
Distributed Lab ZKDL Camp

7 Sigma Protocols
7.1 Schnorr’s Identification Protocol

To better illustrate the Fiat-Shamir Transformation in practice, let us consider one of the
most widely used signatures: Schnorr Signature. It is a simple and elegant protocol that allows
one party to prove to another party that it knows a discrete logarithm of a given element.

Let us formalize it using theory from Section 6.2. Suppose G is a cyclic group of order q
with a generator g. Then, the relation and language being considered are:

R = {(u, α) ∈ G× Zq : u = gα}, LR = {u ∈ G : ∃α ∈ Zq : u = gα}

Now, suppose prover P has a valid statement and a witness (u, α) ∈ R and he wants to
convince the verifier V that he knows the witness α to the public statement u (that is, we are
building the proof of knowledge). Well, the easiest way how to proceed is simply giving α to
V, but this is obviously not what we want. Instead, the Schnorr protocol allows P to prove the
knowledge of α without revealing it.

First, let us start with the interactive version of the protocol.

Definition 7.1. The Schnorr interactive identification protocol ΠSch = (Gen,P,V) with
a generation function Gen and prover P and verifier V is defined as follows:

• Gen(1λ): As with most public-key cryptosystems, we take α R←− Zq and u ← gα. We
output the verification key as vk := u, and the secret key as sk := α.

• The protocol between (P,V) is run as follows:
– P computes r ← Z×q , a← gr and sends a to V.

– V sends a random challenge e R←− Zq to P.
– P computes σ ← r + αe ∈ Zq and sends σ to V.
– V accepts if gσ = a · ue, otherwise it rejects.

This protocol is illustrated in Figure 15.

Page 86

Distributed Lab ZKDL Camp

Prover P Verifier V

r
R←− Z×q

a← gr

Send a

e
R←− Zq

Send e

Compute σ ← r + αe ∈ Zq

Send σ

Verify gσ = a · ue

Figure 15: The interactive Schnorr protocol between prover P and verifier V for proof of
knowledge of discrete logarithm relation.

Definition 7.2. An interaction between P and V produces the so-called conversation
(a, e, σ) ∈ G × Zq × Zq. We call such a conversation an accepting conversation if V
accepts the proof.

Example. In case of a Schnorr protocol, the accepting conversation is such that gσ = a ·ue.

Now, one can prove the following theorem.

Theorem 7.3. The Schnorr protocol ΠSch is complete, sound, and (honest verifier) zero-
knowledge proof of knowledge.

Proof. We are not going to prove the zero-knowledge and soundness properly, but com-
pleteness and proof of knowledge are quite straightforward to show.

• Completeness. Just observe that gσ = gr+αe = gr(gα)e = a · ue.
• Proof of Knowledge. To prove that the protocol is a proof of knowledge, we need to

construct an extractor EP . We construct it as follows:
1. Extractor runs the prover and gets a, e, and σ as a response.
2. Extractor rewinds back to the verifier’s challenge step, generates a new challenge
e ′

R←− Zq and gets new prover’s response σ′ (for the same prover’s randomness r).

Page 87

Distributed Lab ZKDL Camp

3. Extractor outputs the witness α← (σ − σ′)(e − e ′)−1.
The reason why this works is following: notice that gσ = a · ue, gσ′ = a · ue ′. Therefore,
by dividing former by latter, we obtain gσ−σ

′
= ue−e

′
= gα(e−e

′). It immediately follows
that α = (σ − σ′)(e − e ′)−1.

Remark. Before considering how to make such protocol non-interactive correctly, suppose
that we instead do the following: after interaction with the verifier, the prover publishes the
conversation as a proof of knowledge. Would that be a valid non-interactive proof? In other
words, can we convince the independent observer of the interaction that the prover knows
the witness? The answer is no (and it is generally so for any interactive protocol). The
reason why is that the prover can first sample randomly e, σ R←− Zq, compute a← gσ/ue and
simply publish (a, e, σ) as a proof. This is a valid conversation since gσ = a ·ue = (gσ/ue)·ue
and thus the observer would be convinced that the prover knows the witness. However, the
prover might not know the witness at all!
Therefore, either (1) the prover needs to get a challenge e before he commits to the value
σ, or (2) challenge must be randomized. Otherwise, he can precompute σ and publish it as
a proof (or simply make a deal with the verifier to fool the observer).

