Polynomial Form

PlonK Arithmetization
000000000000000

Introduction. PlonK: Five Ws
000000000

[e]e]e]e]e}

Plonk Arithmetization
January 09, 2025

Distributed Lab
& zkdl-camp.github.io

wr

) github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp

Plan

Introduction. PlonK: Five Ws
PlonK Arithmetization
Polynomial Form

m Formulating Conditions

m Permutation Check

Introduction. PlonK: Five Ws PlonK Arithmetization Polynomial Form
©0000 000000000 000000000000000

Introduction. PlonK: Five Ws

Introduction. PlonK: Five Ws
00000

What is PlonK?

PlonK is a type of zkSNARK:
e Grothl6
e Halo2

e Marlin

e PlonK

Introduction. PlonK: Five Ws
0000

Who and When invented Plonk?

Ariel Gabizon, Zachary Williamson, Oana Ciobotaru introduced
paper “PLONK: Permutations over Lagrange-bases for Oecumenical
Noninteractive arguments of Knowledge" in 2019

PlonK: Permutations over Lagrange-bases for
Oecumenical Noninteractive arguments of
Knowledge

Ariel Gabizon* Zachary J. Williamson Oana Ciobotaru
Aztec Aztec

February 23, 2024

Figure: PlonK Paper. Date in Paper reflects the last update :)

Introduction. PlonK: Five Ws
0000

Why use Plonk?

Focus on what you want:
e ZKP for different tasks?

e Efficient proving times?

e Small-medium proof sizes?

e Flexibility?

Where Plonk is used?
zkVMs love Plonk!

e Aztek Protocol (Noir)
e zkSync
e Dusk Network

e Mina Protocol

Introduction. PlonK: Five Ws PlonK Arithmetization Polynomial Form
[e]e]e]e]e] 000000000 0000000000000 00

PlonK Arithmetization

PlonK Arithmetization
0@0000000

Arithmetization

Goal: Write some program (computation) into math
processing-prone form.

Example

Public Input: x e F
Private Input: e € F
Output: ex x +x—1

Let's split our program into the sequence of gates with left, right
operands and output - circuit.

Example

We need three gates to encode our program:
1. Gate #1: left e, right x, output u = e X x

2. Gate #2: left u, right x, output v = v+ x
3. Gate #3: left v, right x, output w = v + (—1)

PlonK Arithmetization
00®000000

Execution Trace

Then, form execution trace table — a matrix T with columns L, R
and O.

ol | >
|||l N

x| Wl w|

Notice how the last row has no value in B column (marked by X) —
this is reasoned by the fact it is not a variable, but rather a constant,
meaning it doesn't depend on execution.

PlonK Arithmetization
000@00000

Encode the Program

Suppose you were given random matrix T. How could you tell if it is
suitable for your circuit?

Solution

Encode the circuit. Check T using encoding:
1. Gates (gate constraints) — using matrix Q.

2. Wires (copy constraints) — using matrix V.

Definition (Gate Matrix)

Q@ matrix has one row per each gate with columns Q;, Qr, Qo, Qu,
Qc. If columns A, B and C of the execution trace table form valid
evaluation of the circuit,

AiQLi + BiQri + AiBiQumi + CiQoi + Qi =0

PlonK Arithmetization
0000®0000

R Matrix

For our program, we would have a following @ table:

QL| Qr | Qu | Qo | Q
0 0 1 -1, 0
1 1 0 -1 0
1 0 0 -1 | -1
You can verify that our claim holds for aforementioned trace matrix:

2x04+3x0+2x3x1+6x(-1)+0=0
6x1+3x1+6x3x0+9x(=1)+0=0
I9Xx1+0x0+9%x0x04+8x(-1)+(-1)=0

PlonK Arithmetization
00000@000

V Matrix

V consists of indices of all inputs and intermediate values, so that if
T is a valid trace,

Vi j kI (Vij= Vi) = (Tij = Tk)

For our program, V would look like following:

LIR|O
0|1]2
2113
3 4

Here 0 is an index of e, 1 is an index of x, 2 — u, 3 — v and 4 —
output w.

PlonK Arithmetization
000000800

Custom Gates

Default Plonk: addition and multiplication gates. How to make it
more interesting?

