
Distributed Lab ZKDL Camp

9 Quadratic Arithmetic Program. Probabilistically
Checkable Proofs

9.1 Quadratic Arithmetic Program
9.1.1 R1CS in Matrix Form

While the Rank-1 Constraint System provides a powerful way to represent computations,
it is not succinct at all, since the number of constraints depends linearly on the complexity
of the problem being solved. In practical scenarios, this can require tens or even hundreds of
thousands of constraints, sometimes even millions. The Quadratic Arithmetic Program (QAP)
can address this issue.

Remark. Understanding polynomials and their properties is crucial for this section. If you
are not confident in this area, it is better to revisit the corresponding chapter and refresh
your knowledge. See Section 1.4.

To define a constraint in the R1CS we need four vectors: three coefficient vectors (a, b, and
c) and the witness one (w). And that’s just for one constraint. As you can imagine, many of
the values in these vectors are zeros. In circuits with thousands of inputs, outputs, and auxiliary
variables, where there are also thousands of constraints, you could end up with a millions of
zeroes.

Remark. A matrix in which most of the elements are zero in numerical analysis is usually
called sparse matrix.

So, we need to change the way how we manage coefficients and make the representation of
such matrices and vectors succint (as required by the definition of SNARK).

Theorem 9.1. Consider a Rank-1 Constraint System (R1CS) defined bym constraints. Each
constraint is associated with coefficient vectors ai , bi , and ci , where i ∈ {1, 2, . . . , m} and
also a witness vector w consisting of n elements.
Then this system can also be represented using the corresponding matrices A, B, and C.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn

 B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
bm1 bm2 . . . bmn

 C =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
cm1 cm2 . . . cmn


such that all constraints can be reduced to the single equation:

Aw ⊙ Bw = Cw

In this representation:
• Each i-th row of the matrices corresponds to the coefficients of a specific constraint.
• Each column of these matrices corresponds to the coefficients associated with a par-

ticular element of the witness vector w.

Page 113

Distributed Lab ZKDL Camp

Proof. Matrices defined this way can be expressed as

A =


a⊤1
a⊤2
...
a⊤m

 , B =


b⊤1
b⊤2
...
b⊤m

 , C =


c⊤1
c⊤2
...
c⊤m


Consider an expression Aw:

Aw =


a⊤1
a⊤2
...
a⊤m



w1
w2
...
wn

 =

a⊤1w

a⊤2w
...
a⊤mw


The last equality is a bit tricky to observe, so let us explain how we ended up with such

expression. Notice that since A ∈ Fm×n and w ∈ Fn, the product Aw is a vector from Fm.
Now, for j th element of such vector, based on the matrix product definition, we have (Aw)j =∑n
ℓ=1 aj,ℓwℓ which is exactly an inner product between aj and w! Therefore, we have:

Aw =


⟨a1,w⟩
⟨a2,w⟩

...
⟨am,w⟩

 , Bw =


⟨b1,w⟩
⟨b2,w⟩

...
⟨bm,w⟩

 , Cw =


⟨c1,w⟩
⟨c2,w⟩

...
⟨cm,w⟩


Therefore, Aw ⊙ Bw = Cw is equivalent to the system of m constraints:

⟨aj ,w⟩ × ⟨bj ,w⟩ = ⟨cj ,w⟩, j ∈ {1, . . . , m}.

Example. The vectors ai from the previous examples have the form:

a1 = (0, 0, 1, 0, 0, 0, 0)

a2 = (0, 0, 0, 1, 0, 0, 0)

a3 = (0, 0, 1, 0, 0, 0, 0)

a4 = (1, 0,−1, 0, 0, 0, 0)

This corresponds to n = 7, m = 4

A =


a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7
a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7
a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

 =

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

1 0 −1 0 0 0 0


9.1.2 Polynomial Interpolation

OK, now is the time to define how we are going to build polynomials! Notice that the columns
of these matrices (say, column (a1,i , a2,i , a3,i , a4,i) in matrix A from example above) represent

Page 114

Distributed Lab ZKDL Camp

the mappings from constraint number i to the corresponding coefficient of the j element in the
witness vector!