Now, notice that the provided protocol is a public-coin protocol. Therefore, we can apply
the Fiat-Shamir transformation to make it non-interactive. Suppose we have a random oracle
OR : G×G→ Zq:

1. The prover P computes r ← Z×q , a← gr and sends a to the Fiat-Shamir Channel.
2. The Fiat-Shamir channel responds with the challenge e ← OR(u, a).
3. The prover P computes σ ← r + αe and sends σ to the Fiat-Shamir Channel.
4. The Fiat-Shamir channel outputs the proof π = (a, e, σ), which the verifier can check via

previously mentioned equation gσ = a · ue.
Now, notice that e might not be included in the proof since the verifier can compute it by

himself. Therefore, the final proof π can be reduced to (a, σ) ∈ G×Zq and its computation does
not need any interaction with the verifier. Moreover, it is still complete, sound, and proof of
knowledge due to the Fiat-Shamir transformation. It is also (not easy to prove) zero-knowledge.

7.2 Schnorr’s Signature Scheme
Now, turning the Schnorr’s Identification Protocol into a signature scheme is quite straight-

forward. The only modification to the non-interactive proof described in the previous section
is that we include the message m ∈ M instead of our statement u ∈ G in the computation of
the challenge e. Additionally, suppose we use the hash function H as a random oracle from the
previous section. Now, let us give a formal definition.

Page 88

Distributed Lab ZKDL Camp

Definition 7.4. The Schnorr Signature Scheme is ΣSch = (Gen, Sign,Verify), where:

• Gen(1λ): We take α R←− Zq and u ← gα. The public key is pk := u, while the secret
key as sk := α.

• Sign(m, sk): The signer computes r ← Z×q , a ← gr , e ← H(m, a), σ ← r + αe and
outputs the signature (a, σ).

• Verify((a, σ), m, pk): The verifier checks if gσ = a · ue for e ← H(m, a).

Remark. Typically, one also uses a so-called “key-prefixed” variant of the scheme, where the
challenge e is computed as e ← H(pk, m, a) for a random oracle H : G×M×G→ Zq. It
was argued that such variant has a better multi-user security bound than the classical one.

7.3 Sigma Protocols
Now, the Schnorr Protocol is just one of the many examples of a so-called Sigma Protocol.

Sigma protocols are a class of interactive proof systems that are used to prove the knowledge
of a witness to a statement. They are quite general and can be used to prove the knowledge
of a witness to any effective relation R ⊆ X ×W, where X is the set of public statements and
W is the set of witnesses. Let us define them formally.

Definition 7.5. Let R ⊂ X × W be an effective relation. A Sigma protocol for R is an
interactive protocol (P,V) that satisfies the following properties:

• In the beginning, P computes a commitment a and sends it to V.
• V chooses a random challenge c ∈ C from the challenge space C and sends it to P.
• Upon receiving c , P computes the response z and sends it to V.
• V outputs either accept or reject based on the conversation transcript (a, c, z).

Remark. The name “Sigma” protocol comes from the fact that the “shape” of the message
flow vaguely resembles the Greek letter Σ: see Figure 16.

Commitment a

Challenge c

Response z

Figure 16: Sigma Protocol Illustration: the flow of messages between prover P and verifier V
closely resembles the Greek letter Σ, which is marked in red in the Figure.

Page 89

Distributed Lab ZKDL Camp

Example. In particular, for the Schnorr Protocol, the Sigma protocol is defined over the
relation R ⊂ X ×W where:

X = G, W = Zq, R = {(u, α) ∈ G× Zq : u = gα}

Here, the challenge space C is a subset of Zq (or, typically, the whole set).

Similarly to interactive protocols, Sigma protocols also have a property called soundness.
However, there is an additional property called special soundness that simplifies the general
notion of soundness.

Definition 7.6 (Special Soundness). Let (P,V) be a Σ-protocol for R ⊆ X × Y. We that
that (P,V) is special sound if there exists a witness extractor E such that, given statement
x ∈ X and two accepting conversations (a, c, z) and (a, c ′, z ′) (where c ̸= c ′)a, the extractor
can always efficiently compute the witness w such that (x, w) ∈ R.

aNotice that initial commitments in both conversations are the same!

