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6 Introduction to Zero-Knowledge Proofs
6.1 Motivation

Finally, we came to the most interesting part of the course: zero-knowledge proofs. Before
we start with SNARKs, STARKs, Bulletproofs, and other zero-knowledge proof systems, let
us first define what the zero-knowledge is. But even before that, we need to introduce some
formalities. For example, what are “proof”, “witness”, and “statement” — terms that are so
widely used in zero-knowledge proofs.

Let us describe the typical setup. We have two parties: prover P and a verifier V. The
prover wants to convince the verifier that some statement is true. Typically, the statement is
not obvious (well, that is the reason for building proofs after all!) and therefore there might
be some “helper” data, called witness, that helps the prover to prove the statement. The
reasonable question is whether the prover can simply send witness to verifier and call it a day.
Of course since you are here, reading this lecture, it is obvious that the answer is no. More
specifically, by introducing zk-SNARKs, STARKs, and other proving systems, we will try to
mitigate the following issues:

• Zero-knowledge: The prover wants to convince the verifier that the statement is true
without revealing the witness.

• Argument of knowledge: Moreover, typically we want to make sure that the verifier,
besides the statement correctness, ensures that the prover knows such a witness related
to the statement.

• Succinctness: The proof should be short, ideally logarithmic in the size of the statement.
This is crucial for practical applications, especially in the blockchain space where we cannot
allow to publish long proofs on-chain. Moreover, verification should be efficient as well.

Example. Suppose, given a hash functiona H : {0, 1}∗ → {0, 1}ℓ, the prover P wants to
convince the verifier V that he knows the preimage x ∈ {0, 1}∗ such that H(x) = y for some
given public value y ∈ {0, 1}ℓ. The properties listed above are interpreted as follows:

• Zero-knowledge: The prover P does not want to reveal anything about the pre-image
x to the verifier V.

• Argument of knowledge: Given a string y ∈ {0, 1}ℓ it is not sufficient for a prover
to merely state that y has a pre-image. The prover P must demonstrate to a verifier
V that he knows such a pre-image x ∈ {0, 1}∗.

• Succinctness: If the hash function takes n operations to computeb, the proof should
be much shorter than n operations. State-of-art solutions can provide proofs that are
O((log n)c) (polylogarithmic) is size! Moreover, verification time of such proof is also
typically polylogarithmic (or even O(1) in some cases).

aThe notation {0, 1}∗ means binary strings of arbitrary length
bNote that “number of operations” is very vague term. One way to measure the “size” of some computa-

tional problem is specifying the number of gates in the arithmetical circuit C(x, w), representing the computation
of this problem (denoted as |C|, respectively).

Page 69



Distributed Lab ZKDL Camp

6.2 Relations and Languages
Recall that relation R is just a subset of X × Y for two arbitrary sets X and Y. Now, we

are going to introduce the notion of a language of true statements based on R.

Definition 6.1 (Language of true statements). Let R ⊆ X ×Y be a relation. We say that a
statement x ∈ X is a true statement if (x, y) ∈ R for some y ∈ Y, otherwise the statement
is called false. We define by LR (the language over relationR) the set of all true statements,
that is:

LR = {x ∈ X : ∃y ∈ Y such that (x, y) ∈ R}.

Now, what is the purpose of introducing relations and languages? The idea is that relation
is a natural way to formalize the notion of a statement and witness. Namely, we denote the
elements of X as statements and the elements of Y as witnesses.

Further, we denote by w the witness for the statement x ∈ LR. Oftentimes, one might also
encounter notation φ to denote the statement, but we will stick to x for simplicity.

Example. Suppose we want to prove the following claim: number n ∈ N is the product of
two large prime numbers (p, q) ∈ N× N. Here, the relation is the following:

R = {(n, p, q) ∈ N3 : n = p · q where p, q are primes}

In this particular case, the language of true statements is defined as

LR = {n ∈ N : ∃p, q are primes such that n = pq}

Therefore, our initial claim we want to prove is n ∈ LR. The witness for this statement is
the pair (p, q), where p and q are prime numbers such that n = p · q and typically (but not
always) we want to prove this without revealing our witness: p and q. For example, one
valid witness for n = 15 is (3, 5), while n = 16 does not have any valid witness, so 16 ̸∈ LR.

