
Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Pairing-Based SNARKs.
Pinocchio And Groth16
October 22, 2024

Distributed Lab
� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp


Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Plan

1 Recap

2 Encrypted Verification

3 Make It Sound

4 Make it Zero-Knowledge

5 Real Protocols



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Recap



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Recap. R1CS

Each constraint in the Rank-1 Constraint System must be in the
form:

⟨a,w⟩ × ⟨b,w⟩ = ⟨c ,w⟩

Where ⟨u, v⟩ is a dot product.

⟨u, v⟩ := u⊤v =
n∑

i=1

uivi

Thus (
n∑

i=1

aiwi

)
×

 n∑
j=1

bjwj

 =
n∑

k=1

ckwk

That is, actually, a quadratic equation with multiple variables.



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Recap. R1CS

Consider the simplest program:

def example(a: F, b: F, c: F) -> F:
if a:

return b * c
else:

return b + c



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Recap. R1CS

r = x1 × (x2 × x3) + (1− x1)× (x2 + x3)

Thus, the next constraints can be build:

x1 × x1 = x1 (binary check) (1)
x2 × x3 = mult (2)

x1 ×mult = selectMult (3)
(1− x1)× (x2 + x3) = r − selectMult (4)

The witness vector: w = (1, r , x1, x2, x3,mult, selectMult).

The coefficients vectors:
a1 = (0, 0, 1, 0, 0, 0, 0), b1 = (0, 0, 1, 0, 0, 0, 0), c1 = (0, 0, 1, 0, 0, 0, 0)
a2 = (0, 0, 0, 1, 0, 0, 0), b2 = (0, 0, 0, 0, 1, 0, 0), c2 = (0, 0, 0, 0, 0, 1, 0)
a3 = (0, 0, 1, 0, 0, 0, 0), b3 = (0, 0, 0, 0, 0, 1, 0), c3 = (0, 0, 0, 0, 0, 0, 1)
a4 = (1, 0,−1, 0, 0, 0, 0), b4 = (0, 0, 0, 1, 1, 0, 0), c4 = (0, 1, 0, 0, 0, 0,−1)



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Recap. QAP

R1CS provides us with the following constraint vectors:
a1, a2, . . . , am, b1,b2, . . . ,bm, c1, c2, . . . , cm,

Of course, they form corresponding matrices:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , same goes for B and C

An example of a single “if“ statement:

a1 = (0, 0, 1, 0, 0, 0, 0)
a2 = (0, 0, 0, 1, 0, 0, 0)
a3 = (0, 0, 1, 0, 0, 0, 0)
a4 = (1, 0,−1, 0, 0, 0, 0)


0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 −1 0 0 0 0


3

4



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Recap. QAP

1 2 3 4

−2

−1

1

2
(1,1)

(2,0)

(3,1)

(4,-1)

x

Ax1(x)

Illustration: The Lagrange inteprolation polynomial for points
{(1, 1), (2, 0), (3, 1), (4,−1)} visualized over R.



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Recap. QAP

1 2 3

1

2

3

p(x)

(0, 0)

(1, 1) (2, 1)

(3, 0)

q(x)(0, 1)

(1, 2)

r(x)

(1, 3)

(2, 2)

x

A1(x)

Figure: Addition of two polynomials



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Now, using coefficients encoded with polynomials, we can build a
constraint number x ∈ {1, . . . ,m} in the next way:

(w1A1(x) + w2A2(x) + · · ·+ wnAn(x))×
×(w1B1(x) + w2B2(x) + · · ·+ wnBn(x)) =

=(w1C1(x) + w2C2(x) + · · ·+ wnCn(x))

Or written more concisely:(
n∑

i=1

wiAi (x)

)
×

(
n∑

i=1

wiBi (x)

)
=

(
n∑

i=1

wiCi (x)

)

A(x)× B(x) = C (x)



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Recap. QAP

Now, we can define a master polynomial M(x), that has zeros at
all elements from the set Ω = {1, . . . ,m}

M(x) = A(x)× B(x)− C (x)

It means, that M(x) can be divided by vanishing polynomial
ZΩ(x) without a remainder!

ZΩ(x) =
m∏
i=1

(x − i), H(x) =
M(x)

ZΩ(x)
is a polynomial



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Encrypted Verification



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Current Point

We’ve managed to encode into a single polynomial an entire
computation (a program), of any size, independent of how much
data it consumes.