Example. In case of the Schnorr Protocol, the special soundness property is satisfied by the
extractor E that we have constructed in the proof of knowledge. In other words, we can
extract the discrete logarithm α = DLogG(u) given two accepting conversations (a, e, σ)
and (a′, e ′, σ′).

Now, let us consider some more examples of Sigma protocols.

7.4 More Sigma Protocol Examples
7.4.1 Okamoto’s Protocol for Representations

Again, let G be a cyclic group of prime order q with a generator g ∈ G and let h ∈ G
an arbitrary group element (for example, it might be yet another group generator). While
considering Pedersen Commitments, you already encountered form gαhβ. Now, let us generalize
this concept a bit.

Definition 7.7. For u ∈ G, a representation relative to g and h is a pair (α, β) ∈ Zq × Zq
such that u = gαhβ.

Remark. Notice that for the given u there are exactly q representations relative to g and h.
Indeed, ∀β ∈ Zq ∃!α ∈ Zq : gα = uh−β.

Now, the Okamoto’s Protocol is a Sigma protocol that allows one party to prove the knowl-
edge of a representation of a given u ∈ G relative to g and h. In other words, we are working
with the relation

R =
{
(u, (α, β)) ∈ G× Z2q : u = gαhβ

}
Now, let us describe the protocol.

Page 90

Distributed Lab ZKDL Camp

Definition 7.8 (Okamoto’s Identification Protocol). Okamoto’s Protocol consists of two
algorithms: (P,V), where the prover is assumed to know (u, (α, β)) ∈ R defined above.
The protocol is defined as follows:

1. P computes αr
R←− Zq, βr

R←− Zq, ur ← gαrhβr and sends commitment ur to V.

2. V samples the challenge c R←− Zq and sends c to P.
3. P computes αz ← αr + αc, βz ← βr + βc and sends z = (αz , βz) to V.
4. V checks whether gαzhβz = uruc and accepts or rejects the proof accordingly.

Theorem 7.9. Okamoto’s Protocol is aΣ-protocol for the relationR which is Honest-Verifier
Zero-Knowledge.

Part of the proof. Again, let us show correctness and special soundness without honest-
verifier zero-knowledge properties.

Completeness. Suppose indeed that (u, (α, β)) ∈ R. Then, the verification condition can
be written as follows:

gαzhβz = gαr+αchβr+βc = gαrgαchβrhβc = (gαrhβr)︸ ︷︷ ︸
=ur

·(gαhβ︸ ︷︷ ︸
=u

)c = uru
c

Special Soundness. Suppose we are given two accepting conversations: (ur , c, (αz , βz)) and
(ur , c

′, (α′z , β
′
z)) and we want to construct an extractor E which would give us a witness (α, β).

In this case, we have the following holding:

gαzhβz = uru
c , gα

′
zhβ

′
z = uru

c ′

We can divide the former by the latter to obtain:

gαz−α
′
zhβz−β

′
z = uc−c

′
= gα(c−c

′)hβ(c−c
′),

from which the extractor E can efficiently compute witness as follows: α← (αz−α′z)
/
(c−c ′)

and β ← (βz − β′z)
/
(c − c ′).

7.4.2 Chaum-Pedersen protocol for DH-triplets
As with previous examples, suppose we are given the cyclic group G or prime order q and

generator g ∈ G. Recall that the Diffie-Hellman Triple (or, DH-triple) is a triple (gα, gβ, gγ)
with γ = αβ. Now, this definition is not really convenient for us, so we will reformulate the
DH-triple using the proposition below.

Proposition 7.10 (Alternative DH-triple Definition). (u, v , w) is a DH-triplet iff ∃β ∈ Zq :
v = gβ, w = uβ.

Now, this makes it easier to define the relation R for the Chaum-Pedersen protocol:

R =
{
((u, v , w), β) ∈ G3 × Zq : v = gβ ∧ w = uβ

}
In other words, here we have a witness β ∈ Zq, while the statement is a triplet (u, v , w) ∈ G3.

