
Distributed Lab ZKDL Camp

5 Commitment Schemes
5.1 Commitments
Definition 5.1. A cryptographic commitment scheme allows one party to commit to a chosen
statement (such as a value, vector, or polynomial) without revealing the statement itself.
The commitment can be revealed in full or in part at a later time, ensuring the integrity and
secrecy of the original statement until the moment of disclosure.

Before delving into the details, here is the intuition of cryptographic commitments.
Imagine putting a letter with some message into a box and locking it with your key. You

then give that box to your friend, who cannot open it without the key. In this scenario, you
have made a commitment to the message inside the box. You cannot change the content of
the letter, as it is in your friend’s possession. At the same time, your friend cannot access the
letter since they do not have the key to unlock the box.

Figure 9: Commitment scheme

Definition 5.2 (Commitment Scheme). Commitment Scheme Πcommitment is a tuple of three
algorithms: Πcommitment = (Setup,Commit,Verify).

1. Setup(1λ): returns public parameter pp for both comitter and verifier;
2. Commit(pp, m): returns a commitment c to the message m using public parameters

pp and, optionally, a secret opening hint r ;
3. Open(pp, c,m, r): verifies the opening of the commitment c to the message m with

an opening hint r .

Page 62



Distributed Lab ZKDL Camp

Definition 5.3 (Commitment Scheme). Properties of commitment schemes:
1. Hiding: verifier should not learn any information about the message given only the

commitment c . To put it formally, we define a game:
(a) Adversary chooses two messages m1, m2 and sends to the challenger.
(b) Challenger chooses a random bit b, commits to both messages:

c1 ← Commit(pp,m1), c2 ← Commit(pp,m2), and sends cb to the adversary.
(c) Adversary guesses a bit b̂.

We define the hiding advantage of a PPT adversary A as

HideAdv[A,Πcommitment] :=

∣∣∣∣Pr[b = b̂]−
1

2

∣∣∣∣ (81)

We say that the commitment scheme Πcommitment is hiding if for any adversary, the
aforementioned advantage is negligible.

2. Binding: prover could not find another message m1 and open the commitment c
without revealing the commited message m. To put it formally, we define a game:
(a) Adversary chooses five values: commitment c and two distinct pairs (m0, r0) and
(m1, r1).

(b) Adversary computes bj ← Open(pp, c,mj , rj).
Define the advantage in the binding game as:

BindAdv[A,Πcommitment] = Pr[b0 = b1 ̸= 0 ∧m0 ̸= m1] (82)

We say that the commitment scheme is binding if for any adversary, such advantage
is negligible.

5.1.1 Hash-based commitments
As the name implies, we are using a cryptographic hash function H in such scheme.
1. Prover selects a message m from a message space M which he wants to commit to:
m ←M

2. Prover samples random value r (usually called blinding factor) from a challange space
C ⊂ Z: r R←− C

3. Both values will be concatenated and hashed with the hash function H to produce the
commitment: c = H(m ∥ r)

Commitment should be shared with a verifier. During the opening stage, prover reveals (m, r)
to the Verifier. To check the commitment, verifier computes: c1 = H(m ∥ r).

If c1 = c , prover has revealed the correct pair (m, r).
It should be noted that a cryptographic hash function aims to provide collision resistance,

meaning that the probability two different messages will result in one output is negligible.
Because the Verifier knows the hash function digest c before the Prover reveals m and r ,
the Prover would need to find a collision H(m′ ∥ r ′) = H(m ∥ r) to be able to convince the
Verifier that m′ value was committed.

However, due to the collision resistance, finding such m′ and r ′ is computationally infeasible.

Page 63



Distributed Lab ZKDL Camp

Which means the Prover won’t be able to convince the Verifier that the commitment was done
to another value providing a binding property.

A cryptographically secure hash function is a one-way function, which means that finding the
hash preimage is almost as hard as bruteforcing all possibile input values. Given large challenge
space, the probability of the Verifier of finding (m, r) such that H(m, r) = c is negligible, which
ensures hiding property of the commitment scheme.

5.1.2 Pedersen commitments
Pedersen commitments allow us to represent arbitrarily large vectors with a single elliptic

curve point, while optionally hiding any information about the vector. Pedersen commitment
uses a public group G of order q and two random public generators G and U: U = [u]G. Secret
parameter u should be unknown to anyone, otherwise the Binding property of the commitment
scheme will be violated. EC point U is chosen randomly using “Nothing-up-my-sleeve“ to assure
no one knows the discrete logarithm of a selected point.

