Introduction

Circom

December 05, 2024

Distributed Lab

zkdl-camp.github.iogithub.com/ZKDL-Camp

Introduction

Plan

1 Introduction

Introduction ●○○○

Introduction

Why do we need ZK?

Option

Solution to privacy

Example

1. I know the private key that corresponds to this public key

2. I know a private key that corresponds to a public key from this list

Option

Solution to scalability

Example

This is the hash of a blockchain block that does not produce negative balances

Using ZKP

Toolchain

Introduction

Circom

Previously on ZKDL Camp

Probably you can recall the function def r(x1: F, x2: F, x3: F) -> F: return x2 * x3 if x1 else x2 + x3

That can be expressed as:

$$r = x_1 \times (x_2 \times x_3) + (1 - x_1) \times (x_2 + x_3)$$

We need a boolean restriction for x_1 :

$$x_1\times(1-x_1)=0$$

Thus, the next constraints can be build:

$$x_1 imes x_1 = x_1$$
 (binary check) (1)

$$x_2 \times x_3 =$$
mult (2)

$$x_1 \times \text{mult} = \text{selectMult}$$
 (3)

$$(1-x_1) \times (x_2 + x_3) = r - \text{selectMult}$$
(4)

Previously on ZKDL Camp

The witness vector: $\mathbf{w} = (1, r, x_1, x_2, x_3, \text{mult}, \text{selectMult})$. The coefficients vectors:

Jsing the arithmetic in a large
$$\mathbb{F}_p$$
, consider the following values:

$$x_1 = 1, \quad x_2 = 3, \quad x_3 = 4$$

Verifying the constraints:

1.
$$x_1 \times x_1 = x_1$$
 (1 × 1 = 1)
2. $x_2 \times x_3 = \text{mult}$ (3 × 4 = 12)
3. $x_1 \times \text{mult} = \text{selectMult}$ (1 × 12 = 12)
4. (1 - x_1) × ($x_2 + x_3$) = r - selectMult (0 × 7 = 12 - 12)

Previously on ZKDL Camp

By Groth16 Protocol the verifier should check the following condition:

$$e(\pi_L, \pi_R) = e(g_1^{\alpha}, g_2^{\beta})e(\pi_{\text{io}}, g_2^{\gamma})e(\pi_O, g_2^{\delta})$$

Recall

For BN254 (BN128), we have:

- Left inputs to *e* is of form $(x, y) \in \mathbb{G}_1$ regular curve.
- Right inputs to e is of form ((x₁, y₁), (x₂, y₂)) ∈ G₂ "complex" curve, consisting of two F_{p²} coordinates.
- $e(g_1^{\alpha}, g_2^{\beta})$ is of form $(x_1, \ldots, x_{12}) \in \mathbb{F}_{p^{12}}$

Thank you for your attention ♥

zkdl-camp.github.iogithub.com/ZKDL-Camp