Again, we want to convert this into a Sigma protocol. We do it as follows.

Page 91

Distributed Lab ZKDL Camp

Definition 7.11 (Chaum-Pedersen Protocol). Chaum-Pedersen Protocol consists of two
algorithms: (P,V), where the prover is assumed to know (β, (u, v , w)) ∈ R defined above.
The protocol is defined as follows:

1. P computes βr
R←− Zq, vr

R←− gβr , wr ← uβr and sends commitment (ur , wr) to V.

2. V samples the challenge c R←− Zq and sends c to P.
3. P computes βz ← βr + βc and sends βz to V.
4. V checks whether two conditions hold: gβz = vrv

c and uβz = wrw
c , and accepts or

rejects the proof accordingly.

Theorem 7.12. Chaum-Pedersen Protocol is aΣ-protocol for the relationR which is Honest-
Verifier Zero-Knowledge.

Part of the proof. As always, let us show correctness and special soundness without honest-
verifier zero-knowledge properties.

Correctness. Again, consider the expression gβz more closely:

gβz = gβr+βc = gβrgβc = gβr︸︷︷︸
=vr

(gβ︸︷︷︸
=v

)c = vrv
c

The similar reasoning can be applied to the second verification condition: indeed, here we
have uβz = uβr (uβ)c = wrw c

Special Soundness. Suppose we are given two accepting conversations: ((ur , wr), c, βz) and
((ur , wr), c

′, β′z) and we want to construct an extractor E which would give us a witness β.
Notice that the following equations hold:

gβz = vrv
c , gβ

′
z = vrv

c ′,

uβz = wrw
c , uβ

′
z = wrw

c ′.

Divide left equations by the right ones to obtain:

gβz−β
′
z = v c−c

′
, uβz−β

′
z = w c−c

′
.

Consider the first equation. Since v = gβ we derive (βz − β′z) = β(c − c ′), from which E
outputs β = βz−β′z

c−c ′ . The same value can be extracted from the second equation.

7.5 Generalizing Sigma Protocols
Now, the most interesting part! Probably, you have noticed, that all protocols above

(Schnorr, Okamoto, Chaum-Pedersen) have a similar structure. So is there any way to gener-
alize them? The answer is yes and moreover, this done in a very elegant way.

Let (H,⊕) and (T,⊗) be two finite abelian groups and suppose we have some concrete
homomorphism ψ : H → T. Moreover, we require that given t ∈ T, finding the pre-image of
t (meaning, finding some h ∈ H such that ψ(h) = t) is computationally hard. Suppose F is a
set of all homomorphisms from H to T (sometimes denoted as Hom(H,T)). Now, define the
following relation:

R = {((t, ψ), h) ∈ (T×F)×H : ψ(h) = t}

Page 92

Distributed Lab ZKDL Camp

And now the prover P wants to convince the verifier V that he knows the witness h to the
statement (t, ψ).

Proposition 7.13. Now, why does this generalize the previous protocols? Well, let us con-
sider all previous examples:

• Schnorr Protocol: Here we have H = Zq, T = G, and ψ : Zq → G is defined as
ψ(α) = gα. Moreover, here ψ is an isomorphism!

• Okamoto Protocol: Here we have H = Z2q, T = G, and ψ : Z2q → G is defined as
ψ(α, β) = gαhβ. It is also quite easy to see that ψ is a homomorphism:

ψ((α, β)+(α′, β′)) = ψ(α+α′, β+β′) = gα+α
′
hβ+β

′
= gαhβgα

′
hβ
′
= ψ(α, β)ψ(α′, β′)

• Chaum-Pedersen Protocol: Here we have H = Zq, T = G2, and ψ : Zq → G2 is
defined as ψ(β) = (gβ, uβ). Again, it is easy to see that ψ is a homomorphism.

Now, we formulate the general Sigma protocol for the relation R over homomorphism.

Definition 7.14 (Sigma Protocol for the pre-image of a homomorphism). The protocol
consists of two algorithms: (P,V), where the prover is assumed to know the witness h ∈ H
defined above. The protocol is defined as follows:

1. P computes hr
R←− H, tr ← ψ(hr) ∈ T and sends tr to the verifier V.

2. V samples the challenge c R←− C ⊂ Z from the challenge space and sends c to P.
3. P computes hz ← hr ⊕ h · c and sends hz to V.
4. V checks whether ψ(hz) = tr ⊗ tc , and accepts or rejects the proof accordingly.

