger number of points (for
example, when finding the scalar product), this gets even worse.

Projective coordinates is a way to solve this problem. The idea is to represent points in the
projective form (X : Y : Z), so when adding two numbers in projective form, you still get a
point in a form (X : Y : Z). Then, after conducting a series of additions, you can convert the
point back to the affine form.

But why adding two points, say, (XP : YP : ZP ) and (XQ : YQ : ZQ), in the projective form is
more efficient? We will not derive the formulas, but trust us that they have the following form:

XR = (XPZQ −XQZP )(ZPZQ(YPZQ − YQZP )2 − (XPZQ −XQZP )2(XPZQ +XQZP ));
YR = ZPZQ(XQYP −XPYQ)(XPZQ −XQZP )2 − (YPZQ − YQZP )((YPZQ − YQZP )2ZPZQ

−(XPZQ +XQZP )(XPZQ −XQZP )2);
ZR = ZPZQ(XPZQ −XQZP )3.

(74)
Do not be afraid, you do not need to understand how this formula is derived. But notice

that despite the very scary look, there is no inversions involved! Moreover, this formula can be
calculated in only 12M+ 2S! So all in all, this is much more effective than 2M+ 1S+ 1I.

The only inversion which is unavoidable in the projective form is the inversion of Z since after
all additions (and doublings) have been made, we need to use map (X : Y : Z) 7→ (X/Z, Y/Z)
to return back to the affine form. However, this inversion is done only once at the end of the
computation, so it is not that costly.

Page 54



Distributed Lab ZKDL Camp

Proposition 4.7. To conclude, typically, when working with elliptic curves, one uses the
following strategy:

1. Convert affine points to projective form using the map (x, y) 7→ (x, y , 1).
2. Perform all operations in the projective form, which do not involve inversions.
3. Convert the result back to the affine form using the map (X : Y : Z) 7→ (X/Z, Y/Z).

This is illustrated in the Figure below.

Affine Space

Projective Space
Complex 

Algorithm
Illustration: General strategy when performing operations over Elliptic Curves.

4.2.5 Scalar Multiplication Basic Implementation
Now, the question is: how do we implement the scalar multiplication [k ]P for the given scalar

k ∈ Zr and point P ∈ E(Fq)?
First idea: let us simply add P to itself k times. Well, the complexity would be O(k) in this

case, which is even harder than solving the discrete logarithm problem (recall that the discrete
logarithm problem has a complexity of O(

√
k)). Yikes.

So there should be a better way. In this section we will limit ourselves to the double-and-add
method, but the curious reader can look up the NAF (Non-Adjacent Form) method, windowed
methods, GLV scalar decomposition and many other methods, which we are not going to cover
in this course.

The idea of the double-and-add method is following: we represent the N-bit scalar k in
binary form, say k = (kN−1, kN−2, . . . , k0)2, then we calculate P, [2]P, [4]P, [8]P, . . . , [2N−1]P
(which is simply applying the doubling multple times) and then add the corresponding points
(corresponding to positions where ki = 1) to get the result. Formally, we specify the Algorithm 1.

Algorithm 1: Double-and-add method for scalar multiplication
Input : P ∈ E(Fq) and k ∈ Zr
Output: Result of scalar multiplication [k ]P ∈ E(Fq)

1 Decompose k to the binary form: (k0, k1, . . . , kN−1)
2 R← O
3 T ← P

4 for i ∈ {0, . . . , N − 1} do
5 if ki = 1 then
6 R← R ⊕ T
7 end
8 T ← [2]T
9 end

Return : Point R

Good news: now we have a complexity of O(N) = O(log k), which is way much better that
a linear one. In fact, many more optimized methods have the same assymptotic complexity

Page 55



Distributed Lab ZKDL Camp

(meaning, a logarithmic one), so it turns out that we cannot do much better than that. However,
the main advantages of other, more optimized methods is that we can avoid making too many
additions (here, in the worst case, we have to make N additions), which is a costly operation
(and more expensive than doubling).

Moreover, here we can use projective coordinates to make the addition and doubling operation
more efficient! After all, typically the number of operations is even more than 300, so making
300 inversions in affine form is not an option.

