Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Recap
00000000 00000000

000000000 0000000000000 0 0000000000

Pairing-Based SNARKS.
Pinocchio And Grothl16

October 22, 2024

Distributed Lab
& zkdl-camp.github.io

w

) github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp

Plan

Recap

Encrypted Verification
Make It Sound
Make it Zero-Knowledge

Real Protocols

Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols
©00000000 00000000000000 0000000000 00000000 00000000

Recap

Recap
000000000

Recap. R1CS

Each constraint in the Rank-1 Constraint System must be in the
form:
(a,w) x (b,w) = (c,w)

Where (u, v) is a dot product.
n
(u,v) :=u'v = Z ui Vi
i=1
Thus

n n n
E ajw; | X E bjWJ' = E Cjc Wi
i=1 Jj=1 k=1

That is, actually, a quadratic equation with multiple variables.

Recap
[e]e] Yololelelele)

Recap. R1CS

Consider the simplest program:

def example(a: F, b: F, c: F) -> F:
if a:
return b * ¢
else:
return b + ¢

Recap. R1CS

r:X1><(X2><X3)+(1*X1)><(X2+X3)

Thus, the next constraints can be build:

x1 x x1 =x1 (binary check) (1)

xp X x3 = mult (2)

x1 X mult = selectMult (3)

(1 —x1) X (x2 + x3) = r — selectMult (4)

The witness vector: w = (1, r, x1, x2, x3, mult, selectMult).

The coefficients vectors:

a :(0 0,1,0,0,0,0), by = (0,0,1,0,0,0,0), ¢1 = (0,0,1,0,0,0,0)
~(0,0,0,1,0,0,0), by =(0,0,0,0,1,0,0), ¢» = (0,0,0,0,0,1,0)
(0 0,1,0,0,0,0), b3 =(0,0,0,0,0,1,0), c3=(0,0,0,0,0,0,1)
= (1,0,-1,0,0,0,0), bs=(0,0,0,1,1,0,0), cs=(0,1,0,0,0,0,—1)

Recap
[e]e]eYo! Yelelele)

Recap. QAP

R1CS provides us with the following constraint vectors:
ai,az,...,am, bl,bg,...,bm, C1,C2,...,Chmp,

Of course, they form corresponding matrices:

a1 412 ... @din
a1 ax» ... axn

A= | | o _ | , same goes for B and C
dml dm2 ... dmn

An example of a single “if" statement:

3
a; = (0,0,1,0,0,0,0) 0 0]l 1[0 0 0 0]
a> = (0,0,0,1,0,0,0) 0 0JOol1 000
a3_(00,1,0000) 0 0J1]J]0 0 0O

=(1,0,-1,0,0,0,0) 4|1 0]-1[0 0 0 0

.

Recap
00000@000

Recap. QAP
Axl X)
2 1
(1,1) (3,1)
1
NI
1 2 3\
—1 (4-1)
—al

lllustration: The Lagrange inteprolation polynomial for points
{(1,1),(2,0),(3,1), (4, —1)} visualized over R.

Recap
000000000

Recap. QAP

Al(X)

(1,3)
°

Figure: Addition of two polynomials

Recap
000000080

Now, using coefficients encoded with polynomials, we can build a
constraint number x € {1,..., m} in the next way:

(w1 A1(x) + waAa(x) + - - - + wpAn(x)) X
x (Wi By(x) + waBa(x) 4 - - + wpBa(x)) =
=(w1 C1(x) + w2 Co(x) + - - - + wpCa(x))

Or written more concisely:

(Z W,'A,'(X)) X (Z W,'B,'(X)) = (Z W,'C,'(X))
i=1 i=1

i=1

A(x) x B(x) = C(x)

Recap
000000008

Recap. QAP

Now, we can define a master polynomial M(x), that has zeros at
all elements from the set Q = {1,..., m}

M(x) = A(x) x B(x) — C(x)

It means, that M(x) can be divided by vanishing polynomial
Zq(x) without a remainder!