Example. Consider the witness from the previous examples:

w = (1, r, x1, x2, x3,mult, selectMult)

For element x1 we are interested in the third columns of the A, B and C matrices, as it’s
placed on the third position in the witness vector, so j = 3.
For matrix A: 

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

1 0 −1 0 0 0 0


Thus, for constraint number 4 (i = 4) the coefficient of x1 is −1:

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

1 0 −1 0 0 0 0


Good, so now we know that for the jth element in the witness vector there are m (the number

of constraints) corresponding values in matrices A, B, and C. Now, we want to encode this
statement in a form of a polynomial. As we know from the previous chapters, such a mapping
in math can be built using the Lagrange polynomial interpolation.

Remark. As a remainder, the Lagrange interpolation polynomial for a given set of points
{(x0, y0), (x1, y1), . . . , (xn, yn)} ⊂ F× F can be built with the following formula:

L(x) =

n∑
i=0

yiℓi(x), ℓi(x) =

n∏
j=0,j ̸=i

x − xj
xi − xj

.

For a given column j ∈ {1, 2, . . . , n} in a matrix A the set of points that define the variable
polynomial Aj(x) can be defined as {(i , ai j) : i ∈ {1, 2, . . . , m}}. In other words, we want to
interpolate n polynomials Aj ∈ F[X] such that:

Aj(i) = ai ,j , i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}

The same is true for matrices B and C, resulting in 3n polynomials, n for each of the
coefficients matrices:

A1(x), A2(x), . . . , An(x), B1(x), B2(x), . . . , Bn(x), C1(x), C2(x), . . . , Cn(x)

Page 115

Distributed Lab ZKDL Camp

Example. Considering the witness vector w and matrix A from the previous example, for the
variable x1, the next set of points can be derived:

{(1, 1), (2, 0), (3, 1), (4,−1)}

We can see that it is used in the 1st, 3rd, and 4th constraints as the values of the coefficients
are not zero.
The Lagrange interpolation polynomial for this set of points can be built as follows (for the
demonstration purposes, assume we are working in the field R):

ℓ1(x) =
(x − 2)(x − 3)(x − 4)
(1− 2)(1− 3)(1− 4) = −

(x − 2)(x − 3)(x − 4)
6

,

ℓ2(x) =
(x − 1)(x − 3)(x − 4)
(2− 1)(2− 3)(2− 4) =

(x − 1)(x − 3)(x − 4)
2

,

ℓ3(x) =
(x − 1)(x − 2)(x − 4)
(3− 1)(3− 2)(3− 4) = −

(x − 1)(x − 2)(x − 4)
2

,

ℓ4(x) =
(x − 1)(x − 2)(x − 3)
(4− 1)(4− 2)(4− 3) =

(x − 1)(x − 2)(x − 3)
6

.

Thus, the polynomial is given by:

A1(x) = 1 · ℓ1(x) + 0 · ℓ2(x) + 1 · ℓ3(x) + (−1) · ℓ4(x)

= −
(x − 2)(x − 3)(x − 4)

6
−
(x − 1)(x − 2)(x − 4)

2
−
(x − 1)(x − 2)(x − 3)

6

= −
5

6
x3 + 6x2 −

79

6
x + 9

Therefore, the final Lagrange interpolation polynomial is:

A1(x) = −
5

6
x3 + 6x2 −

79

6
x + 9

As shown in Illustration below, the curve intersects all the given points. In this figure, the
x-axis represents the constraint number, and the y-axis represents the coefficients of the x1
witness element.

1 2 3 4

−2

−1

1

2
(1,1)

(2,0)

(3,1)

(4,-1)

x

A1(x)

Illustration: The Lagrange inteprolation polynomial for points {(1, 1), (2, 0), (3, 1), (4,−1)} visualized over R.

Page 116

Distributed Lab ZKDL Camp

Remark. One might a reasonable question: why do we choose x-coordinates to be the
indeces of the corresponding constraints? Actually, just for convenience purposes. We could
have assigned any unique index from F to each constraint (say, ti for each i ∈ {1, . . . , m})
and interpolate through these points:

Aj(ti) = ai ,j , i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}

As we will see in the subsequent lectures, we can define the x-coordinates in much more
clever way to reduce the workload needed for interpolation. But for now, we will stick to
this simple version.

Remark. The degree of the coefficient polynomials does not exceed m − 1, which follows
from the Lagrange interpolation properties.