4.3 Elliptic Curve Pairing
Pairing is the core object used in threshold signatures, zk-SNARKs constructions, and other

cryptographic applications.
Consider the Decisional Diffie-Hellman problem which we described in Section 2 (based

on gα, gβ and gγ, decide whether γ = αβ). Turns out that for curves where the so-called
embedding degree10 is small enough, this problem is easy to solve. This might sound like a
quite bad thing, but it turns out that although some information about the discrete logarithm is
leaked, it is not enough to break the security of the system (basically, solve the Computational
Diffie-Hellman problem). Pairings is the exact object that allows us to solve the Decisional
Diffie-Hellman problem.

However, a more interesting use-case which we are going to use in SNARKs is that pairings
allows us to check quadratic conditions on scalars using their corresponding elliptic curve
representation. For example, just given u = gα, v = gβ we can check whether αβ + 5 = 0
(which is impossible to check without having a pairing).

So what is pairing?

4.3.1 Definition

Definition 4.8. Pairing is a bilinear, non-degenerate, efficiently computable map e : G1 ×
G2 → GT , where G1,G2 are two groups (typically, elliptic curve groups) and GT is a target
group (typically, a set of scalars). Let us decipher the definition:

• Bilinearity means essentially the following:

e([a]P , [b]Q) = e([ab]P ,Q) = e(P , [ab]Q) = e(P ,Q)ab.

• Non-degeneracy means that e(G1, G2) ̸= 1 (where G1, G2 are generators of G1,G2,
respectively). This property basically says that the pairing is not trivial.

• Efficient computability means that the pairing can be computed in a reasonable time.
The definition is illustrated in Figure 8.

10We will mention what that is is later, but still this term is quite hard to define.

Page 56



Distributed Lab ZKDL Camp

Figure 8: Pairing illustration. It does not matter what we do first: (a) compute [a]P and [b]Q
and then compute e([a]P, [b]Q) or (b) first calculate e(P,Q) and then transform it to e(P,Q)ab.
Figure taken from “Pairings in R1CS” talk by Youssef El Housni

Example. Suppose G1 = G2 = GT = Zr are scalars. Then, the map e : G1 × G2 → GT ,
defined as:

e(x, y) = 2xy (75)

is pairing. Indeed, it is bilinear. For example, e(ax, by) = 2abxy = (2xy)ab = e(x, y)ab or
e(ax, by) = 2abxy = 2(x)(aby) = e(x, aby). Moreover, it is non-degenerate, since e(1, 1) =
2 ̸= 1. And finally, it is obviously efficiently computable.
However, this is a quite trivial example since working over integers is typically not secure.
For example, the discrete logarithm over Zr can be solved in subexponential time. For that
reason, we want to build pairings over elliptic curves.

Example. Pairing for BN254. For BN254 (with equation y 2 = x3+3), the pairing function
e : G1 ×G2 → GT is defined over the following groups:

• G1 — points on the regular curve E(Fp).
• G2 — r -torsion points on the twisted curve E ′(Fp2) over the field extension Fp2 (with

equation y 2 = x3 + 3
ξ

for ξ = 9 + u ∈ Fp2).
• GT — r th roots of unity Ωr ⊂ F×p12.

Well, this one is quite intense and even understanding the input and output parameters is
quite hard. So let us decipher some components:

• r -torsion subgroup on the curve E(Fpm) is simply a set of points, which multiplied by
r give the point at infinity (that is, [r ]P = O). Formally, E(Fpm)[r ] = {P ∈ E(Fpm) :
[r ]P = O}. Of course, for the curve E(Fp), the r -torsion subgroup is simply the whole
curve, but that is generally not the case for the twisted curve over the extension field.

• rth roots of unity is a set of elements Ωr = {z ∈ F×p12 : z
r = 1}. This is a group

under multiplication, and it has exactly r elements.

Page 57



Distributed Lab ZKDL Camp

Remark. One might a reasonable question: where does this 12 come from? The answer is
following: the so-called embedding degree of BN254 curve is k = 12. This number is the
key to understanding why we are working over such large extensions when calculating the
pairing. The formal description is quite hard, but the intuition is following: the embedding
degree is the smallest number k such that all the r th roots of unity lie inside the extended
field Fpk . If k was smaller, the output of pairing would contain less that r points and some
points would be missing, which would make the pairing more trivial. For that reason, we
need to have Ωr ⊂ Fpk .

