Roots of Unity

Number Theoretic Transform

Details 0000000

Number Theoretic Transform (NTT)

January 21, 2025

Distributed Lab

zkdl-camp.github.iogithub.com/ZKDL-Camp

Plan

- 1 Recap on Interpolation
 - Polynomial Interpolation is a Universal Encoder
 - Motivation for NTT
- 2 Roots of Unity
 - Multiplicative Subgroup of Finite Fields
 - Barycentric Interpolation
- 3 Number Theoretic Transform
 - Three Gadgets
 - Polynomial vs NTT Domain
- 4 Details
 - Why NTT takes quasilinear complexity?

Recap on Interpolation $_{\odot \odot \odot \odot}$

Roots of Unity

Number Theoretic Transform

Details 0000000

Recap on Interpolation

Polynomial Interpolation

Notice

All the previous protocols use the idea that polynomials are **universal data encoders**. We can encode any set of scalars $(a_0, \ldots, a_{N-1}) \in \mathbb{F}^N$ using **interpolation**:

$$p(x_j) = a_j, \quad j = 0, \dots, N-1, \quad \{x_j\}_{j \in [N]}$$
 are fixed

Figure: Polynomial Interpolation as a universal encoder.

Polynomial Interpolation

Example

In Groth16, we used interpolation of 3n polynomials:

$$L_j(i) = \ell_{i,j}, \quad R_j(i) = r_{i,j}, \quad O_j(i) = o_{i,j},$$

where $\ell_{i,j}$, $r_{i,j}$, $o_{i,j}$ are the elements of constraint matrices L, R, O (left, right, and output).

However, in PlonK we have witnessed $a(\omega^j) = A_j$ where A_j are the elements of the left trace vector A.

Question

What the heck is this ω ? Why do we need it? How it helps?

Why we need something advanced?

Recall

The interpolation formula in given by:

$$p(x) = \sum_{i=0}^{N-1} a_i \cdot \ell_i(x), \quad \ell_i(x) = \prod_{j=0, j \neq i}^{N-1} \frac{x - x_j}{x_i - x_j}$$

Question

What is the naive complexity of this interpolation implementation?

Observation

Through careful choice of $\{x_j\}_{j \in [N]}$, we can reduce the complexity of interpolation, multiplication, or other complex operations to $\mathcal{O}(N \log N)$. **Spoiler:** we will use the *n*th roots of unity domain $\Omega = \{\omega^j\}_{j \in [N]}$. Let us see why it helps.

Roots of Unity ●○○○○○○○○ Number Theoretic Transform

Details 0000000

Roots of Unity

Multiplicative Subgroup.

We know that \mathbb{F}_p is a **field**: we have a usual arithmetic $+, \times$.

Question

Does (\mathbb{F}_p, \times) form a group?

No, since 0 does not have an inverse. But, if we consider $(\mathbb{F}_p \setminus \{0\}, \times)$, we do have a group structure!

Definition

A multiplicative group of a finite field \mathbb{F} , denoted as \mathbb{F}^{\times} , is a multiplicative group ($\mathbb{F} \setminus \{0\}, \times$).

Number of Elements

The number of elements in \mathbb{F}_{p}^{\times} is p-1.

Primitive Root

Theorem

Multiplicative group of a finite field \mathbb{F}_p^{\times} is cyclic. The generators ω of this group are called **primitive roots**.

Example

 $\omega = 3$ is the primitive root of \mathbb{F}_7 . Indeed,

$$3^1 = 3, \quad 3^2 = 2, \quad 3^3 = 6, \quad 3^4 = 4, \quad 3^5 = 5, \quad 3^6 = 1$$

Clearly, $\langle \omega \rangle = \mathbb{F}_7^{\times}$.

The set \mathbb{F}_p^{\times} is not useful on its own. However, we can consider the following set, called *r*-th roots of unity:

$$\Omega_r = \{ \omega \in \mathbb{F}_p^{\times} \mid \omega^r = 1 \} \subset \mathbb{F}_p^{\times}.$$

Question. When such cyclic group exists?

Roots of Unity

Number Theoretic Transform

Roots of Unity

Theorem (Lagrange Theorem)

If $\mathbb{H} \leq \mathbb{G}$ is a subgroup of any finite group \mathbb{G} , then $ord(\mathbb{H}) \mid ord(\mathbb{G})$.