Solution

Q with it's 5 columns already allows for custom gates, however it is
possible to include out own columns.

Example

Our entire program may be encoded as one custom gate.
Q| Qr | Qu | Qo | Qc | L|R|O [ATB]JC
Qo1 1 1] 1] Yoli(2]| "[2[38

2x0+3x1+2x3x14+8x(-1)+(-1)=0

PlonK Arithmetization
00000000

Public Inputs

Also need to encode public inputs.

Consider, as if we added new selector rows to @ and tied them in V

and T.
Example
Q | Qr | Qu | Qo | Qc L{RJ]O A[B]|C
1] o 0 0 | 3 0 3
Q1] o 0 0 | 8 Vi1 T:| 8
1 1 T | 1] 1 20 3 2|38
1| -1 o 0| o 13 8 | 8

Now @ and V are not independent of evaluations.

We introduce another one-column matrix named 1 (public inputs).

PlonK Arithmetization
00000000e

Wrap-Up

With only Q modified, we have:

M QL | Qr | Qu | Q | Qc
3 -1 0 0 0 0
8 Q:| -1 0 0 0 0
0 1 1 1 -1 1
0 1 -1 0 0 0

Definition (Interim Summary)

Matrix T with columns A, B and C encodes correct execution of the
program, if the following two conditions hold:

1. Vi: AiQui + BiQri + AiBiQumi + CiQoi + Qi + ;=0
2. Vi, j,k, 12 (Vij = Vis) = (Tij = Tky)

Introduction. PlonK: Five Ws PlonK Arithmetization Polynomial Form
[e]e]e]e]e] 000000000 @®00000000000000

Polynomial Form

Polynomial Form

Matrices to Polynomials

Encode matrices into a few equations on polynomials.

Let w be a primitive N-th root of unity and let

Q= {wj 0<)< N} Let a,b,¢,q1,4Rr,qM, 90, qc, ™ be
polynomials of degree at most N that interpolate corresponding
columns from matrices at the domain Q. This means, that

Vj : a(w') = A; and the same for other columns.

Proposition
Now we can reduce down our first condition to checking valid
execution trace into the following claim over polynomials:

Jt € F[X] : aq. + bgr + abgm + cqo + qc + ™ = zqt,

where zq(X) is the vanishing polynomial XV — 1.

Polynomial Form
000

Copy constraints in polynomial form.

Spoiler: we can use the concept of permutation to encode V' wirings.

A permutation is a rearrangement of the set:

Z={(i,j):suchthat 0 </ < N, and 0 < < 3}

Permutation of the set is commonly denoted as o.

Polynomial Form

Copy constraints in polynomial form.

Example

The matrix V induces a permutation of this set where o((/,)) is
equal to the indices of the next occurrence of the value at position
(7,/). So, for our example:

LIR|O
0
Vil
2101 3
113
o 0,0):(2,1),0'((0,1)): 0,3,0’((0,2 = (0,2
U((Ov3)) = (Ov 1),0‘((2, 1)) = (070)70-((3a 1)) = (2a2)

Polynomial Form
©0000000000

Permutation Check. Having defined permutation, we can now
reduce a condition 2 of valid execution trace matrix into the

following check:
V(I,J) erl: T,'Vj = To’(i,j)

You may have noticed how this can be reformulated as equality of A
and B:
A={((1,)), Tij) - (i,j) € I}

B ={(a((i.))), Tij) : (7)) € T}

We can reduce this check down to polynomial equations.

Polynomial Form
0®000000000

Suppose we have sets A = {ag, a1} and B = { by, b1 }. We can
consider polynomials A" = {ag + X, a1 + X}, B’ = {by + X, by + X}.
So, A’ = B/, only if (ap + X)(a1 + X) = (bo + X)(b1 + X). This is
true because of linear polynomial unique factorization property,
working as prime factors. Now, we can utilize Schwartz-Zippel
lemma to replace the latter formula with

(a0 +7v)(a1 + v) = (bo + v)(b1 +) for some random ~ with
overwhelming probability. If we wish to generalize this for arbitrary
sets A= {ap,...,ak_1} and B = {bo,...,bxk_1}, apply the
following check:

Polynomial Form
00@00000000

Let Q be a domain of the form {1,w,...,w*1} for some k-th root
of unity w. Let f and g be polynomials that interpolate the
following values at Q:

f:(ao+7,.-ak-1+7)
g:(bo+7,... b-1+7)
Then [120 (ai +7) = [1=4 (bi + 7) if and only if exists a

polynomial Z € F[X] such that for all h € Q we have Z(w?) =1
and Z(h)F(h) = g(h)Z(wh).