Definition 4.9. The following conditions are equivalent definitions of an embedding degree
k of an elliptic curve E(Fp):

• k is the smallest positive integer such that r | (pk − 1).
• k is the smallest positive integer such that Fpk contains all of the r -th roots of unity

in Fp, that is Ωr ⊂ Fpk .
• k is the smallest positive integer such that E(Fp)[r ] ⊂ E(Fpk )

Pretty obvious observation: lower embedding degree is faster to work with, since it allows
us to work over smaller fields. But usually, this embedding degree is quite large and we need
to craft elliptic curves specifically to have a small embedding degree. For example, a pretty
famous curve secp256k1 has an embedding degree

k = 0x2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa74727a26728c1ab49ff8651778090ae0,

which is 254-bit long. For that reason, it is natural to define the term pairing-friendly elliptic
curve.

Definition 4.10. An elliptic curve is called pairing-friendly if it has a relatively small em-
bedding degree k (typically, k ≤ 16).

Remark. One might ask why usually, when dealing with pairings, we do not get to work with
field extensions that much (most likely, if you were to write groth16 from scratch using
some mathematical libraries, you will not need to work with Fp12 arithmetic specifically).
The reason is that typically, libraries implement the following abstraction: given a set of
points {(Pi , Qi)}ni=1 ⊂ Gn1 ×Gn2, the function checks whether

n∏
i=1

e(Pi , Qi) = 1 (76)

Note that in this case, we do not need to work with Fp12 arithmetic, but rather checking the
equality in the target group GT .
Interesting fact: this condition is specified in the ecpairing precompile standard used in
Ethereum.

4.3.2 Case Study: BLS Signature
One of the most elegant applications of pairings is the BLS Signature scheme. Compared

to ECDSA or other signature schemes, BLS can be formulated in three lines.

Page 58



Distributed Lab ZKDL Camp

Suppose we have pairing e : G1 × G2 → GT (with generators G1, G2, respectively), and a
hash function H, mapping message spaceM to G1.

Definition 4.11. BLS Signature Scheme consists of the following algorithms:

• Gen(1λ): Key generation. sk
R←− Zq, pk← [sk]G2 ∈ G2.

• Sign(sk, m). Signature is σ ← [sk]H(m) ∈ G1.
• Verify(pk, m, σ). Check whether e(H(m), pk) = e(σ,G2).

Let us check the correctness:

e(σ,G2) = e([sk]H(m), G2) = e(H(m), [sk]G2) = e(H(m), pk) (77)

As we see, the verification equation holds.

Remark. G1 and G2 might be switched: public keys might live instead in G1 while signatures
in G2.

This scheme is also quite famous for its aggregation properties, which we are not going to
consider today.

4.3.3 Case Study: Verifying Quadratic Equations

Example. Suppose Alice wants to convince Bob that he knows such α, β such that α+β = 2,
but she does not want to reveal α, β. She can do the following trick:

1. Alice computes P ← [α]G,Q← [β]G — points on the curve.
2. Alice sends (P,Q) to Bob.
3. Bob verifies whether P ⊕Q = [2]G.

It is easy to verify the correctness of the scheme: suppose Alice is honest and she sends the
correct values of α, β, satisfying α+β = 2. Then, P ⊕Q = [α]G⊕ [β]G = [α+β]G = [2]G.
Moreover, Bob cannot learn α, β since the computational discrete logarithm problem is hard.

Example. Well, now suppose I make the problem just a bit more complicated: Alice wants
to convince that she knows α, β such that αβ = 2. And it turns out that elliptic curve
points on their own are not enough to verify this. However, using pairings, we can do the
following trick: assume we have a pairing e : G1 ×G2 → GT , where G1 is generated by G1
and G2 is generated by G2. Then, Alice can do the following:

1. Alice computes P ← [α]G1 ∈ G1, Q← [β]G2 ∈ G2 — points on two curves.
2. Alice sends (P,Q) ∈ G1 ×G2 to Bob.
3. Bob checks whether: e(P,Q) = e(G1, G2)2.

Remark. The last verification can be also rewritten as e(P,Q)e(G1, G2)−2 = 1, which is
more frequently used in practice.