Remark. Transparent random points generation
User can pick the publicly chosen random number (like a hash of project name, first numbers
of π, etc), and hash that result to obtain another value. If that results in an x value that lies
on the elliptic curve, use that as the random point and hash the (x, y) pair again (to obtain
the next one, it needed). Otherwise, if the x-value does not land on the curve, increment
x until it does. Because the committer is not generating the points, they don‘t know their
discrete log.

Pedersen commitment scheme algorithm:
1. Prover and Verifier agrees on G and U points in a elliptic curve point group G, q is the

order of the group.

2. Prover selects a value m to commit and a blinder factor r : m ← Zq, r
R←− Zq

3. Prover generates a commitment and sends it to the Verifier: c ← [m]G + [r ]U
During the opening stage, prover reveals (m, r) to the verifier. To check the commitment,

verifier computes: c1 = [m]G + [r ]U.
If c1 = c , prover has revealed the correct pair (m, r).

Remark. In case the discrete logarithm of U is leaked, the binding property can be violated
by the Prover :

c = [m]G + [r ]U = [m]G + [r · u]G = [m + r · u]G

For example, (m + u, r − 1) will have the same commitment value:

[m + u + (r − 1) · u]G = [m + u − u + r · u]G = [m + r · u]G

Commitment aggregation
Pedersen commitment have some advantages compared to hash-based commitments. Ad-

ditively homomorphic property allows to accumulate multiple commitments into one. Consider
two pairs: (m1, r1), (m2, r2).

c2 = [m1]G + [r1]U,

Page 64



Distributed Lab ZKDL Camp

c2 = [m2]G + [r2]U,
ca = c1 + c2 = [m1 +m2]G + [r1 + r2]U

This works for any number of commitments, so we can encode as many points as we like
in a single one. For example, if a set of balances is committed, the sum of any subset can be
proven without revealing the exact value of each balance. This is achieved by disclosing the
sum of the balances and the corresponding sum of the blinding factors.

5.1.3 Vector commitments
Vector commitment schemes allows to commit to a vector of values rather than a value and

a blinding term.

Pedersen Vector Commitments
Suppose we have a set of random elliptic curve points (G1, . . . , Gn) of cyclic group G (that

we do not know the discrete logarithm of), a vector (m1, m2 . . . mn) and a random value r . We
can do the following:

c = [m1]G1 + [m2]G2 . . .+ [mn]Gn + [r ]Q

Since the Prover does not know the discrete logarithm of the generators, they don‘t know
the discrete logarithm of [C]. Hence, this scheme is binding: they can only reveal (v1, . . . , vn)
to produce [C] later, they cannot produce another vector.

Prover can later open the commitment by revealing the vector (m1, m2 . . . mn) and a blinding
term r .

Merkle Tree based Vector Commitments
A naive approach for a vector commitment would be hash the whole vector. More so-

phisticated scheme uses divide-and-conquer approach by building a binary tree out of vector
elements.

Figure 10: Merkle Tree structure

Page 65



Distributed Lab ZKDL Camp

A Merkle Tree is a data structure to efficiently and securely verify the commiments to a
vector of data. It is a binary tree where each leaf node represents a hash of a data block, and
each non-leaf node is a hash of its child nodes’ concatenated hashes. The top node, called the
root hash or Merkle root, uniquely represents the entire data set. By comparing this root with
a known valid root, one can quickly verify the authenticity and integrity of the data without
needing to examine the entire dataset.

To prove the inclusion of element into the tree, a corresponding Merkle Branch is used. On
the example below, M1 inclusion is proved, and (M2, H(M3 ∥ M4), H(H(M5 ∥ M6) ∥ H(M7 ∥
M8))) is an inclusion branch vector.

Figure 11: Merkle Tree inclusion proof branch

One of Merkle tree key advantages is that it allows for the selective disclosure of specific
elements within the data set without revealing the rest.

5.1.4 Polynomial commitment
Polynomial commitment can be used to prove that the commited polynomial satisfies certain

properties P (x1, x2, . . . , xn) = y , without revealing what the polynomial is. The commitment is
generally succint, which means that it is much smaller than the polynomial it represents.

The KZG polynomial commitment scheme

The KZG (Kate-Zaverucha-Goldberg) is a polynomial commitment scheme:
1. One-time “Powers-of-tau“ trusted setup stage. During trusted setup a set of elliptic curve

points is generated. Let G be a generator point of some pairing-friendly elliptic curve group
G, s some random value in the order of the G point and d be the maximum degree of the
polynomials we want to commit to. Public parameters of a trusted setup are calculated
as:

[τ0]G, [τ1]G, . . . , [τd ]G

Page 66



Distributed Lab ZKDL Camp

Parameter τ should be deleted after the ceremony. If it is revealed, the binding property
of the commitment scheme can be broken. This parameter is usually called the toxic
waste.