9.1.3 Putting All Together!
Now, using coefficients encoded with polynomials, a constraint number X ∈ {1, . . . m}, from

a constraint system with a witness vector w can be built in the next way:

(w1A1(X) + w2A2(X) + · · ·+ wnAn(X))× (w1B1(X) + w2B2(X) + · · ·+ wnBn(X)) =
= (w1C1(X) + w2C2(X) + · · ·+ wnCn(X))

Or, written more concisely:(
n∑
i=1

wiAi(X)

)
×

(
n∑
i=1

wiBi(X)

)
=

(
n∑
i=1

wiCi(X)

)
Remark. Hold on, but why does it hold? Let us substitute any X = j into this equation:(

n∑
i=1

wiAi(j)

)
×

(
n∑
i=1

wiBi(j)

)
=

(
n∑
i=1

wiCi(j)

)
∀j ∈ {1, . . . , m}

Recall that we interpolated polynomials to have Ai(j) = aj,i . Therefore, the equation above
can be reduced to:(

n∑
i=1

wiaj,i

)
×

(
n∑
i=1

wibj,i

)
=

(
n∑
i=1

wicj,i

)
∀j ∈ {1, . . . , m}

But hold on again! Notice that
∑n
i=1 wiaj,i = ⟨w, aj⟩ and therefore we have:

⟨w, aj⟩ × ⟨w,bj⟩ = ⟨w, cj⟩ ∀j ∈ {1, . . . , m},

so we ended up with the initial m constraint equations!

Now let us define polynomials A(X), B(X), C(X) for easier notation:

A(X) =

n∑
i=1

wiAi(X), B(X) =

n∑
i=1

wiBi(X), C(X) =

n∑
i=1

wiCi(X)

Therefore, our constraint can be rewritten as A + B = C — much less scary-looking than
what we have written before. OK, but what does it give us?

Page 117

Distributed Lab ZKDL Camp

Notice that if A(X) × B(X) = C(X) for all j ∈ {1, . . . , m} then polynomial, defined as
M(X) := A(X)×B(X)−C(X), has zeros at all elements from the set Ω = {1, . . . , m}. Define
the so-called vanishing polynomial on Ω as:

ZΩ(X) :=
∏
ω∈Ω

(X − ω) =
m∏
i=1

(X − i)

Now, if M(X) vanishes on all points from Ω, it means that ZΩ must divide M, so ZΩ | M.
But that means that M can be divided by ZΩ without remainder! In other words, there exists
some polynomial H such that M = ZΩH. We further drop index Ω for simplicity.

All in all, let us give the definition of a Quadratic Arithmetic Program.

Definition 9.2 (Quadratic Arithmetic Program). Suppose that m R1CS constraints with a
witness of size n are written in a form

Aw ⊙ Bw = Cw, A,B, C ∈ Fm×n

Then, the Quadratic Arithmetic Program consists of 3n polynomials A1, . . . , An,
B1, . . . , Bn, C1, . . . , Cn such that:

Aj(i) = ai ,j , Bj(i) = bi ,j , Cj(i) = ci ,j , ∀i ∈ {1, . . . , m} ∀j ∈ {1, . . . , n}

Then, w ∈ Fn is a valid assignment for the given QAP and target polynomial Z(X) =∏m
i=1(X − i) if and only if there exists such a polynomial H(X) such that(

n∑
i=1

wiAi(X)

)(
n∑
i=1

wiBi(X)

)
−

(
n∑
i=1

wiCi(X)

)
= Z(X)H(X)

This was our final step in representing a high-level programming language to some math
primitive. We have managed to encode our computation to a single polynomial!

Remark on operations between polynomials
Remark. Some pretty obvious property should be noted. In the theorem ?? it was said
about the degree of polynomials after their multiplication or addition, but what about their
values?
Let p(x), q(x) ∈ F[x] be two polynomials over a field F. Define the polynomial r(x) as the
sum of p(x) and q(x):

r(x) = p(x) + q(x)

Then, for any point x ∈ F, the value of r(x) is equal to the sum of the values of p(x) and
q(x) at that point. Therefore, the set of points corresponding to the polynomial r(x) is
given by:

{(x, y) ∈ F× F | x ∈ F, y = p(x) + q(x)}

The same is true for product.