7.6 Combining Sigma Protocols
Now, suppose we have the Sigma interactive protocol (P0,V0) for one relation R0 ⊆ W0×X0

and another Sigma interactive protocol (P1,V1) for another relation R1 ⊆ W1 × X1. Now, we
want to combine these two protocols into a single one. Namely, we want our prover to be able
to convince the verifier that:

1. He knows the witnesses w0, w1 to both statements x0, x1.
2. He knows the witness w ∈ W0 ∪W1 to either statement x0 or x1.
Among two, the second one is a bit more interesting since it allows us to prove the knowledge

of a witness to either of the statements. This is called the OR-composition of Sigma protocols.

7.6.1 The AND Sigma Protocol
Now, let the prover P prove the witness knowledge of the following relation:

RAND = {((x0, x1), (w0, w1)) ∈ (X0 ×X1)× (W0 ×W1) : (w0, x0) ∈ R0 ∧ (w1, x1) ∈ R1}

We define the following protocol.

Page 93

Distributed Lab ZKDL Camp

Definition 7.15 (The AND Sigma Protocol). Define a pair of algorithms (P,V) which are
run as follows:

1. The prover P runs P0(w0, x0) to get commitment a0 and runs P1(w1, x1) to get a1 and
sends the pair a = (a0, a1) to V.

2. The verifier computes the challenge c R←− C and sends it to P.
3. The prover feeds provers P0(w0, x0) and P1(w1, x1) with the challenge to get responses
z0 and z1, respectively. He then sends z = (z0, z1) to V.

4. The verifier checks whether both V0(a0, c, z0) and V1(a1, c, z1) pass.

However, such protocol is not very interesting since what we did essentially is just running
two protocols separately: one for (P0,V0), and the other for (P1,V1). The only difference is
that we use the single challenge for both protocols.

7.6.2 The OR Sigma Protocol
The less trivial example is the following: define the relation

ROR = {((x0, x1), (w, b)) ∈ (X0 ×X1)× ((W0 ∪W1)× {0, 1}) : (x, wb) ∈ Rb}

Here, the statement is x0 and x1, but the witness is the witness w to either x0 or x1, and the
bit b ∈ {0, 1}, marking to which of the statement w belongs to. That being said, w might be
from either set W0 or W1: that is why we say that w ∈ W0 ∪W1.

To make the interactive protocol work, we add one more assumption about both relations R0
and R1. Suppose that the challenge space C ⊆ {0, 1}ℓ. This assumption is not very strong as
typically C is some subspace of integers and thus decomposing some c ∈ C into the fixed-length
bit representation is a trivial task.

Now, we describe the algorithm.

Definition 7.16 (The OR Sigma Protocol). Define a pair of algorithms (P,V) for relation
ROR with b∗ := 1− b as follows:

1. The prover chooses a random challenge cb∗
R←− C and generates random commitment

and response (ab∗, zb∗) that form a valid accepting conversation (ab∗, cb∗, zb∗) (essen-
tially, the prover runs the simulator (ab∗, zb∗)

R←− Simb∗(xb∗, cb∗)). Then, P also runs
Pb(xb, w) to get a valid commitment ab and sends (a0, a1) to V.

2. The verifier sends a random challenge c R←− C ⊆ {0, 1}ℓ.
3. The prover XORs both challenges: cb ← c ⊕ cb∗. Then it feeds the challenge cb to

the prover Pb(xb, w) to get the responses zb (b ∈ {0, 1}) and sends (c0, z0, z1) to V.
4. Verifier computes c1 ← c ⊕ c0 and checks that both verifications V0(a0, c0, z0) and
V1(a1, c1, z1) pass.

Page 94

Distributed Lab ZKDL Camp

7.7 Exercises
Exercises 1-5. In search of correct Schnorr’s Identification Protocol. . .

You are given the protocol and five ways to implement it. Most of them lack the crucial
properties. For each attempt, you need to determine whether the protocol is correct and,
if not, specify which of the properties are violated.