2. Commit to polynomial. Given the polynomial p(x) =
∑d
i=0 pix

i , compute the com-
mitment c = [p(τ)]G using the trusted setup. Although the committer cannot com-
pute p(τ) directly since the value of τ is unknown, he can compute it using values
([τ0]G, [τ1]G, . . . , [τd ]G):

[p(τ)]G = [
∑d
i=0 piτ

i ]G =
∑d
i=0 pi [τ

i ]G

3. Prove an evaluation. To prove that at some point x0 polynomial equals y0 (p(x0) = y0),
compute polynomial

q(x) = p(x)−y0
x−x0 .

Polynomial q(x) is called “quotient polynomial“ and only exists if and only if p(x0) = y0:
(a) If p(x0) = y0, we define r(x) := p(x)− y0;
(b) r(x) has x0 as a root, as r(x0) = 0 by the definition. That is why there exists q(x),

such that r(x) = q(x) · (x − x0);
(c) Hence, the expression q(x) = p(x)−y0

x−x0 is a polynomial.
The existance of this quotient polynomial serves as a proof of the evaluation. Prover
calculates proof π = [q(τ)]G and sends it to the Verifier.

4. Verify the proof. Given a commitment c = [p(τ)]G, an evaluation p(x0) = y0 and a proof
[q(τ)]G, we need to ensure that q(τ) · (τ − x0) = p(τ) − y0. This can be done using
trusted setup without knowledge of τ using bilinear mapping:

e([q(τ)]G1, [τ ]G2 − [x ′]G2) = e([p(τ)]G1 − [y ]G1, G2)

Polynomial commiment schemes such as KZG are used in zero knowledge proof system
to encode circuit constraints as a polynomial, so that verifier could check random points
to ensure that the constraints are met.

5.2 Exercises
Exercise 1. Dmytro and Denis were watching a horse race. Confident in his ability to predict

the outcome, Dmytro decided to commit to his prediction. However, in his haste, he forgot
to use a blinding factor. Now, Dmytro is concerned that Denis might discover his prediction
before the race ends, which would defeat the purpose of his commitment.

We define a dummy hash function H(a) = (a ·13+17) (mod 41). Dmytro used a hash-based
commitment and H as a hash function. Set of race horse numbers is (3, 5, 8, 15). Help Denis to
find out the horse number Dmytro have made a commitment to, if commitment equals C = 39.
(A) 3.
(B) 5.
(C) 8.
(D) 15.

Exercise 2. Denis made a setup (points G and U) for a Pedersen commitment scheme and
commited values (m, r) = (3, 7) to Dmytro by sending him C = [3]G + [7]U. Dmytro did not

Page 67



Distributed Lab ZKDL Camp

verify the setup. Turns out that Denis knows that U = [6]G. Denis is planning to send a
different message from the one he originally committed to to m2 = 15. Which values (m2, r2)
should he send to Dmytro at the opening stage?
(A) (15, 5)
(B) (15, 7)
(C) (15, 4)
(D) (3, 5)

Exercise 3. We define a dummy hash function H(a, b) = (a · 3+ b · 7) (mod 41). You have
a Merkle tree built with depth 4 using hash function H with root equal 37. Which inclusion
proof is valid for element 3? Position defines how leaves should be hashed:

- if lef t → hi = Hash(hi−1, branch[i ])

- if r ight → hi = Hash(branch[i ], hi−1)

(A) branch: [4, 16, 13], position: [lef t, r ight, lef t]
(B) branch: [1, 40, 3], position: [lef t, lef t, lef t]
(C) branch: [5, 12, 13], position: [r ight, r ight, lef t]
(D) branch: [4, 17, 13], position: [lef t, r ight, lef t]

Exercise 4. Given a polynomial p(x) = x3 − 10x2 + 31x − 30, Oleksandr wants to prove
that p(2) = 0. To do that, according to the KZG commitment scheme, he constructs the
quotient polynomial q(x) and wants to show that q(τ) · (τ − 2) = p(τ). Assuming Oleksandr
has conducted these steps correctly, what value of q(x) has Oleksandr calculated?
(A) q(x) = 2x2 + 4x − 6
(B) q(x) = x3 − 10x2 + 30x − 28
(C) q(x) = x2 − 8x + 15
(D) q(x) = x2 + 5x + 18

Page 68


