
Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Number Theoretic Transform (NTT)
January 21, 2025

Distributed Lab
� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp


Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Plan
1 Recap on Interpolation

Polynomial Interpolation is a Universal Encoder

Motivation for NTT

2 Roots of Unity

Multiplicative Subgroup of Finite Fields

Barycentric Interpolation

3 Number Theoretic Transform

Three Gadgets

Polynomial vs NTT Domain

4 Details

Why NTT takes quasilinear complexity?



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Recap on Interpolation



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Polynomial Interpolation
Notice
All the previous protocols use the idea that polynomials are
universal data encoders. We can encode any set of scalars
(a0, . . . , aN−1) ∈ FN using interpolation:

p(xj) = aj , j = 0, . . . ,N − 1, {xj}j∈[N] are fixed

Encode

Figure: Polynomial Interpolation as a universal encoder.



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Polynomial Interpolation

Example
In Groth16, we used interpolation of 3n polynomials:

Lj(i) = ℓi ,j , Rj(i) = ri ,j , Oj(i) = oi ,j ,

where ℓi ,j , ri ,j , oi ,j are the elements of constraint matrices L,R,O
(left, right, and output).

However, in PlonK we have witnessed
a(ωj) = Aj where Aj are the elements of the
left trace vector A.

Question
What the heck is this ω? Why do we need
it? How it helps?



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Why we need something advanced?

Recall
The interpolation formula in given by:

p(x) =
N−1∑
i=0

ai · ℓi (x), ℓi (x) =
N−1∏

j=0,j ̸=i

x − xj
xi − xj

Question
What is the naive complexity of this interpolation implementation?

Observation
Through careful choice of {xj}j∈[N], we can reduce the complexity of
interpolation, multiplication, or other complex operations to
O(N logN). Spoiler: we will use the nth roots of unity domain
Ω = {ωj}j∈[N]. Let us see why it helps.



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Roots of Unity



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Multiplicative Subgroup.

We know that Fp is a field: we have a usual arithmetic +,×.

Question
Does (Fp,×) form a group?

No, since 0 does not have an inverse. But, if we consider
(Fp \ {0},×), we do have a group structure!

Definition
A multiplicative group of a finite field F, denoted as F×, is a
multiplicative group (F \ {0},×).

Number of Elements
The number of elements in F×

p is p − 1.



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Primitive Root
Theorem
Multiplicative group of a finite field F×

p is cyclic. The generators ω
of this group are called primitive roots.

Example
ω = 3 is the primitive root of F7. Indeed,

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1.

Clearly, ⟨ω⟩ = F×
7 .

The set F×
p is not useful on its own. However, we can consider the

following set, called r-th roots of unity:

Ωr = {ω ∈ F×
p | ωr = 1} ⊂ F×

p .

Question. When such cyclic group exists?



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Roots of Unity
Theorem (Lagrange Theorem)

If H ≤ G is a subgroup of any finite group G, then ord(H) | ord(G).

Corollary

If Ωr is a subgroup of F×
p , then r | (p − 1).

Some other Notes
Moreover, one might prove in the opposite direction:
• If r | (p − 1), then there exists a subgroup Ωr ≤ F×

p .

• Its generator is given by ω = g (p−1)/r where ⟨g⟩ = F×
p .

Yet another note
Typically, we would need r to be the power of two. We will see why
in the NTT section.



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Complex Analysis Interpretation

Figure: Visualization of the roots of unity Ω5 = {z ∈ C : z5 = 1}.

On the complex plane, the generator of the r -th roots of unity Ωr is
given by ζr = e2πi/r . In a finite field, we do not have such a luxury.



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Vanishing Polynomial

Definition
The vanishing polynomial zD(x) of a set D ⊂ Fp is a polynomial
satisfying zD(d) = 0 for all d ∈ D.

Vanishing polynomials are always of form zD(x) = c ·
∏

d∈D(x − d).