Example. Another example of claim we want to prove is the following: number x ∈ Z×Na

is a quadratic residue modulo N, meaning there exists some w ∈ Z×N such that x ≡ w 2

(mod N) (naturally, w is called a square root of x). The relation in this case is:

R = {(x, w) ∈ (Z×N)
2 : x ≡ w 2 (mod N)}

In this case, LR = {x ∈ Z×N : ∃w ∈ Z
×
N such that x ≡ w 2 (mod N)}. Here, our square root

of x modulo N, that is w , is the witness for the statement x ∈ LR. For example, for N = 7
we have 4 ∈ LR since 5 is a valid witness: 52 ≡ 4 (mod 7), while 3 ̸∈ LR since there is no
valid witness for 3.

aBy Z×N we denote the multiplicative group of integers modulo N. In other words, this is a set of integers
{x ∈ ZN : gcd{x, N} = 1}.

However, we want to limit ourselves to languages that has reasonably efficient verifier (since
otherwise the problem is not really practical and therefore of little interest to us). For that
reason, we define the notion of a NP Language and from now on, we will be working with such
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languages.

Definition 6.2 (NP Language). A language LR belongs to the NP class if there exists a
polynomial-time verifier V such that the following two properties hold:

• Completeness: If x ∈ LR, then there is a witness w such that V(x, w) = 1 with
|w | = poly(|x |). Essentially, it states that true claims have shorta proofs.

• Soundness: If x ̸∈ LR, then for any w it holds that V(x, w) = 0. Essentially, it states
that false claims have no proofs.

a“Short” is a pretty relative term which would further differ based on the context. Here, we assume that
the proof is “short” if it can be computed in polynomial time. However, in practice, we will want to make the
proofs even shorter: see SNARKs and STARKs.

However, this construction on its own is not helpful to us. In particular, without having any
randomness and no interaction, building practical proving systems is very hard. Therefore, we
need some more ingredients to make proving NP statements easier.

6.3 Interactive Probabilistic Proofs
As mentioned above, we will bring two more ingredients to the table: randomness and

interaction:
• Interaction: rather than simply passively receiving the proof, the verifier V can interact

with the prover P by sending challenges and receiving responses.
• Randomness: verifier can send random coins (challenges) to the prover, which the prover

can use to generate responses.

Remark. For those who have already worked with SNARKs, the above introduction might
seem very confusing. After all, what we are aiming for is to build non-interactive zero-
knowledge proofs. However, as it turns out, there are a plenty of ways to make some
interactive proofs non-interactive. We will discuss this in more detail later.

Now, one of the drastic changes is the following: if x ̸∈ LR, then the verifier V should reject
the claim with overwhelming11 probability (in contrast to strict probability of 1). Let us consider
the concrete example.

6.3.1 Example: Quadratic Residue Test
Again, suppose for relation R = {(x, w) ∈ (Z×N)2 : x ≡ w 2 (mod N)} and corresponding

language LR = {x ∈ Z×N : ∃w ∈ Z
×
N such that x ≡ w 2 (mod N)} the prover P wants to

convince the verifier that the given x is in language LR. Again, sending w is not an option, as
we want to avoid revealing the witness. So how can we proceed? The idea is that the prover
P should prove that he could prove it if he felt like it.

So here how it goes. The prover P can first sample a random r
R←− Z×N, calculate a ← r 2

(mod N) and say to the verifier V:
• Hey, I could give you the square roots of both a and ax (mod N) and that would convince

11Some technicality: as you know from the Lecture 2, the value ε = negl(λ) is called negligible since it is very
close to 0. In turn, the value 1− ε is called overwhelming since it is close to 1.
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Prover P Verifier V

r
R←− Z×N

a← r 2 (mod N)

Send a

I am choosing a bit!
b
R←− {0, 1}

Send b

If b = 0, send z ← r

If b = 1, send z ← w × r (mod N)

Send z

Verify z2 ≡ a × xb (mod N)

Figure 12: The interactive protocol between prover P and verifier V for the quadratic residue
test.

you that the statement is true! But in this case, you would know w 12.
• So instead of providing both values simultaneously, you will choose which one you want

to see: either r or r × w (mod N). This way, after a couple of such rounds, you will not
learn w but you will be convinced that I know it.