Polynomial Form
000@0000000

Now that we can encode equality of sets of field elements, let's
expand this to sets of tuples of field elements. Let
A = {(a0, a1), (a2, a3)} and B = {(bo, b1), (b2, b3)}, then, similarly:

A ={ag+aY+X,a+aY + X}
B ={byg+ b1Y + X,by + b3Y + X}

A=B« A =8

As before, we can leverage Schwartz-Zippel lemma to reduce this
down into sampling random [and ~ and checking equality of:

(a0 + Ba1 + v)(a2 + Baz +) = (bo + Bb1 +¥)(b2 + Bb3 +7)

Polynomial Form
00008000000

Let's make (i, /) into one field element, so that we can use
statement above for encoding.

Recall that i € [0; N — 1] and j € [0; 2]; we can take 3/N-th primitive
root of unity 77 and define our field element as ag = 13-

A={n*",Tij): (i,j) € T}

B ={(n**", Tiy): (i.)) € T,0((i.)) = (k,)}

Polynomial Form
00000@00000

Let n be a 3N-th primitive root of unity, 8 and ~ random field
elements. Let D = {1,7,7%,...,7°N"1}. Then let f and g
interpolate at D:

7l i + 03B £y (i,j) €T}
g :{Ti,j + 773k+lﬁ +7: ("7./.) € I»O-((ivj)) = (kv /)}

So, 3Z € F[X] s.t. Vh € Q we have Z(n°) = 1 and
Z(h)f(h) = g(h)Z(nh) & A = B w.h.p.

Polynomial Form
000000@0000

Notice, that w = 13 is a primitive N-th root of unity. Let
Q= {1,w,w?, ...,wN"1}. We will define three polynomials, which
interpolate following sets:

So1: {n¥*t - (i,0) € Z,0((i,0)) = (k,)}
So2 A (i,1) € Z,0((i,0)) = (k, 1)}
S 2 {773k+l : (iv2) & Ly 0((i» 0)) = (kv /)}

Polynomial Form
00000008000

Copy constraints via polynomials

Let w be an N-th root of unity. Let Q = {1,w,w?,...,wN"1}. Let
ki and ko be two field elements such that w’ # w/k; # w'ks for all
i,j,I. Let 8 and v be random field elements. Let f and g be the

polynomials that interpolate, respectively, the following values at Q:

f:{(Toj+w'B+7) (Toj+wkiB+7) (Toj+whkB+7):0<i<N
g: {(Toj+ So1(w)B+7) (Toj + So2(w)B +7) (Toj + Soa(w)B +7)

So, 3Z € F[X] such that Vd € D we have Z(w®) =1 and
Z(d)f(d) = g(d)Z(wd) ++ A= B w.h.p.

Polynomial Form
00000000800

Summary | Matrices

Definition

Let T be a N x 3 matrix with columns A, B, C and Ma N x 1
matrix where N is the number of gates. They correspond to a valid
execution instance with public input given by I if and only if:

1. Vi: AiQui + BiQri + AiBiQui + CiQoi + Qci +1; =0

2. Vl',j,k,/i V,',J': Vk,/ — T,',J': Tk’/

3.Vi>n:IM;=0

Polynomial Form
00000000080

Summary | Polynomials

Definition

Let zo = XV — 1. Let T be a N x 3 matrix with columns A, B, C

and 1 a N x 1 matrix. They correspond to a valid execution

instance with public input given by I if and only if:

1. 3ty € F[X] : aqL + bgr + abgm + cqo + qc + ™ = zoty

2. Ay, t3,z € F[X] : zf — g2/ = zqty and (z — 1)L = zqt3, where
Z/(X) = z(Xw).

Thank you for your attention

v

/N

& zkdl-camp.github.io
) github.com/ZKDL-Camp

Zi

DL

https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	Introduction. PlonK: Five Ws
	PlonK Arithmetization
	Polynomial Form
	Formulating Conditions
	Permutation Check