Now, we need to figure our the protocol, how a prover can succinctly
proof the knowledge of a correct witness for some circuit to a
verifier, additionally, make it zero-knowledge and non-interactive.

Where the knowledge of the correct witness is a knowledge of the
quotient polynomial H(x).

M(x) = H(x)× ZΩ(x)

Remark
Further, for brevity, we will denote ZΩ(x) as Z (x).



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Notation Preliminaries: Groups

In this section, we will use:

✓ Group of points on elliptic curve denoted as G of prime order q
with a generator g .

✓ The symmetric pairing function e : G×G→ GT , where (GT ,×)
is a target group (typically, just a scalar from extension Fpk ).

Recall
The core property of the pairing function e is the bilinearity:

e(gα, gβ) = e(gαβ, g) = e(g , gαβ) = e(g , g)αβ.

Here, gα is the same as “scalar multiplication of a generator by a
scalar α ∈ Zq”.



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Notation Preliminaries: QAP

Recall that the core equation to be proven:(
n∑

i=1

wiAi (x)

)
×

(
n∑

i=1

wiBi (x)

)
−

(
n∑

i=1

wiCi (x)

)
= Z (x)H(x)

Here, we will change notation a bit: instead of A and B , we are
going to use L and R , while C becomes O.

So equation becomes:(
n∑

i=1

wiLi (x)

)
︸ ︷︷ ︸
left wires encoding

×

(
n∑

i=1

wiRi (x)

)
︸ ︷︷ ︸
right wires encoding

−

(
n∑

i=1

wiOi (x)

)
︸ ︷︷ ︸
output encodings

= Z (x)H(x)



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Naive Proof

Suppose, we are given a circuit C with a maximum degree d of
polynomials used underneath.

Thus, all parties additionally know the target polynomial Z (x) and
QAP polynomials {Li (x)}i∈[n], {Ri (x)}i∈[n], {Oi (x)}i∈[n], where n is
number of witness elements.

Prover
✓ Provides witness w to a Verifier.

Verifier
✓ Checks (

∑n
i=1 wiLi (x))× (

∑n
i=1 wiRi (x)) = (

∑n
i=1 wiOi (x))



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Naive Proof

✗ Succint

✓ Non-Interactive

✗ Zero-Knowledge

The verifier could actually just run a program
that represents a circuit C on witness data w .

We, definitely, need to encrypt the witness data w somehow...



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Let’s define the encryption operation as follows:
Enc : Zq → G, Enc(x) := g x

Essentially, Enc(p(τ)) is the KZG Commitment com(p).

Example

Consider the polynomial: p(x) = x2 − 5x + 2, the encryption of p(τ)
can be found as follows:

Enc(p(τ)) = gp(τ) = g(τ
2−5τ+2) =

(
g τ2
)1
·
(
g τ1
)−5
·
(
g τ0
)2

Question

KZG Commitment requires encrypted powers of τ : {g τ i}i∈[d ]. But
where the prover can take them?



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Trusted Setup

Trusted Party Setup
✓ Picks a random value τ

R←− F.
✓ Calculates the public parameters {g τ i}i∈[d ].
✓ Deletes τ (toxic waste).

✓ Outputs prover parameters pp← {g τ i}i∈[d ] and verifier
parameters vp← com(Z ).

This way, we can find the KZG commitment for each polynomial.
For example:

com(L) ≜ gL(τ) = g
∑d

i=0 Liτ
i
=

d∏
i=0

(g τ i )Li ,



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Now, we can calculate the following KZG commitments (or,
synonymously, encryptions):

gL(τ), gR(τ), gO(τ), gH(τ), gZ(τ)

But how can we verify H(x)Z (x) = L(x)R(x)− O(x) in the
encrypted space?

Well, first notice that, according to the Schwarz-Zippel Lemma,
with overwhelming probability the check is equivalent to:

L(τ)R(τ) = Z (τ)H(τ) + O(τ).

So, we can check this equality as follows:

e(com(L), com(R)) = e(com(Z ), com(H)) · e(com(O), g),



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Trusted Setup: τ
R←− F, {gτ i }i∈[d ], gZ(τ), delete(τ).

Prover P Verifier V

✓ H(x) = L(x)×R(x)−O(x)
Z(x)

.