That being said, formally the interaction between prover P and verifier V can be described
as follows:

1. P samples r R←− Z×N and sends a← r 2 (mod N) to V.

2. V sends a random bit b R←− {0, 1} to P.
3. If b = 0, the prover sends z ← r , otherwise, if b = 1, he sends z ← rw (mod N).
4. The verifier checks whether z2 ≡ a × xb (mod N).
5. Repeat the process for λ ∈ N rounds.
Now, let us show that the provided protocol is indeed complete and sound.

12If verifier gets both r and rw (mod N), he can divide the latter by former and get w
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Completeness. Suppose the verifier chose b = 0 and thus the prover has sent z = r . The
check would be r 2 ≡ a × x0 (mod N) which is equivalent to r 2 ≡ a (mod N). This obviously
holds.

If, in turn, the verifier chose b = 1 and the prover sent rw , the check would be (rw)2 ≡ ax1−0
(mod N) which is equivalent to r 2w 2 ≡ ax (mod N). Since a = r 2 (mod N) and x = w 2

(mod N), this check also obviously holds.
Soundness. Here, we need to prove that for any dishonest prover who does not know w , the

verifier will reject the claim with overwhelming probability. One can show the following, which
we are not going to prove (yet, this is quite easy to show):

Proposition 6.3. If x ̸∈ LR, then for any prover P, the verifier V will reject the claim with
probability at least 1/2.

By making λ rounds, the probability of rejection is
(
1
2

)λ
= negl(λ) and therefore the verifier

can be convinced that x ∈ LR with overwhelming probability of 1− 2−λ.
To denote the interaction between algorithms P and V on the statement x , we use notation

⟨P,V⟩(x). Finally, now we are ready to define the notion of an interactive proof system.

Definition 6.4. A pair of algorithms (P,V) is called an interactive proof for a language LR
if V is a polynomial-time verifier and the following two properties hold:

• Completeness: For any x ∈ LR, Pr[⟨P,V⟩(x) = accept] = 1.
• Soundness: For any x ̸∈ LR and for any prover P∗, we have

Pr[⟨P∗,V⟩(x) = accept] ≤ negl(λ)

Definition 6.5. Besides classes P and NP, we now have one more class: the class of
interactive proofs (IP):

IP = {L : there is an interactive proof (P,V) for L}.

6.4 Zero-Knowledge
Turns out that defining the zero-knowledge to even such a simplistic interactive proof system

is not that easy. Informally, we give the following definition.

Definition 6.6. An interactive proof system (P,V) is called zero-knowledge if for any
polynomial-time verifier V∗ and any x ∈ LR, the interaction ⟨P,V∗⟩(x) gives nothing new
about the witness w .

Definition 6.7. The pair of algorithms (P,V) is called a zero-knowledge interactive pro-
tocol if it is complete, sound, and zero-knowledge.

Basically, the specified interaction is a proof! The prover P can convince the verifier V that
the statement is true without revealing the witness – that is what we need (quite of).
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Remark. The above definition is very informal and, for the most part, complete for the
purposes of this course. If you do not want to dive into the formalities, you can skip the
next part of this section. However, if you are curious about some technicalities, feel free to
continue reading.

6.4.1 The Verifier’s View
Suppose that the interaction between V and P has ended with the successful verification.

What has V learned? Well, first things first, he has learned that the statement is true, that is
x ∈ LR. However, he has also learned something more: he has learned the transcript of the
interaction, that is the sequence of messages between P and V.

Definition 6.8. Interaction between P and V consists of prover’s messages (e.g., commit-
ments and responses) (m1, m2, . . . , mℓ), verifier’s queries (q1, q2, . . . , qℓ), and V’s random
coins (r1, r2, . . . , rℓ). The view of the verifier V, denoted as viewV(P,V)[x ], is a random vari-
able (m1, r1, q1, m2, r2, q2, . . . , mℓ, rℓ, qℓ) that is determined by the random coins of V and
the messages of P after the interaction with the statement x . See Figure below.