Za(x) = H(x — i), H(x) = M is a polynomial

Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols
000000000 900000000000 00 0000000000 00000000 00000000

Encrypted Verification

0Oe000000000000
Current Point
We've managed to encode into a single polynomial an entire

computation (a program), of any size, independent of how much
data it consumes.

Now, we need to figure our the protocol, how a prover can succinctly
proof the knowledge of a correct witness for some circuit to a
verifier, additionally, make it zero-knowledge and non-interactive.

Where the knowledge of the correct witness is a knowledge of the
quotient polynomial H(x).

M(x) = H(x) x Za(x)

Further, for brevity, we will denote Zo(x) as Z(x).

Encrypted Verification
00®00000000000

Notation Preliminaries: Groups

In this section, we will use:

v Group of points on elliptic curve denoted as G of prime order g
with a generator g.

v The symmetric pairing function e : G x G — G, where (G, X)
is a target group (typically, just a scalar from extension I).

Recall
The core property of the pairing function e is the bilinearity:

e(g” g”) = e(g™’.g) = e(g,g°") = e(g.g)*".

Here, g% is the same as “scalar multiplication of a generator by a
scalar o € Zg'.

Encrypted Verification
000®0000000000

Notation Preliminaries: QAP

Recall that the core equation to be proven:
(Z W,A,.(x)) X (Z W,.B,-(X)> = (Z W,c,.(x)> = Z(x)H(x)
i=1 i=1 i=1

Here, we will change notation a bit: instead of A and B, we are
going to use L and R, while C becomes O.

So equation becomes:

(Z WiLi(X)> X — (Z W,'O,'(X)) = Z(x)H(x)

left wires encoding output encodings

Encrypted Verification
0000®000000000

Naive Proof

Suppose, we are given a circuit C with a maximum degree d of
polynomials used underneath.

Thus, all parties additionally know the target polynomial Z(x) and
QAP polynomials {Li(X)}iE[n]a {RI(X)}ie[n]7 {O,‘(X)},-e[n], where n is
number of witness elements.

Prover
v Provides witness w to a Verifier.

Verifier

v Checks (37, wiLi(x)) x (3072, wiRi(x)) = (3211 wi Oi(x))

Encrypted Verification
00000@00000000

Naive Proof

X Succint
v Non-Interactive

X Zero-Knowledge

The verifier could actually just run a program
that represents a circuit C on witness data w.

We, definitely, need to encrypt the witness data w somehow...

Encrypted Verification
00000080000000

Let's define the encryption operation as follows:
Enc:Zq —+ G, Enc(x):=g"

Essentially, Enc(p(7)) is the KZG Commitment com(p).

Consider the polynomial: p(x) = x? — 5x + 2, the encryption of p(7)
can be found as follows:

Enc(p(r)) = g"7) = g(77+2) = (gT2>1 : (g71>5- (g7°)2

KZG Commitment requires encrypted powers of 7: {gTi},-G[d]. But
where the prover can take them?

Encrypted Verification
0000000@000000

Trusted Setup

Trusted Party Setup

v Picks a random value 7 <= F.

v Calculates the public parameters {gTi}ie[d].

v Deletes 7 (toxic waste).

v/ Outputs prover parameters pp < {gTi};e[d] and verifier
parameters vp < com(Z).

This way, we can find the KZG commitment for each polynomial.
For example:

Encrypted Verification
00000000800000

Now, we can calculate the following KZG commitments (or,
synonymously, encryptions):

gL gR(T) gO() gH() LZ(7)

But how can we verify H(x)Z(x) = L(x)R(x) — O(x) in the
encrypted space?

Well, first notice that, according to the Schwarz-Zippel Lemma,
with overwhelming probability the check is equivalent to:

L(T)R(7) = Z(T)H(7) + O(7).
So, we can check this equality as follows:

e(com(L),com(R)) = e(com(Z),com(H)) - e(com(O), g),

Encrypted Verification
000000000®0000

Trusted Setup: r & F, {gTi}l.e[d]’ gZ(M), delete(r).