✓ KZG commitments:
πL ← com(L), πR ← com(R),

πO ← com(O), πH ← com(H),

π = (πL, πR , πO , πH)

✓ e(πL, πR)
?
==

e(com(Z), πH) · e(πO , g).



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

✓ Succint

✓ Non-Interactive

✓ Zero-Knowledge

✗ Does it work?



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Why it doesn’t work??

Trusted Setup: τ
R←− F, {gτ i }i∈[d ], gZ(τ), delete(τ).

Prover P Verifier V

✓ H′(x)
R←− F[x], M′(x) = Z(x)× H′(x).

✓ Finds L′(x),R′(x),O′(x) such that:
L′(x)× R′(x)− O′(x) = M′(x)

✓ KZG commitments:
πL′(x) ← com(L′(x)), πR′(x) ← com(R′(x)),

πO′(x) ← com(O′(x)), πH′(x) ← com(H′(x)),

π = (πL′(x), πR′(x), πO′(x), πH′(x))

✓ e(πL′(x), πR′(x))
?
==

e(com(Z), πH) · e(πO′(x), g).

Problem
Prover isn’t forced to use the values from the trusted setup.



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Proof Of Exponent

Trusted Setup: τ, α
R←− F, {{gτ i

, gατ i }i∈[d ]}, {gZ(τ), gα}, delete(τ, α).

Prover P Verifier V

✓ H(x) =
L(x)×R(x)−O(x)

Z(x)
.

✓ KZG commitments:

πL ← gL(τ)
, π

′
L ← gαL(τ)

,

πR ← gR(τ)
, π

′
R ← gαR(τ)

,

πO ← gO(τ)
, π

′
O ← gαO(τ)

,

πH ← gH(τ)
, π

′
H ← gαH(τ)

.

π = (πL, πR , πO , πH , π
′
L, π
′
R , π
′
O , π
′
H)

✓ e(πL, πR )
?

===
e(com(Z), πH ) · e(πO , g).

✓ Proof of Exponent:

e(πL, g
α) = e(π′

L, g),

e(πR , g
α) = e(π′

R , g),

e(πO , gα) = e(π′
O , g),

e(πH , gα) = e(π′
H , g).



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Including PoE

✓ Succint

✓ Non-Interactive

✓ Zero-Knowledge

✗ Sound

Problem
There is no guarantee that the same witness w was used to calculate
all the commitments πL, πR , πO , πH .



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Make It Sound



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Additional Optimization

Recal that:

L(x) =
n∑

i=0

wiLi (x), R(x) =
n∑

i=0

wiRi (x), O(x) =
n∑

i=0

wiOi (x).

Here public data is:

{Li (x)}i∈[n], {Ri (x)}i∈[n], {Oi (x)}i∈[n]

Moreover, it’s defined only by the circuit and trusted setup, thus, it
can calculated before proof generation as a part of the trusted setup.



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Additional Optimization
Updated Trusted Setup:

{gτ i
}i∈[d ], {gατ i

}i∈[d ],

{gLi (τ)}i∈[n], {gαLi (τ)}i∈[n],

{gRi (τ)}i∈[n], {gαRi (τ)}i∈[n],

{gOi (τ)}i∈[n], {gαOi (τ)}i∈[n]

Consider the polynomial L(x) =
∑n

i=0 wiLi (x).

P can compute the KZG commitment πL and its PoE π′L as follows:

πL ≜ gL(τ) = g
∑n

i=0 wiLi (τ) =
n∏

i=0

(gLi (τ))wi ,

π′L ≜ gαL(τ) = gα
∑n

i=0 wiLi (τ) =
n∏

i=0

(gαLi (τ))wi .



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Witness Consistency Check

To prove that the same w is used in all commitments, we need some
“checksum” term that will somehow combine all polynomials L(x),
R(x), and O(x) with the witness w.

We can do so by proving the next simple statement:

gL(τ)+R(τ)+O(τ) =
n∏

i=1

(
gLi (τ)+Ri (τ)+Oi (τ)

)wi

And we already know how to do that — POE!



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Witness Consistency Check

Let’s introduce one more coefficient...

β
R←− F

Extended trusted setup contains additional values:

gβ, {gβ(Li (τ)+Ri (τ)+Oi (τ))}i∈[n]

Prover needs to calculate πβ :

πβ ← gβ(L(τ)+R(τ)+O(τ)) =
n∏

i=1

gβ(Li (τ)+Ri (τ)+Oi (τ))gwi

And easy check for verifier:

e(πLπRπO , g
β) = e(πβ, g).