Prover P Verifier V

Send m1

Toss coin r1 and send query q1

Send m2

Toss coin r2 and send query q2

Send mℓ

Toss coin rℓ and send query qℓ

Figure 13: The interactive protocol between prover P and verifier V. Prover’s messages consist
of messages {mk}ℓk=1, verifier’s messages consist of queries {qk}ℓk=1, and additionally verifier
samples random coins {rk}ℓk=1.
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Example. Suppose that for the aforementioned protocol with N = 3× 230 + 1, the conver-
sation between the prover P, who wants to convince that 1286091780 ∈ LR, and V is the
following:

1. During the first round, P sends 672192003 to V.
2. V sends b = 0 to P.
3. P sends 2606437826 to V.
4. V verifies that indeed 26064378262 ≡ 672192003 (mod N).
5. During the second round, P sends 2619047580 to V.
6. V chooses b = 1 and sends to P.
7. P sends 1768388249 to V.
8. V verifies that indeed 17683882492 ≡ 2619047580× 1286091780 (mod N).
9. Conversation ends.

The view of the verifier V is the following:

viewV(V,P)[1286091780] = (672192003, 0, 2606437826, 2619047580, 1, 1768388249)

Essentially, the view that you currently has witnessed is the same as one that V has seen.
After this interaction, you have not learned anything about the witness w that prover P
knows and which we, as of now, has not revealed to you.
In fact, you can verify by yourself, that the witness was w = 3042517305 and two random-
nesses were r1 = 2606437826 and r2 = 3023142760.
One final note that is essential for the further discussion: variable viewV(P,V)[x ] is a random
variable. For example, for our particular case, both bits could be 0 or both bits could be 1.

6.4.2 The Simulation Paradigm
The key idea is the following: viewV(V,P)[x ] gives nothing new to the verifier V about

the witness w . But it gives nothing new, if he could have simulated this view on his own,
without even running the interaction. In other words, the “simulated” and “real” views should
be computationally-indistinguishable. But let us define the computational indistinguishability
first.
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Definition 6.9 (Computational Indistinguishability). Given two random distributions D0 and
D1, define the following challenger-adversary game:

1. The challenger randomly samples x0
R←− D0, x1

R←− D1 and a bit b R←− {0, 1}.
2. The challenger sends (x0, x1, b) to the adversary.
3. The adversary A outputs a bit b̂.

We define the advantage of the adversary A in distinguishing D0 and D1 as

Indadv[A, D0, D1] =
∣∣∣∣Pr[b = b̂]−

1

2

∣∣∣∣
Distributions D0 and D1 are called computationally indistinguishable, denoted as D0 ≈ D1,
if for any polynomial-time adversary A and polynomial number of rounds in the game, the
advantage Indadv[A, D0, D1] is negligible.

Finally, we are ready to define the zero-knowledge.

Definition 6.10 (Zero-Knowledge). An interactive protocol (P,V) is zero-knowledge for a
language LR if for every poly-time verifier V∗ there exists a poly-time simulator Sim such
that for any valid statement x ∈ LR:

viewV∗(P,V∗)[x ] ≈ Sim(x)

6.5 Proof of Knowledge
Now, the main issue with the above definition is that we have proven the statement correct-

ness, but we have not proven that the prover knows the witness. These are completely two
different things. Let us demonstrate why.

Example. Suppose that the prover P wants to convince the verifier that he knows the
discrete logarithm of a given point P ∈ E(Fp) on a cyclic elliptic curve E(Fp) of order r .
This corresponds to the relation and the corresponding language:

R = {(P,α) ∈ E(Fp)× Zr : P = [α]G},
LR = {P ∈ E(Fp) : ∃α ∈ Zr such that P = [α]G}

But here is the catch: actually, LR = E(Fp) since any point P has a witness α such that
P = [α]G (recall that the curve is cyclic)! So proving that P ∈ LR is completely useless!
Rather, we want to prove that the prover knows α, not the fact that the point has a discrete
logarithm.

That is why instead of proof, we need a proof of knowledge. This leads to even another
weird paradigm used for the rigorous definition: the extractor. Basically, the knowledge of
witness means that we can extract the witness while interacting with the prover. Yet, the
extractor can do more than the verifier: he can call the prover however he wants and he can
also rewind the prover (for example, run some pieces multiple times). This sometimes is referred
to as “extractor E uses P as an oracle”.
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Now, let us move to the formal definition.