The interesting question is: what is the vanishing polynomial of the
r -th roots of unity Ωr? For simplicity, assume c = 1.

Lemma
The vanishing polynomial of Ωr is zΩ(x) = x r − 1.

Proof Idea. Since for any ζ ∈ Ωr we have ζr = 1, or, equivalently,
ζr − 1. Thus, any ζ ∈ Ωr is a root of zΩ(x) = x r − 1.



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Vanishing Polynomial over R

Figure: Vanishing polynomial p(x) = (x − 1)(x − 2)(x − 4) of
D = {1, 2, 4}



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Barycentric Interpolation

Now, let us come back to the interpolation problem p(xj) = aj for
j ∈ [N]. Introduce γ(x) =

∏N−1
j=0 (x − xj).

Proposition
The Lagrange basis polynomial ℓj can be rewritten as:

ℓj(x) = γ(x) ·
wj

x − xj
, wj =

1∑N−1
k=0,k ̸=j(xj − xk)

.

Let us substitute it into the interpolation formula:

p(x) =
N−1∑
j=0

ajℓj(x) =
N−1∑
j=0

ajγ(x)
wj

x − xj
= γ(x)

N−1∑
j=0

wj

x − xj
aj .



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Barycentric Interpolation (Cont.)

Barycentric Formula: p(x) = γ(x)
N−1∑
j=0

wj

x − xj
aj

Proposition

• Computing {wj}j∈[N] costs O(N2) operations before evaluation.

• Both γ(x) and sum requires O(N) operations.

But what happens if instead of xj , we use ωj ∈ ΩN?

p(x) =
xN − 1

N

∑
j∈[N]

ωj

x − ωj
aj

Takeaway: We can interpolate in O(N) operations.



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Number Theoretic Transform



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

What is NTT?
Now suppose we want to find m(x) = p(x)q(x). We’ll use NTT!

Question

What does it mean that you know polynomial p(x) ∈ F(≤N)[x ]?

This means either of two (typically):

• You know the polynomial coefficients p0, . . . , pN−1.

• You know the polynomial values at some points {(xj , aj)}j∈[N].

Definition (NTT)

Suppose p(x) =
∑N−1

j=0 pjx
j . The Number Theoretic Transform

(NTT) of p is defined as evaluations of p at the N-th roots of unity:

NTT(p) =
(
p(ω0), p(ω1), . . . , p(ωN−1)

)
.



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

What is the point of NTT?

Note: To denote the result of NTT, we use hat: p̂ = NTT(p).

Question: Given NTTs p̂ and q̂ of two polynomials p and q, how do
we find the NTT of their product m(x) = p(x)q(x)?

Main NTT Property
Suppose m(x) = p(x)q(x) is the product of p and q. Then,

m̂ = p̂ ⊙ q̂

Speaking more formally, NTT : (F(≤N)[X ],×)→ (FN ,⊙) is a
homomorphism between a set of polynomials of degree up to N and
their NTT domain. With certain appropriate technicalities, NTT can
be extended to the isomorphism (namely, use F[X ]/(XN − 1)).

Why? Well... m(ωj) = p(ωj)q(ωj) :/



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Final Ingredient: Inverse NTT

Now, can we restore the polynomial m(x) from its NTT m̂? Of
course!

Definition
Inverse NTT The Inverse Number Theoretic Transform (INTT) is
a function that restores the polynomial m(x) from its evaluations m̂:

INTT(m̂) = (m0,m1, . . . ,mN−1)

In its essence, we solve the interpolation problem:

m(ωj) = m̂j , j ∈ [N], Goal: find coefficients m0, . . . ,mN−1



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Punchline
Polynomial Space F(≤N)[x ]

NTT Space

p, q m = p · q

p̂, q̂ m̂ = p̂ ⊙ q̂

O(N2)

O(N logN)

O(N)

O(N logN)

Figure: Illustration of the NTT Algorithm

Question
Does it resemble you one trick from Elliptic Curves?