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

One more time... that doesn’t work
If the witness is consistent, the following condition must hold:

(wL,iLi (τ)+wR,iRi (τ)+wO,iOi (τ))β = wiβ(Li (τ)+Ri (τ)+Oi (τ)) ∀i ∈ [n]

But, what if Li ≡ Ri . Let’s call them q, thus:

(wL,i + wR,i )q + wO,iOi (τ) = wβ,i (2q + Oi (τ)) ∀i ∈ [n]

The adversary can choose wL,i , wR,i and wO,i such that:

wi := wO,i and wL,i = 2wO,i − wR,i

Example

w = wO = 5, wL = 7, wR = 3

(7 + 3)q + 5O(τ) = 5(2q + O(τ))

10q + 5O(τ) = 10q + 5O(τ)



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

More coefficients!

The main problem is that if Ri ≡ Li then βRi ≡ βLi .

Let’s fix that by introducing a separate β coefficients for L, R and O.

(βL, βR , βO)
R←− F3

Therefore, βRRi ̸= βLLi even if Ri ≡ Li , so the previous hack
doesn’t work.

So, finally, the trusted setup is updated with:

gβL , gβR , gβO , {g (βLLi (τ)+βRRi (τ)+βOOi (τ))}i∈[n]

Verification:

e(πL, g
βL) · e(πR , gβR ) · e(πO , gβO ) = e(πβ, g)



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Even more coefficients!

As the adversary has an access to the public gβL , gβR , gβO he still
can cheat verifier by calculating modified πβ .

Example
Consider a constraint w1 × w1 = w2. Let’s try to assign 2 and 5 for w1 in
a single constraint. As 2× 5 = 10, the w2 should contains value 10.

w = (w1,w2) = (2, 10)

The next QAP can be built:

L(x) = 2L1(x) + 10L2(x)

R(x) = 2R1(x) + 3 + 10R2(x)

O(x) = 2O1(x) + 10O2(x)

Compute πβ as:

(g (βLL1(τ)+βRR1(τ)+βOO1(τ)))2 · (gβR )3 · (g (βLL2(τ)+βRR2(τ)+βOO2(τ)))10



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Even more coefficients!

To prevent this, let’s introduce... one more coefficient!

γ
R←− F

So, finally... the trusted setup is updated with:

gγ , gβL , gβR , gβO , {g (βLLi (τ)+βRRi (τ)+βOOi (τ))}i∈[n]

Proving process isn’t changed, unlike verification:

e(πL, g
βLγ) · e(πR , gβRγ) · e(πO , gβOγ) = e(πβ, g

γ)

That makes it unfeasible to cheat.



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Sound SNARK Protocol
Trusted Setup:
τ, α, βL, βR , βO , γ

R←− F, {{gτ i
, gατ i }i∈[d ], {g (βLLi (τ)+βRRi (τ)+βOOi (τ))}i∈[n]},

{gZ(τ), gα, gβL , gβR , gβO , gβLγ , gβRγ , gβOγ , gγ}, delete(τ, α, βL, βR , βO , γ).

Prover P Verifier V

✓ H(x) =
L(x)×R(x)−O(x)

Z(x)
.

✓ KZG commitments:

πL ← gL(τ)
, π

′
L ← gαL(τ)

,

πR ← gR(τ)
, π

′
R ← gαR(τ)

,

πO ← gO(τ)
, π

′
O ← gαO(τ)

,

πH ← gH(τ)
, π

′
H ← gαH(τ)

.

✓ πβ ← gβLL(τ)+βRR(τ)+βOO(τ)

π = (πL, πR , πO , πH , π
′
L, π
′
R , π
′
O , π
′
H , πβ)

✓ e(πL, πR )
?

===
e(com(Z), πH ) · e(πO , g).

✓ Proof of Exponent:

e(πL, g
α) = e(π′

L, g),

e(πR , g
α) = e(π′

R , g),

e(πO , gα) = e(π′
O , g),

e(πH , gα) = e(π′
H , g).

✓ e(πL, g
γβL ) · e(πR , g

γβR ) ·
· e(πO , gγβO ) = e(πβ , gγ )



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Make it Zero-Knowledge



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Why we need modifications?