Definition 6.11 (Proof of Knowledge). The interactive protocol (P,V) is a proof of knowl-
edge for LR if exists a poly-time extractor algorithm E such that for any valid statement
x ∈ LR, in expected poly-time EP(x) outputs w such that (x, w) ∈ R.

Lemma 6.12. The protocol from Section 6.3.1 is a proof of knowledge for the language LR.

Proof. Let us define the extractor E for the statement x as follows:
1. Run the prover to receive a ≡ r 2 (mod N) (r is chosen randomly from Z∗N).
2. Set verifier’s message to b = 0 to get z1 ← r .
3. Rewind and set verifier’s message to b = 1 to get z2 ← rw (mod N).
4. Output z2/z1 (mod N)
The extractor E will always output w if x ∈ LR. □

Remark. Note that extractor is given much more than the verifier: he can call the prover
multiple times and he can also rewind the prover. This is the main difference between the
verifier and the extractor.

6.6 Fiat-Shamir Heuristic
6.6.1 Random Oracle

In cryptography, one frequently encounters the term cryptographic oracle. In this section,
we are not going to dive into the technical details of what that is, yet it is useful to have a
general understanding of what it is.

Definition 6.13 (Cryptographic Oracle). Informally, cryptographic oracle is simply a function
O that gives in O(1) an answer to some typically very hard problem.

Example. Consider the Computational Diffie-Hellman (CDH) problem on the cyclic elliptic
curve E(Fp) of prime order r with a generator G. Recall that such problem consists in
computing [αβ]G given [α]G and [β]G where α, β ∈ Zr .
Typically, it is believed that the Diffie-Hellman problem is hard (meaning, for any adversary
strategy the probability of solving the problem is negligible). However, we could assume that
such problem can be solved in O(1) by a cryptographic oracle OCDH : ([α]G, [β]G) 7→ [αβ]G.
This way, we can rigorously prove the security of some cryptographic protocols even if the
Diffie-Hellman problem is suddenly solved.

One of the most popular cryptographic oracles is the random oracle OR. Let us define how
the random oracle works.

Suppose someone is inputting x to the random oracle OR. The oracle OR does the following:
1. If x has been queried before, the oracle returns the same value as it returned before.
2. If x has not been queried before, the oracle returns a randomly uniformly sampled value

from the output space.
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Remark. Of course, the sudden appearance of the random oracle is not a magic trick. In
practice, the random oracle is typically implemented as a hash function. Of course, formally,
the hash function is not a random oracle, yet it is a very good approximation and it is
reasonable to assume that the hash function behaves like a random oracle.

6.6.2 Fiat-Shamir Transformation
Now, the main issue with the interactive proofs is that they are. . .Well, interactive. Ideally, we

simply want to accumulate a proof π, publish it (say, in blockchain) so that anyone (essentially,
being the verifier) could check its validity. So we need some tools to make some interactive
protocols non-interactive. This is, of course, not always possible, but there are some ways to
achieve this.

While different protocols use different ways to achieve this, one of the most popular methods
(which, in particular, is used in STARKs) is the Fiat-Shamir heuristic. The idea is the following:
instead of verifier sending the challenges, we can replace them with the random oracle applied
to all the previous messages.

Here how it goes. Suppose we have an interactive protocol (P,V) for the statement
x . As previously defined, the interaction between P and V consists of prover’s messages
(m1, m2, . . . , mℓ), verifier’s queries (q1, q2, . . . , qℓ), and verifier’s random coins (r1, r2, . . . , rℓ).
In case all the queries are public random coins, such interactive protocol is called public-coin
protocol (or, more formally, Arthur-Merlin protocol). However, as it turns out, when all the
verifier’s queries are simply uniformly sampled random values, it is an overkill to use the interac-
tive protocol. Instead, suppose at some point the verifier got messages m1, m2, . . . , mℓ′ (ℓ′ ≤ ℓ)
from the prover. Then, instead of verifier sampling some random value rℓ′, we can simply use
the random oracle OR as follows: rℓ′ ← OR(x,m1, m2, . . . , mℓ′). Practically, instead of random
oracle OR we use the hash function H, and use: rℓ′ ← H(x ∥ m1 ∥ m2 ∥ · · · ∥ mℓ′).