Page 118

Distributed Lab ZKDL Camp

Example. Consider two polynomials p(x) and q(x) defined over the real numbers R:

p(x) = −
1

2
x2 +

3

2
x, q(x) =

1

3
x3 − 2x2 +

8

3
x + 1.

The sets of points {(0, 0), (1, 1), (2, 1), (3, 0)} and {(0, 1), (1, 2), (2, 1), (3, 0)} lie on the
graphs of p(x) and q(x), respectively.

The sum of these polynomials can be calculated as:

r(x) = (−
1

2
x2 +

3

2
x) + (

1

3
x3 − 2x2 +

8

3
x + 1)

=
1

3
x3 − 2

1

2
x2 + 4

1

6
x + 1

The resulting polynomial r(x) corresponds to the set of points {(0, 1), (1, 3), (2, 2), (3, 0)}.
As you can see (Figure 9.1), the values at each point for the corresponding x are the sum
of the initial polynomials’ points.

1 2 3

1

2

3

p(x)

(0, 0)

(1, 1) (2, 1)

(3, 0)

q(x)(0, 1)

(1, 2)

r(x)

(1, 3)

(2, 2)

x

A1(x)

Figure 9.1: Addition of two polynomials

9.2 Probabilistically Checkable Proofs
Before going further we should get acquainted with one more concept from the computational

complexity theory, that have an important application in zk-SNARK and provides the theoretical
backbone.

A Probabilistically Checkable Proof (PCP) is a type of proof system where the verifier can
efficiently check the correctness of a proof by examining only a small, random portion of it,
rather than verifying it entirely.

Page 119

Distributed Lab ZKDL Camp

Definition 9.3. A language L ⊆ Σ∗ (for some given alphabet Σ) is in the class PCP(r, q)
(probabilistically checkable proofs), where r is the randomness complexity and q is the
query complexity, if for a given pair of algorithms (P,V):

• Syntax: P calculates a proof (bit string) π ∈ Σ∗ in polynomial time poly(|x |) of the
common input x . The prover P and verifier V interact, where the verifier has an oracle
access to π (meaning, he queries it at any position).

• Complexity: V uses at most r random bits to decide which part of the proof to query
and the verifier queries at most q bits of the proof.

Such pair of algorithms (P,V) should satisfy the following properties (with a security pa-
rameter λ ∈ N):

• Completeness: If x ∈ L, then Pr[Vπ(x) = 1] = 1.
• Soundness: If x /∈ L, then for any possible (malicious) proof π∗,

Pr
[
Vπ∗(x) = 1

]
= negl(λ).

This allows a verification of huge statements with high confidence while using limited com-
putational resources. See Figure 9.3.

Theorem 9.4. PCP theorem (PCP characterization theorem)
Any decision problem in NP has a PCP verifier that uses logarithmic randomness O(log n)
and a constant number of queries O(1), independent of n.

NP = PCP(O(log n), O(1))

Prover P Verifier V

q1 q2 q3

PCP Oracle

Generate an oracle (π) Point queries q1, . . . , qm

Figure 9.2: Illustration of a Probabilistically Checkable Proof (PCP) system. The prover P
generates a PCP oracle π that is queried by the verifier V at specific points q1, . . . , qm.

However, despite the fact that PCP is a very powerful tool, it is not used directly in zk-
SNARKs. We need to extend it a bit to make it more suitable for our purposes.

Three main extensions of PCPs that are frequently used in SNARKs are:
• IPCP (Interactive PCP): The prover commits to the PCP oracle and then, based on

the interaction between the prover and verifier, the verifier queries the oracle and decides
whether to accept the proof.

Page 120

Distributed Lab ZKDL Camp

• IOP (Interactive Oracle Proof): The prover and verifier interact and on each round,
the prover commits to a new oracle. The verifier queries the oracle and decides whether
to accept the proof.

• LPCP (Linear PCP): The prover commits to a linear function and the verifier queries
the function at specific points.

Prover P Verifier V

q1 q2 q3

PCP Oracle #1
q′1 q

′
2 q′3

PCP Oracle #2
q′′1 q′′2 q′′3

PCP Oracle #3

Commit to oracles (π1, . . . , πr) Point queries (q1, . . . ,qr)

Interaction

Figure 9.3: Illustration of an Interactive Oracle Proof (IOP). On each round i (1 ≤ i ≤
r), V sends a message mi , and P commits to a new oracle πi , which V can query at qi =
(qi ,1, . . . , qi ,m).