Question
➤ According to the security assumptions, given any element of our

proof π, it is impossible to restore the witness w .

➤ Well, that is true, but does it guarantee that no other
information about w is not leaked?

It does not! For example, given π, I can check if L(x) = 10R(x).
How? Simply check

πL
?
== π10

R .

This works since πL = gL(τ) and πR = gR(τ), so

πL = π10
R ⇔ gL(τ) = g10R(τ) ⇔ L(τ) = 10R(τ)⇔ L(x) = 10R(x)



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

How do we fix that? Analysis
Analysis
➤ Currently, proof consists of four ingredients: πL, πR , πO , πH , and

their corresponding PoEs.

➤ But, current construction creates some “connection” between
these ingredients. For example, π101

L = πR reveals whether
101L(x) = R(x) or πLπO = πR whether L(x) + O(x) = R(x).

➤ Therefore, the prover must add some “noise” to the proof, so
that the verifier can’t use the proof to extract any information
about the witness. The randomness of prover is kept secret.

➤ Simultaneously, this noise would still make the same proof
checkable by already defined verification equations.

Question
So how to we represent such “noise” with preserving “homomorphic”
properties of the proof?



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

How do we fix that? Doing stuff

Idea #1

Let prover pick random values δR , δO , δL, δH
R←− F and calculate the

“distorted” values:

πL ← gL(τ)+δL , πR ← gR(τ)+δR , same for πO , πH

Problem (informally): To make previous verification mechanism
work, δH must be picked “carefully”. However, it’s impossible to do
so with this construction.

Idea #2

Let prover pick random values δR , δO , δL
R←− F and calculate:

πL ← gL(τ)+δLZ(τ), πR ← gR(τ)+δRZ(τ), πO ← gO(τ)+δOZ(τ)



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Making Idea Practical

This expression can be easily evaluated. For example,

πL = gL(τ) ·
(
gZ(τ)

)δL
= com(L) · com(Z )δL

Problem
However, the verifier can’t check the equation
e(πL, πR) = e(com(Z ), πH) · e(πO , g) anymore.

Idea #3
Our “noise” must be controlled! This can be achieved by calculating
πH as gH(τ)+∆H where ∆H depends on δL, δR , δO (and possibly
other public parameters).



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Making Idea Practical

Check e(πL, πR) = e(com(Z ), πH) · e(πO , g) is now equivalent to:

(L(x)+δLZ (x))(R(x)+δRZ (x)) = (H(x)+∆H)Z (x)+(O(x)+δOZ (x)),

which, by expanding, gives us the following equation:

�����L(x)R(x) + δRL(x)Z (x) + δLZ (x)R(x) + δLδRZ (x)
2

=(((((((((
H(x)Z (x) + O(x) + ∆HZ (x) + δOZ (x)

where we can cancel out L(x)R(x) and H(x)Z (x) + O(x) terms
since they are equal based on initial construction. This way, we get
the following expression for ∆H :

∆H = δO + δRL(x) + δLR(x) + δLδRZ (x)



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Witness consistency proof

Finally, let us not forget about πβ! Previously, we had:

πβ = gβLL(τ)+βRR(τ)+βOO(τ)

Now, we change:

➤ L(τ) 7→ L(τ) + δLZ (τ)

➤ R(τ) 7→ R(τ) + δRZ (τ)

➤ O(τ) 7→ O(τ) + δOZ (τ)

Therefore, our new πβ becomes:

πβ =
(
gβLZ(τ)

)δL (
gβRZ(τ)

)δR (
gβOZ(τ)

)δO
gβLL(τ)+βRR(τ)+βOO(τ)



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Overall protocol
Trusted Setup:
τ, α, βL, βR , βO , γ

R←− F, {{gτ i
, gατ i }i∈[d ], {gβLLi (τ), gβRRi (τ), gβOOi (τ)}i∈[n]},

{gZ(τ), gα, gβL , gβR , gβO , gβLγ , gβRγ , gβOγ , gγ}, delete(τ, α, βL, βR , βO , γ).

Prover P Verifier V

✓ H(x) =
L(x)×R(x)−O(x)

Z(x)
.