Remark. Sometimes, to simulate the “interaction” with the verifier, one uses the “Fiat-
Shamir Channel”. Its main purpose is to simulate the verifier’s queries and random coins.
For example, one might implement it as a class/struct with the following methods:

1. send_message(m): “sends” the message m to the verifier. Under the hood, the proof
stream accumulates the current state s and appends m to it.

2. sample(): returns the challenge r from the random oracle OR, applied to the current
state s.

3. get_proof(): returns the proof π, being the history of interaction, that the prover
can publish.

One can check the winterfell Rust library or a simpler non-production implementation of
the Fiat-Shamir Channel in Golang for more details.
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Prover P
Proof Stream

(with random oracle OR) Verifier V

“Send” m1

r1 ← OR(x,m1)

“Send” m2

r2 ← OR(x,m1, m2)

“Send” mℓ

rℓ ← OR(x,m1, . . . , mℓ)

Send π = (m1, r1, m2, r2, . . . , mℓ, rℓ)

Verify π

Figure 14: The non-interactive protocol between prover P and verifier V using Fiat-Shamir
Transformation. In blue we marked a non-interactive part of the protocol, being the “commu-
nication” between a prover and a proof stream. In green we marked the final proof π that is
sent to the verifier.

The process is illustrated in Figure 14. The Fiat-Shamir looks as follows:
1. First, the prover P “sends” the first message m1 to the verifier V. Here, “sending” is not

an actual sending, but rather its simulation.
2. If we had an interactive protocol, the verifier V would send the random challenge r1 to

the prover P. Instead, we use the random oracle OR to get r1 ← OR(x,m1).
3. Then, using this challenge, prover does his part in the protocol, and sends the next message
m2.

4. Again, if we had an interactive protocol, the verifier would send the next challenge r2 to
the prover. Instead, we use the random oracle OR to get r2 ← OR(x,m1, m2), which gets
“sent” to the prover.

5. The process continues until the protocol is finished.
Note that the whole process can be done by a prover with no interaction with the “verifier”. In

this case, one of the ways to represent the proof π is to publish the transcript of the interaction
(that is, all the messages sent by the prover and challenges computed using the random oracle).
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This is exactly what is done in STARKs.
The reason why such transformation works is that the random oracleOR is a random function.

Therefore, the challenges r1, r2, . . . are random values, and the prover cannot predict them (for
example, by fabricating messages to have some specific output). That being said, the following
theorem holds (which, of course, we are not going to prove since the proof is complicated).

Theorem 6.14. Suppose that (P,V) is a public-coin interactive argument of knowledge for
some language LR with a negligible soundness error. Then, the Fiat-Shamir transformation
of (POR,VOR) is a non-interactive argument for LR with negligible soundness error in the
random oracle model OR.

6.6.3 Schnorr’s Identification Protocol
To better illustrate the Fiat-Shamir Transformation in practice, let us consider one of the

most widely used signatures: Schnorr Signature. It is a simple and elegant protocol that allows
one party to prove to another party that it knows a discrete logarithm of a given element.

Let us formalize it using theory from Section 6.2. Suppose G is a cyclic group of order q
with a generator g. Then, the relation and language being considered are:

R = {(u, α) ∈ G× Zq : u = gα}, LR = {u ∈ G : ∃α ∈ Zq : u = gα}

Now, suppose prover P has a valid statement and a witness (u, α) ∈ R and he wants to
convince the verifier V that he knows the witness α to the public statement u (that is, we are
building the proof of knowledge). Well, the easiest way how to proceed is simply giving α to
V, but this is obviously not what we want. Instead, the Schnorr protocol allows P to prove the
knowledge of α without revealing it.

First, let us start with the interactive version of the protocol.

Definition 6.15. The Schnorr interactive identification protocol ΠSch = (Gen,P,V) with
a generation function Gen and prover P and verifier V is defined as follows:

• Gen(1λ): As with most public-key cryptosystems, we take α R←− Zq and u ← gα. We
output the verification key as vk := u, and the secret key as sk := α.