_ L(x) X R(x)—O(x))

v H(x) 46
v KZG commitments:
m < com(L), g+ com(R), v e(my,7R) 2
mo < com(0), 7y < com(H), e(com(Z2),) - e(mo, g).

w S (WL: TR, O, WH)

Prover P Verifier V

Encrypted Verification
0000000000e000

v Succint
v Non-Interactive

v Zero-Knowledge

X Does it work?

Encrypted Verification
0000000000080

Why it doesn’t work??

Trusted Setup: T LF, {g*i},»e[d], gZ(7), delete(r).

v H'(x) £ Flx], M'(x) = Z(x) x H'(x).

v Finds L'(x), R'(x), O’(x) such that:
L'(x) x R'(x) — O'(x) = M'(x)

v KZG commitments: ?
Ty 4 com(L'(x)), TR = com(R/(x), G i i
TO/(x) com(0'(x)), mpr(x) < com(H'(x)), 7 e

T = (7L (x)s TR (x)s TO! (x)s TH! (x))

A 4

Prover P Verifier V

Problem

Prover isn't forced to use the values from the trusted setup.

Encrypted Verification
000000000000 e0

Proof Of Exponent

Trusted Setup: 7,a <X F, {{gT",g(”i},g[d]}, {g%(1) g}, delete(r, o).

?

v oe(mp,mR) =
H(x) = L(x) X R(x) = O(x) e(com(Z),) - e(7o, g)-
X Z(X) .

KZG commitments: 7 Py oiExponer}t:
ol o o gL(T) e(m., g7) =e(m, 8),
' ’ @

R(r). / aR(T) (g, 8%) = e(rg. 8),
TR < & TR & s o
o ¢ g] OO, e(ﬂo,gu) = e(ﬂ?)
H(r) / aH(r) e(m,87) = e(mp, 8)-
TH +— & Ty & .

— / ! / !
™= (ﬂ-L77TR777077TH>7TL~,7TR77TO77TH)

n
>

Prover P Verifier V

Encrypted Verification
0000000000000e

Including PoE

v Succint
v Non-Interactive
v Zero-Knowledge
X Sound

There is no guarantee that the same witness w was used to calculate
all the commitments 7, g, m0, TH.

Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols
000000000 000000000000 00 000000000 00000000 00000000

Make It Sound

Make It Sound
0®00000000

Additional Optimization

Recal that:

L(x) = wiLi(x), R(x)=>_wiRi(x), O(x)=> wOi(x).
i=0 i=0 j

Here public data is:

{Li(x) et {Ri(X) Yiern)s £ Oi(X) Yien)

Moreover, it's defined only by the circuit and trusted setup, thus, it
can calculated before proof generation as a part of the trusted setup.

Additional Optimization

Updated Trusted Setup:
{ng}ie[d]v {gwi};e[d],
" Nict, {8 ies
&N e, 18°F M},
%N, 8*9 e

Consider the polynomial L(x) = > 7, w;Li(x).
P can compute the KZG commitment 7; and its PoE 7} as follows:

™ A gL(T) _ gZ§’:0 wiLi(T) _ H(gLi(T))Wf’
i=0

7TIL A gaL(T) _ gaZLO wiLi(T) _ H(gO(L,'(T))Wj.
i=0

Make It Sound
000®000000

Witness Consistency Check

To prove that the same w is used in all commitments, we need some
“checksum” term that will somehow combine all polynomials L(x),
R(x), and O(x) with the witness w.

We can do so by proving the next simple statement:

n

gLMHR(+0() H <gL,-<r>+R,-<T>+o,-(r>)W’
=1

And we already know how to do that — POE!

Make It Sound
0000®00000

Witness Consistency Check

Let's introduce one more coefficient...
R
B+ TF

Extended trusted setup contains additional values:

B [gPLDHR(TO(M)Y,

g, 1&g ieln]

Prover needs to calculate mg:

n

Tg gBLM+R(T)+0(7)) — Hgﬁ(Li(T)JrRi(T)JrOf(T))gWi
i=1

And easy check for verifier:

e(m1mrT0,8°) = e(7s, g).