Recall, that given the cyclic group G of order q, the prover wants to convince the verifier
that he knows the discrete logarithm α of h ∈ G with respect to the generator g ∈ G (so
that gα = h).
Here are five attempts to construct the protocol:
Attempt 1. Prover sends witness α to the verifier. Verifier checks whether h = gα.
Attempt 2. Prover chooses random r

R←− Zq and sends a← α+ r to the verifier. Verifier
checks whether h = ga.
Attempt 3. Prover chooses random r

R←− Zq, calculates a← α+ r and sends both (a, r)
to the verifier. Verifier checks whether grh = ga.
Attempt 4. Prover chooses random r

R←− Zq, calculates a ← gr , z ← α + r and sends
(a, z) to the verifier. Verifier checks whether a · h = gz .
Attempt 5. Prover chooses random r

R←− Zq, calculates a ← gr , and sends a to the

verifier. Verifier chooses e R←− Zq and sends to the prover. Prover calculates z ← αe + r

and sends to the prover. Verifier checks whether a · he = gz .

Below, mark whether the properties of completeness, soundness, and zero-knowledge
hold for each attempt.

Attempt # 1 2 3 4 5
Completeness holds? ✓/✗ ✓/✗ ✓/✗ ✓/✗ ✓/✗

Soundness holds? ✓/✗ ✓/✗ ✓/✗ ✓/✗ ✓/✗

Zero-Knowledge holds? ✓/✗ ✓/✗ ✓/✗ ✓/✗ ✓/✗

Page 95

Distributed Lab ZKDL Camp

Exercises 6-10. Non-Interactive Chaum-Pedersen Protocol.

This section explores how to make the previously considered Chaum-Pedersen protocol
non-interactive. Fill in the gaps in the following text with the correct statements.

Recall that the Chaum-Pedersen protocol allows the prover P to convince the skeptical
verifier V that the given triplet (u, v , w) ∈ G3 is a Diffie-Hellman (DH) triplet in the cyclic
group G of prime order q with a generator g ∈ G, meaning that u = gα, v = gβ, w = gαβ

for some α, β ∈ Zq. However, instead of making (α, β) as a witness, observe that β is
sufficient. Indeed, if u = gα, v = gβ, then w = 6 . Thus, the relation is:

R =
{
((u, v , w), β) ∈ G3 × Zq : 7

}
Now, we apply the Fiat-Shamir Transformation. Recall that prover, instead of getting
the random challenge c R←− C ⊂ Zq from the verifier interactively, calculates it as the
hash function from the public statement (u, v , w) and the prover’s commitment. For
that reason, define the non-interactive proof system Φ = (Gen,Verify) as follows:

• Gen: On input (u, v , w) ∈ G3,
1. Sample βr

R←− Zq and compute the commitment 8 .

2. Use the hash function 9 to get the challenge c ← 10 .
3. Compute response βz ← βr + βc and output commitment (vr , wr) and βz as

a proof π.
• Verify: Upon receiving statement (u, v , w) and a proof π = (vr , wr , βz), the verifier:

1. Recomputes the challenge c using the hash function.
2. Accepts if and only if gβz = vrv c and uβz = wrw c .

Exercise 6.
A) vβ

B) uβ

C) vu
D) v u

E) vβu

Exercise 7.
A) v = gβ and w = vu
B) v = gβ and w = vβ

C) v = gβ and w = uβ

D) u = gβ and w = uβ

E) u/w = gβ

Exercise 8.
A) (vr , wr) = (gβr , gβrβ)
B) (vr , wr) = (gβr , wβr)
C) (vr , wr) = (gβr , uβr)
D) (vr , wr) = (gβ, gβr)
E) (vr , wr) = (gβ, gβrgβ)

Exercise 9.
A) H : G3 ×G2 → C
B) H : G3× (G×Zq)→ C
C) H : G3 → C
D) H : G3 × Zq → C
E) H : G2 × Zq → C

Exercise 10.
A) H((u, v , w), (vr , wr))
B) H((u, v , w), (vr , βr))
C) H(u, v , w)
D) H((u, v , w), βr)
E) H((vr , wr), βr)

Page 96