✓ Sample δL, δR , δO
R←− F, compute:

πL ← gL(τ)(gZ(τ))δL , π′
L ← gαL(τ)(gαZ(τ))δL ,

πR ← gR(τ)(gZ(τ))δR , π
′
R ← gαR(τ)(gαZ(τ))δR ,

πO ← gO(τ)(gZ(τ))δO , π
′
O ← gαO(τ)(gαZ(τ))δO ,

πH ← gH(τ)(gδO )(gR(τ))δL (gL(τ))δR (gZ(τ))δLδR
πβ = . . .

π = (πL, πR , πO , πH , π
′
L, π
′
R , π
′
O , π
′
H , πβ)

✓ e(πL, πR )
?

===
e(com(Z), πH ) · e(πO , g).

✓ Proof of Exponent:

e(πL, g
α) = e(π′

L, g),

e(πR , g
α) = e(π′

R , g),

e(πO , gα) = e(π′
O , g),

e(πH , gα) = e(π′
H , g).

✓ e(πL, g
γβL ) · e(πR , g

γβR ) ·
· e(πO , gγβO ) = e(πβ , gγ )



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Real Protocols



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Complexity of the Basic Protocol

Overall Complexity
Suppose circuit consists of n gates. Then, the complexity of the
basic protocol is as follows:
• Proof Size: O(1) — constant number of group elements.

• Setup Time: O(n) — calculating powers of τ , evaluations at τ .

• Prover Time: O(n log n) — using FFT and wise choice of Ω.

• Verifier Time: O(1) — constant number of pairings.
However, O(1) is not very descriptive for proof and verifier
complexities, so let us provide a more detailed analysis.
• Proof Size: 9 G group elements.

• Verifier Time: 15 pairings.

We can do better!



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Pinocchio Protocol

Idea

In toxic waste, include ρL, ρR
R←− F, set ρO ← ρLρR , and define the

following generators:

gL ← gρL , gR ← gρR , gO ← gρO

Reason
Such choice of generators reduce 15 pairings to 11 pairings.
Additionally, we have only 8 group elements in the proof.



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Groth16 Protocol

Idea: Generic Group Model
Use Generic Group Model (GGM) technique. Simply put, GGM
allows the adversary to only make oracle requests to compute the
group operations. For example, having a set {gαRi (τ)}i∈[d ],
adversary can compute only linear combinations of these values. In
the particular case of Groth16, instead of considering Li (x), Ri (x),
and Oi (x) separately, we construct their linear combinations as
Qi (x) := βLi (x) + αRi (x) + Oi (x), where α and β are toxic
parameters.



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Groth16 Protocol: Setup Procedure

The proving key is formed as follows:

pp←
(
gα
1 , g

β
1 , g

δ
1 ,

{
g τ i

1 ,
βLi (τ) + αRi (τ) + Oi (τ)

γ
,
τ iZ (τ)

δ

}
i∈[n]

,

gβ
2 , g

δ
2 , g

γ
2 , {g

τ i

2 }i∈[d ]
)



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Groth16 Protocol: Proving Procedure

Sample random δL, δR
R←− F and compute the following values:

πL ← g
α+

∑n
i=1 wiLi (τ)+δLδ

1 , πR ← g
β+

∑n
i=0 wiRi (τ)+δRδ

2 ,

πO ← g
Qmid(τ)+H(τ)Z(τ)

δ
+LδR+RδL−δLδRδ

1 ,

where by Qmid we denoted the following expression:

Qmid(τ) =
∑

i∈Imid

wiQi (τ) =
∑

i∈Imid

wi (βLi (τ) + αRi (τ) + Oi (τ))



Recap Encrypted Verification Make It Sound Make it Zero-Knowledge Real Protocols

Groth16 Protocol: Verification Procedure

The verifier first calculates the following value:

πio ← g

∑
i∈Iio

wi (βLi (τ)+αRi (τ)+Oi (τ))/γ

1 ,

and then checks the following single condition:

e(πL, πR) = e(gα
1 , g

β
2 )e(πio, g

γ
2 )e(πO , g

δ
2 )

Note

e(gα
1 , g

β
2 ) can be additionally hard-coded in the verifier, thus

reducing the number of pairings to 3. Finally, the proof’s size is now
reduced to 3 group elements: two from G1, and one from G2.



Thank you for your attention

♥

� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	Recap
	Encrypted Verification
	Make It Sound
	Make it Zero-Knowledge
	Real Protocols