Make It Sound
00000e0000

One more time... that doesn’t work

If the witness is consistent, the following condition must hold:
(wi,iLi(T)+wr,iRi(T)+wo,i0i(1))8 = w;B(Li(T)+Ri(T)+0i(7)) Vi€ [n]
But, what if L; = R;. Let's call them g, thus:

(wii + wr,i)q + wo,i0i(7) = wg,i(2q + Oi(7)) Vi € [n]
The adversary can choose w; ;, wg; and wo ; such that:

Wi 1= Wo,i and Wi = 2WO,,' — WR,i

Example

w=wpo=5 w=7, wg=3

(7+3)g+50(7) =5(2g + O(7))
10g +50(7) = 10qg + 50(7)

Make It Sound
0000008000

More coefficients!

The main problem is that if R; = L; then 8R; = 8L;.

Let's fix that by introducing a separate /3 coefficients for L, R and O.

(BL, Br, Bo) & F3

Therefore, BrR; # BLL; even if R; = L;, so the previous hack
doesn’t work.
So, finally, the trusted setup is updated with:

BL ,Br ﬁ07{g(/@LLi(7)+ﬁRRi(7)+ﬁOOi(T))}

8,8 7,8 i€[n]

Verification:

e(r,g") - e(mr.g"°F) - e(m0,8%°) = e(ns,8)

Make It Sound
0000000800

Even more coefficients!

As the adversary has an access to the public g?t, gf&, gPo he still
can cheat verifier by calculating modified 7.

Example

Consider a constraint wy; X wy; = ws. Let's try to assign 2 and 5 for wy in
a single constraint. As 2 x 5 = 10, the w, should contains value 10.

w = (wy, wp) = (2,10)
The next QAP can be built:
L(x) = 2L;1(x) + 10Ly(x)
R(x) = 2R1(x) + 3+ 10Rx(x)
O(x) = 201(x) + 100-(x)

Compute 7g as:
(g(ﬁLLl(T)+ﬁRR1(T)+ﬂo01(7)))2 . (g,BR)3 . (g(ﬁLLz('r)+ﬁRRz('r)+ﬁoOz(T)))10

Make It Sound
0000000080

Even more coefficients!

To prevent this, let's introduce... one more coefficient!
~ <£ F
So, finally... the trusted setup is updated with:
gW7gBL7gﬁR 507 {g(BLLi(T)+5RRi(T)+5oOi(T))}

8 i€[n]

Proving process isn't changed, unlike verification:

e(rL,g%) - e(nr, g°R7) - e(m0, £°07) = e(ms,&7)

That makes it unfeasible to cheat.

Make It Sound
000000000e

Sound SNARK Protocol

Trusted Setup:

R i i
T,0,BL,Br, Bo,7 < F, {{g7,8° Yicip {8
{g%(), g, gPL,gfr, gho, gl ghrY, gho g7},

H(x) =

KZG commitments:
L(7)

T &
TR < &
O < &

TH < &

L(x) X R(x)— O(x
Z(x) ’

2
@),
H(T)

(x)

! golm),
e g™,
! g0,

Ty — L),

v wg + gPLLUTIHBRR(TI+BoO(T)

Prover P

LLi(T)+BrRi(T)+Bo O"(T))}fe[n} b

delete(T, o, 8., Br, Bo,7)-

v e(m, mg) ==
e{com(Z), 7) - (70,).
v Proof of Exponent:
e(ni,8%) = e(r(, &),
e(mr, %) = e(rg, &),
e(r0,8%) = (0, &),
e(mH,8%) = e(m, 8)-
v e(mi,g7PL) - e(mg, £77F) -
e(r0,87P0) = e(rg,87)

A Y)
T = (7L, TR, TO, TH, T TR Tos THs Wﬁ)

»
>

Verifier V

Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols
000000000 000000000000 00 0000000000 @0000000 00000000

Make it Zero-Knowledge

Make it Zero-Knowledge
0®000000

Why we need modifications?