• The protocol between (P,V) is run as follows:
– P computes r ← Z×q , a← gr and sends a to V.

– V sends a random challenge e R←− Zq to P.
– P computes σ ← r + αe ∈ Zq and sends σ to V.
– V accepts if gσ = a · ue, otherwise it rejects.

This protocol is illustrated in Figure 15.

Page 80



Distributed Lab ZKDL Camp

Prover P Verifier V

r
R←− Z×q

a← gr

Send a

e
R←− Zq

Send e

Compute σ ← r + αe ∈ Zq

Send σ

Verify gσ = a · ue

Figure 15: The interactive Schnorr protocol between prover P and verifier V for proof of
knowledge of discrete logarithm relation.

Now, one can prove the following theorem.

Theorem 6.16. The Schnorr protocol ΠSch is complete, sound, and (honest verifier) zero-
knowledge proof of knowledge.

Proof. We are not going to prove the zero-knowledge and soundness properly, but com-
pleteness and proof of knowledge are quite straightforward to show.

• Completeness. Just observe that gσ = gr+αe = gr(gα)e = a · ue.
• Proof of Knowledge. To prove that the protocol is a proof of knowledge, we need to

construct an extractor EP . We construct it as follows:
1. Extractor runs the prover and gets a, e, and σ as a response.
2. Extractor rewinds back to the verifier’s challenge step, generates a new challenge
e ′

R←− Zq and gets new prover’s response σ′ (for the same prover’s randomness r).
3. Extractor outputs the witness x ← (σ − σ′)(e − e ′)−1.

The reason why this works is following: notice that gσ = a · ue, gσ′ = a · ue ′. Therefore,
by dividing former by latter, we obtain gσ−σ

′
= ue−e

′
= gα(e−e

′). It immediately follows
that α = (σ − σ′)(e − e ′)−1.
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Remark. Before considering how to make such protocol non-interactive correctly, suppose
that we instead do the following: after interaction with the verifier, the prover publishes the
conversation as a proof of knowledge. Would that be a valid non-interactive proof? In other
words, can we convince the independent observer of the interaction that the prover knows
the witness? The answer is no (and it is generally so for any interactive protocol). The
reason why is that the prover can first sample randomly e, σ R←− Zq, compute a← gσ/ue and
simply publish (a, e, σ) as a proof. This is a valid conversation since gσ = a ·ue = (gσ/ue)·ue
and thus the observer would be convinced that the prover knows the witness. However, the
prover might not know the witness at all!
Therefore, the prover needs to get a challenge e before he commits to the value a. Other-
wise, he can precompute a and publish it as a proof (or simply make a deal with the verifier
to fool the observer).

Now, notice that the provided protocol is a public-coin protocol. Therefore, we can apply
the Fiat-Shamir transformation to make it non-interactive. Suppose we have a random oracle
OR : G× Zq → Zq:

1. The prover P computes r ← Z×q , a← gr and sends a to the Fiat-Shamir Channel.
2. The Fiat-Shamir channel responds with the challenge e ← OR(u, a).
3. The prover P computes σ ← r + αe and sends σ to the Fiat-Shamir Channel.
4. The Fiat-Shamir channel outputs the proof π = (a, e, σ), which the verifier can check via

previously mentioned equation gσ = a · ue.
Now, notice that e might not be included in the proof since the verifier can compute it by

himself. Therefore, the final proof π can be reduced to (a, σ) ∈ G×Zq and its computation does
not need any interaction with the verifier. Moreover, it is still complete, sound, and proof of
knowledge due to the Fiat-Shamir transformation. It is also (not easy to prove) zero-knowledge.

6.6.4 Schnorr’s Signature Scheme
Now, turning the Schnorr’s Identification Protocol into a signature scheme is quite straight-

forward. The only modification to the non-interactive proof described in the previous section
is that we include the message m ∈ M instead of our statement u ∈ G in the computation of
the challenge e. Now, let us give a formal definition.

Definition 6.17. The Schnorr Signature Scheme is ΣSch = (Gen, Sign,Verify), where:

• Gen(1λ): We take α R←− Zq and u ← gα. The public key is pk := u, while the secret
key as sk := α.