While IOPs will be later used for PLONK and zk-STARKs, we will focus on Linear PCPs in
the context of Groth16 zk-SNARK. Let us define it below.

Definition 9.5 (Linear PCP). A Linear PCP is a PCP where the prover commits to a linear
function π = (π1, . . . , πk) and the verifier queries the function at specific points q1, . . . , qr .
Then, the prover responds with the values of the function at these points:

⟨π1,q1⟩, ⟨π2,q2⟩, . . . , ⟨πr ,qr ⟩.

Page 121

Distributed Lab ZKDL Camp

Example (QAP as a Linear PCP). Recall that key QAP equation is:(
n∑
i=1

wiLi(x)

)(
n∑
i=1

wiRi(x)

)
−

(
n∑
i=1

wiOi(x)

)
= Z(x)H(x).

Now, the notation might be confusing, but firstly, we denote vectors of polynomials:

L(x) = (L1(x), . . . , Ln(x)),

R(x) = (R1(x), . . . , Rn(x)),

O(x) = (O1(x), . . . , On(x)).

Now, consider the following linear PCP for QAP:
1. P commits to an extended witness w and coefficients h = (h1, . . . , hn) of H(x).

2. V samples γ R←− F and sends query γ = (γ, γ2, . . . , γn) to P.
3. P reveals the following values:

π1 ← ⟨w,L(γ)⟩, π2 ← ⟨w,R(γ)⟩, π3 ← ⟨w,O(γ)⟩, π4 ← Z(γ) · ⟨h, γ⟩.

4. V checks whether π1π2 − π3 = π4.

Of course, the above example cannot be used as it is: at the very least, we have not
specified how the prover commits to the extended witness w and coefficients h and then ensures
consistency of π1, . . . , π4 with these commitments. For that reason, we need some more tools
to make it work which we learned in the previous lectures.

9.3 QAP as a Linear PCP
When constructing a Quadratic Arithmetic Program (QAP) for a circuit C, we represented

the whole circuit’s computation using the following relation:

L(x)R(x)−O(x) = Z(x)H(x),

where by L(x), R(x), O(x) we denote the polynomials that represent the left, right and output
wires of the circuit, respectively. Z(x) is the target polynomial, while H(x) := M(x)

/
Z(x) for

master polynomial M(x) = L(x)R(x)−O(x) is the quotient polynomial.
We effectively managed to transform all the circuit’s constraints, and computations in the

short form. It still allows one to verify that each computational step is preserved by verifying the
polynomial evaluation in specific (random) points, instead of recomputing everything. However,
it is not quite clear why such a check is safe and how it can be used in a PCP. In other words,
why checking that L(s)R(s) − O(s) = Z(s)H(s) for randomly selected s is enough to verify
the circuit C?

Soundness justification. Why is it safe to use such a check? As it was said early, we
perform all the computations in some finite field F. The polynomials L(x), R(x) and O(x) are
interpolated polynomials using |C| (number of gates) points, so

deg(L) ≤ |C| , deg(R) ≤ |C| , deg(O) ≤ |C|

Page 122

Distributed Lab ZKDL Camp

Thus, using properties of polynomials’ degrees, we can estimate the degree of polynomial
M(x) = L(x)R(x)−O(x).

deg(M) ≤ max{deg(L) + deg(R), deg(O)} ≤ 2 |C|

Now, using the Schwartz-Zippel Lemma (see Lemma 2.12), we can deduce that if an adver-
sary A does not know a valid witness w, resolving the circuit C, he can compute a polynomial
M̃(x)← A(·) that satisfies a verifier V with probability less than 2 |C| /|F|. To put it formally,
we can write:

Pr
s
R←−F
[M̃(s) = M(s)] ≤

2 |C|
|F|

This probability becomes negligible as |F| grows large (which is typically the case), giving us
soundness. In the same time, the verifier accepts the M(x) generated using a valid witness with
probability 1 giving us the completeness, so, we can categorize QAP as PCP.

We will modify the form of our proof with the next modifications, but still preserve the PCP
properties.

In the following sections, we will introduce tools needed to succintly verify the equality above
using the PCP properties. Since the overall proof is very complex from the very first glance, we
will break it down into smaller parts and explain each of them in detail.

Page 123