» According to the security assumptions, given any element of our
proof 7r, it is impossible to restore the witness w.

» Well, that is true, but does it guarantee that no other
information about w is not leaked?
It does not! For example, given 7, | can check if L(x) = 10R(x).
How? Simply check
T — .

This works since 7, = gt(") and g = gR(, so

m=7R gD = g% & | (r) = 10R(7) « L(x) = 10R(x)

Make it Zero-Knowledge
00®00000

How do we fix that? Analysis

» Currently, proof consists of four ingredients: 7, g, T0, TH, and
their corresponding PoEs.

» But, current construction creates some “connection” between
these ingredients. For example, 7&01 = 7R reveals whether

101L(x) = R(x) or mymo = mr whether L(x) + O(x) = R(x).

» Therefore, the prover must add some “noise” to the proof, so
that the verifier can’t use the proof to extract any information
about the witness. The randomness of prover is kept secret.

» Simultaneously, this noise would still make the same proof
checkable by already defined verification equations.

So how to we represent such “noise” with preserving “homomorphic”
properties of the proof?

Make it Zero-Knowledge
00080000

How do we fix that? Doing stuff

Idea #1

: R
Let prover pick random values dg, 90, 9,0y < [F and calculate the
“distorted” values:

L(’T‘)-i—(SL’ (T)+(SR’

T g R < gk same for mp, TH

Problem (informally): To make previous verification mechanism
work, 0 must be picked “carefully”. However, it's impossible to do
so with this construction.

Idea #2

: R
Let prover pick random values g, 00,0, < F and calculate:

1L glDHOZ) o GROGRZ() o g0 +0Z(7)

Make it Zero-Knowledge
00008000

Making Idea Practical

This expression can be easily evaluated. For example,

9
m =g (g7M) " = com(L) - com(2)*

However, the verifier can't check the equation
e(mr,mr) = e(com(Z),) - e(mo, g) anymore.

Idea #3

Our “noise” must be controlled! This can be achieved by calculating
7wy as g"(M) T84 where Ay depends on 6;, g, 50 (and possibly
other public parameters).

Make it Zero-Knowledge
00000800

Making Idea Practical
Check e(m, mr) = e(com(Z),) - e(mo, &) is now equivalent to:

(L) +0LZ(x))(R(x)+0rZ(x)) = (H(x)+AH)Z(x)+(O(x)+0Z(x)),

which, by expanding, gives us the following equation:

LOOR(R) + SRL()Z(x) + SLZ(x)R(x) + 6, 5rZ(x)?

— H()Z6+00x) + AuZ(x) + 02 (x)

where we can cancel out L(x)R(x) and H(x)Z(x) + O(x) terms
since they are equal based on initial construction. This way, we get
the following expression for Agy:

Ap = 00 + 6rL(x) + 0LR(x) + 010rZ(x) |

Make it Zero-Knowledge
00000000

Witness consistency proof

Finally, let us not forget about mg! Previously, we had:

mg = gﬁLL(T)JrﬁRR(T)JrﬁoO(T)

Now, we change:

» L(7)— L(1)+6.Z(7)
» R(7)— R(7)+ 0rZ(7)
» O(1)— O(1)+ doZ(7)

Therefore, our new w3 becomes:

- <gmz<ﬂ)‘” (gﬂRz<T))5R (gﬁoZ(T)>60 ZOLL()+BRR(1)+BoO(7)

Make it Zero-Knowledge
00000000

Overall protocol

Trusted Setup:

R i i / ;
7,0, B, Br, Bo, Y < F, {{g7,8° }ica, {&Pth(7), gPrRi(7), gho0iT} (11,
{g%(1), g, gPt, gfr gho gl gfrY gBoY g7}, delete(r, o, BL, Br, Bo,7)-