• Sign(m, sk): The signer computes r ← Z×q , a ← gr , e ← H(m, a), σ ← r + αe and
outputs the signature (a, σ).

• Verify((a, σ), m, pk): The verifier checks if gσ = a · ue for e ← H(m, a).

6.7 Exercises
Exercise 1. When dealing with RSA protocol, one frequently encounters the following rela-

tion where e is a prime number and n ∈ N:

R =
{
(w, x) ∈ Z×n × Z×n : w e = x

}
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Which of the following is the language LR that corresponds to the relation R?
(A) Integers from Z×n which have a modular root of e-th degree.
(B) Integers from Z×n which are divisible by e.
(C) Integers x from Z×n with properly defined expression xe.
(D) Integers from Z×n which are prime.
(E) Integers from Z×n for which e is a primitive root.
Exercise 2. Suppose that for some interactive protocol (P,V) during one round, the proba-

bility that the verifier V accepts a false statement is 1/8. How many rounds of interaction are
needed to guarantee 120 bits of security? Assume here that n bits of security means that the
probability of accepting a false statement is at most 2−n.
(A) 30.
(B) 40.
(C) 60.
(D) 90.
(E) 120.
Exercise 3. Recall that for relation R = {(w, x) ∈ Z×N × Z

×
N : x = w 2} we defined the

following interactive protocol (P,V) to prove that x ∈ LR:

• P samples r R←− Z×N and sends a = r 2 to V.
• V sends a random bit b ∈ {0, 1} to P.
• P sends z = r · w b to V.
• V accepts if z2 = a · xb, otherwise it rejects.
Suppose we use the protocol (P,V∗) where the “broken” verifier V∗ always outputs b = 1.

Which of the following statements is true?
(A) Both the soundness and completeness of the protocol are preserved.
(B) The soundness of the protocol is preserved, but the completeness is broken.
(C) The completeness of the protocol is preserved, but the soundness is broken.
(D) Both the soundness and completeness of the protocol are broken.

Exercise 4. What is the difference between the cryptographic proof and the proof of knowl-
edge?
(A) Cryptographic proof is a proof of knowledge that is secure against malicious verifiers.
(B) Cryptographic proof is a proof of knowledge that is secure against malicious provers.
(C) Cryptographic proof merely states the correctness of a statement, while the proof of

knowledge also guarantees that the prover knows the witness.
(D) While cryptographic proof states that witness exists for the given statement, the proof of

knowledge makes sure to make this witness unknown to the verifier.
(E) Proof of knowledge does not require verifier to know the statement, while cryptographic

proof does.
Exercise 5. What is the purpose of introducing the extractor?

(A) To introduce the algorithm that simulates the malicious verifier trying to extract the
witness from the prover.
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(B) To define what it means that the prover knows the witness.
(C) To give the verifier the ability to extract the witness from the prover during the interactive

protocol.
(D) To define the security of the interactive protocol that uses a more powerful verifier that

can extract additional information from the prover.
(E) To give prover more power to extract randomness generated by the verifier.
Exercise 6. What it means that the interactive protocol (P,V) is a zero-knowledge?

(A) The verifier V cannot know whether the given statement is true or false.
(B) The verifier V cannot know whether the prover P knows the witness.
(C) View of the prover P in the protocol is indistinguishable from the view of the verifier V.
(D) Any view of any verifier V can be simulated using some polynomial-time algorithm, out-

putting computationally indistinguishable distribution from the given view.
(E) The prover P can convince the verifier V that the statement is true without knowing the

witness.
Hint: View of the participant in the protocol consists of all data he has access to during

the protocol execution. For example, verifier V’s view consists of the messages he sends and
receives, as well as the random coins he generates.

Exercise 7. Which of the following is not true about the Fiat-Shamir heuristic?
(A) If the public-coin protocol is sound, the Fiat-Shamir transformation preserves the sound-

ness.
(B) The Fiat-Shamir heuristic does not break the completeness of the public-coin protocol it

is applied to.
(C) Practically, it allows to convert any interactive protocol into a non-interactive one.
(D) To make Fiat-Shamir transformation pratical, the function modelling the random oracle

should be hard to invert.
(E) It is reasonable to use SHA256 to model the random oracle in the Fiat-Shamir transfor-

mation.
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