Page 59



Distributed Lab ZKDL Camp

Example. Finally, let us prove something more interesting. Like, based on (x1, x2), whether

x21 + x1x2 = x2 (78)

Alice can calculate P1 ← [x1]G1 ∈ G1, P2 ← [x1]G2 ∈ G2, Q ← [x2]G2 ∈ G2. Then, the
condition can be verified by checking whether

e(P1, P2 ⊕Q)e(G1,⊖Q) = 1 (79)

Let us see the correctness of this equation:

e(P1, P2 ⊕Q)e(G1,⊖Q) = e([x1]G1, [x1 + x2]G2)e(G1, [x2]G2)−1

= e(G1, G2)
x1(x1+x2)e(G1, G2)

−x2 = e(G1, G2)
x21+x1x2−x2 (80)

Now, if this is 1, then x21 + x1x2 = x2, which was exactly what we wanted to prove.

4.4 Exercises
Exercise 1. What is not a valid equivalence relation ∼ over a set X?

(A) a ∼ b iff a + b < 0, X = Q.
(B) a ∼ b iff a = b, X = R.
(C) a ∼ b iff a ≡ b (mod 5), X = Z.
(D) a ∼ b iff the length of a = the length of b, X = R2.
(E) (a1, a2, a3) ∼ (b1, b2, b3) iff a3 = b3, X = R3.
Exercise 2. Suppose that over R we define the following equivalence relation: a ∼ b iff

a − b ∈ Z (a, b ∈ R). What is the equivalence class of 1.4 (that is, [1.4]∼)?
(A) A set of all real numbers.
(B) A set of all integers.
(C) A set of reals x ∈ R with the fractional part of x equal to 0.4.
(D) A set of reals x ∈ R with the integer part of x equal to 1.
(E) A set of reals x ∈ R with the fractional part of x equal to 0.6.
Exercise 3. Which of the following pairs of points in homogeneous projective space P2(R)

are not equivalent?
(A) (1 : 2 : 3) and (2 : 4 : 6).
(B) (2 : 3 : 1) and (6 : 9 : 3).
(C) (5 : 5 : 5) and (2 : 2 : 2).
(D) (4 : 3 : 2) and (16 : 8 : 4).

Exercise 4. The main reason for using projective coordinates in elliptic curve cryptography
is:
(A) To reduce the number of point additions in algorithms involving elliptic curves.
(B) To make the curve more secure against attacks.
(C) To make the curve more efficient in terms of memory usage.
(D) To reduce the number of field multiplications when performing scalar multiplication.

Page 60



Distributed Lab ZKDL Camp

(E) To avoid making too many field inversions in complicated algorithms involving elliptic
curves.

Exercise 5. Suppose k = 19 is a scalar and we are calculating [k ]P using the double-and-add
algorithm. How many elliptic curve point addition operations will be performed?
(A) 0.
(B) 1.
(C) 2.
(D) 3.
(E) 4.
Exercise 6. What is the minimal number of inversions needed to calculate the value of

expression (over Fp)
a − b
(a + b)4

+
c

a + b
+

d

a2 + c2
,

for the given scalars a, b, c, d ∈ Fp?
(A) 1.
(B) 2.
(C) 3.
(D) 4.
(E) 5.
Exercise 7. Given pairing e : G1 × G2 → GT with G1 — generator of G1 and G2 ∈ G2 —

generator of G2, which of the following is not equal to e([3]G1, [5]G2)?
(A) e([5]G1, [3]G2).
(B) e([4]G1, [4]G2).
(C) e([15]G1, G2).
(D) e([3]G1, G2)e(G1, [12]G2).
(E) e(G1, G2)15.
Exercise 8*. Unit Circle Proof. Suppose Alice wants to convince Bob that she knows a point

on the unit circle x2 + y 2 = 1. Suppose we are given a symmetric pairing e : G1 × G2 → GT
for G1 = G2 = ⟨G⟩ and Alice computes P ← [x ]G,Q ← [y ]G. She then proceeds to sending
(P,Q) to Bob. Which of the following checks should Bob perform to verify that Alice indeed
knows a point on the unit circle?
(A) Check if e(P,Q)e(Q,P ) = 1.
(B) Check if e([2]P, [2]Q) = e(G,G).
(C) Check if e([2]P,Q)e(Q, [2]P ) = 1.
(D) Check if e(P, P ) + e(Q,Q) = 1.
(E) Check if e(P, P )e(Q,Q) = e(G,G).

Page 61