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Illustration

Figure: Illustration of the FFT Algorithm. Taken from “The Fast Fourier
Transform (FFT): Most Ingenious Algorithm Ever?”



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Details



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

When NTT works?

Note
For NTT to work, we will impose the following requirements on our
setup:
1. The field Fp should have 2k -roots of unity for sufficiently many k .

In other words, p = p′ · 2m + 1 with small p′ ∈ N.

2. The polynomial order is N = 2k . Not a strict requirement, since
we can always pad the polynomial with zeros.

Example

• BabyBear prime p = 15 · 227 + 1 is NTT-friendly: the order of
multiplicative group is 15 · 227, so 2k | 15 · 227 for all k ≤ 27.

• Mersenne prime p = 231 − 1 is not NTT-friendly: the order of
multiplicative group is 231 − 2 = 2× (230 − 1).



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Why NTT takes quasilinear complexity?
Recall that we need to evaluate N expressions:

p(ωj) =
N−1∑
i=0

pi (ω
j)i =

N−1∑
i=0

piω
ij , j ∈ [N].

Naive Complexity: O(N2) operations. We need N evaluations,
each of which requires N multiplications.

p(ωj) =
2r−1∑
i=0

piω
ij =

2r−1−1∑
i=0

p2iω
2ij +

2r−1−1∑
i=0

p2i+1ω
j(2i+1)

=
2r−1−1∑
i=0

p2i (ω
2j)i + ωj

2r−1−1∑
i=0

p2i+1(ω
2j)i .



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Folding

Denote pE (x) =
∑2r−1−1

i=0 p2ix
i and pO(x) =

∑2r−1−1
i=0 p2i+1x

i .
Then,

p(ωj) = pE (ω
2j) + ωjpO(ω

2j).

Fact #1

We need only N/2 evaluations from Ω of pE and pO . Note that:

p(ωj+N/2) = pE (ω
2j) + ωjωN/2pO(ω

2j).

Fact #2

• We need to evaluate two N/2-degree polynomials.

• We need to evaluate them at N/2 points.
Thus, we shrink the problem size by half at each step.



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Algorithm Summarized

Algorithm 1: Number Theoretic Transform (NTT)

Input : Polynomial p(x) =
∑N−1

j=0 pjx
j

Output
:

Vector of evaluations NTT(p, ω) at Ω = {ω}j∈[N]

1 if N = 1 then
Return : (p0)

2 end
3 H ← N/2 /* Compute the domain half-size */

4 pE ← (p0, p2, . . . , pN−2) /* Find even-indexed coefficients */

5 pO ← (p1, p3, . . . , pN−1) /* Find odd-indexed coefficients */

6 yE ← NTT(pE , ω
2) /* Compute NTT for even polynomial via

N
2 th primitive root ω2 */

7 yO ← NTT(pO , ω
2) /* Compute NTT for odd polynomial via

N
2 th primitive root ω2 */

Return : (y0, . . . , yN−1) with yj = yE , j mod H + ωjyO, j mod H



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Inverse NTT
Theorem
The Inverse NTT can be computed in the same way as NTT, but
with the inverse primitive root ω−1:

pj =
1
N

N−1∑
i=0

ω−ij p̂i

Thus, its complexity is also O(N logN).

Conclusion
To compute m(x) = p(x)q(x), simply use the following:

m(x) = INTT(NTT(p)⊙ NTT(q))

The total complexity remains O(N logN).



Thank you for your attention

♥

� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	Recap on Interpolation
	Polynomial Interpolation is a Universal Encoder
	Motivation for NTT

	Roots of Unity
	Multiplicative Subgroup of Finite Fields
	Barycentric Interpolation

	Number Theoretic Transform
	Three Gadgets
	Polynomial vs NTT Domain

	Details
	Why NTT takes quasilinear complexity?