X x)—O(x
v/ OH(x) = %. v e(m,mg) ==
e(com(Z2), my) - e(mo, &)-

o R
v Sample §;,6r, 50 «— F, compute: v Proof of Exponent:

i S
m1 e gt gZryL, m o gL (gaZ())oL e((:L gn; - :Ez,g)),
rr — R (2R, o gOR(T) (g Z(7)y0R (R ga) = (f\ug),
e Tl' e(mn, »

o (—gO(T)(gZ(T))AO Tro <;gmo()(gaZ()r . e(ﬂ- a) E(Tr/o,j),
HT) (50 RYOL (o L(7))0R L0k H& e
%Hfg (£°0)(g"()’L (gH))oR (g2(7)) v e(mp g7PL) - e(ng,87PR)

e(r0,87P0) = e(ng,g7)

— / / ! /
™= (7TL7 TRyTOsTH, T, TRy T, Ty, TFB)

n
=

Prover P Verifier V

Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols
000000000 000000000000 00 0000000000 00000000 0000000

Real Protocols

Real Protocols
0®000000

Complexity of the Basic Protocol

Overall Complexity

Suppose circuit consists of n gates. Then, the complexity of the
basic protocol is as follows:
e Proof Size: O(1) — constant number of group elements.

e Setup Time: O(n) — calculating powers of 7, evaluations at 7.
e Prover Time: O(nlogn) — using FFT and wise choice of Q.

e Verifier Time: O(1) — constant number of pairings.
However, O(1) is not very descriptive for proof and verifier
complexities, so let us provide a more detailed analysis.

e Proof Size: 9 G group elements.

e Verifier Time: 15 pairings.

We can do better!

Real Protocols
00®00000

Pinocchio Protocol

. . R :
In toxic waste, include p;, pr <— I, set po < pLpr, and define the
following generators:

gL« g™, gr+ 8", go<+ g™

Reason

Such choice of generators reduce 15 pairings to 11 pairings.
Additionally, we have only 8 group elements in the proof.

Real Protocols
000®0000

Grothl1l6 Protocol

Idea: Generic Group Model

Use Generic Group Model (GGM) technique. Simply put, GGM
allows the adversary to only make oracle requests to compute the
group operations. For example, having a set {gaRi(T)},-e[d],
adversary can compute only linear combinations of these values. In
the particular case of Groth16, instead of considering Li(x), Ri(x),
and Oj(x) separately, we construct their linear combinations as
Qi(x) := BLi(x) + aRi(x) + Oi(x), where a and 3 are toxic
parameters.

Real Protocols
00008000

Groth16 Protocol: Setup Procedure

The proving key is formed as follows:

PP (gl,gf,gf,{gl : (r) (1) ()7 5() |
" i€[n]

E) i
ggag27g;7 {g2T }ie[d])

Real Protocols
00000000

Groth16 Protocol: Proving Procedure

Sample random §;,0r &£ F and compute the following values:

L &, a+>70 wili(r)+5L5 (—gﬂJer o WiRi(T)JF‘SR‘S’

led()t;H(T)Z(T)+L5R+R5L75L6R5

where by Qnig we denoted the following expression:

Qmia(7) = > wiQi(r) = > wi(BL(7) + aRi(r) + 0i(7))

ieImid iEImid

Real Protocols
00000000

Groth16 Protocol: Verification Procedure

The verifier first calculates the following value:

Yiez,, wWi(BLi(T)+aRi(T)+0i(7))/v
Tio < 81

)

and then checks the following single condition:

e(r, mr) = e(gf, g5)e(mio, &7)e(m0, 83)

e(gf‘,gf) can be additionally hard-coded in the verifier, thus

reducing the number of pairings to 3. Finally, the proof's size is now
reduced to 3 group elements: two from G1, and one from Go.

Thank you for your attention

v

/N

& zkdl-camp.github.io
) github.com/ZKDL-Camp

Zi

DL

https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	Recap
	Encrypted Verification
	Make It Sound
	Make it Zero-Knowledge
	Real Protocols