Corollary

11

$$\Omega_r$$
 is a subgroup of \mathbb{F}_p^{\times} , then $r \mid (p-1)$.

Some other Notes

Moreover, one might prove in the opposite direction:

- If $r \mid (p-1)$, then there exists a subgroup $\Omega_r \leq \mathbb{F}_p^{\times}$.
- Its generator is given by $\omega = g^{(p-1)/r}$ where $\langle g \rangle = \mathbb{F}_p^{\times}$.

Yet another note

Typically, we would need r to be the power of two. We will see why in the NTT section.

Roots of Unity

Number Theoretic Transform

Complex Analysis Interpretation

Figure: Visualization of the roots of unity $\Omega_5 = \{z \in \mathbb{C} : z^5 = 1\}$.

On the complex plane, the generator of the *r*-th roots of unity Ω_r is given by $\zeta_r = e^{2\pi i/r}$. In a finite field, we do not have such a luxury.

Vanishing Polynomial

Definition

The vanishing polynomial $z_D(x)$ of a set $D \subset \mathbb{F}_p$ is a polynomial satisfying $z_D(d) = 0$ for all $d \in D$.

Vanishing polynomials are always of form $z_D(x) = c \cdot \prod_{d \in D} (x - d)$.

The interesting question is: what is the vanishing polynomial of the *r*-th roots of unity Ω_r ? For simplicity, assume c = 1.

Lemma

The vanishing polynomial of Ω_r is $z_{\Omega}(x) = x^r - 1$.

Proof Idea. Since for any $\zeta \in \Omega_r$ we have $\zeta^r = 1$, or, equivalently, $\zeta^r - 1$. Thus, any $\zeta \in \Omega_r$ is a root of $z_{\Omega}(x) = x^r - 1$.

 $\underset{0000}{\text{Recap on Interpolation}}$

Roots of Unity

Number Theoretic Transform

Details 0000000

Vanishing Polynomial over \mathbb{R}

Figure: Vanishing polynomial p(x) = (x - 1)(x - 2)(x - 4) of $D = \{1, 2, 4\}$

Barycentric Interpolation

Now, let us come back to the interpolation problem $p(x_j) = a_j$ for $j \in [N]$. Introduce $\gamma(x) = \prod_{j=0}^{N-1} (x - x_j)$.

Proposition

The Lagrange basis polynomial ℓ_j can be rewritten as:

$$\ell_j(x) = \gamma(x) \cdot \frac{w_j}{x - x_j}, \quad w_j = \frac{1}{\sum_{k=0, k \neq j}^{N-1} (x_j - x_k)}.$$

Let us substitute it into the interpolation formula:

$$p(x) = \sum_{j=0}^{N-1} a_j \ell_j(x) = \sum_{j=0}^{N-1} a_j \gamma(x) \frac{w_j}{x - x_j} = \gamma(x) \sum_{j=0}^{N-1} \frac{w_j}{x - x_j} a_j.$$

Barycentric Interpolation (Cont.)

Barycentric Formula:
$$p(x) = \gamma(x) \sum_{j=0}^{N-1} \frac{w_j}{x - x_j} a_j$$

Proposition

- Computing $\{w_j\}_{j \in [N]}$ costs $\mathcal{O}(N^2)$ operations before evaluation.
- Both $\gamma(x)$ and sum requires $\mathcal{O}(N)$ operations.

But what happens if instead of x_j , we use $\omega^j \in \Omega_N$?

$$p(x) = \frac{x^N - 1}{N} \sum_{j \in [N]} \frac{\omega^j}{x - \omega^j} a_j$$

Takeaway: We can interpolate in $\mathcal{O}(N)$ operations.

Roots of Unity

Number Theoretic Transform

Details 0000000

Number Theoretic Transform

Roots of Unity

Number Theoretic Transform

What is NTT?

Now suppose we want to find m(x) = p(x)q(x). We'll use NTT!

Question

What does it mean that you *know* polynomial $p(x) \in \mathbb{F}^{(\leq N)}[x]$?

This means either of two (typically):

- You know the polynomial coefficients p_0, \ldots, p_{N-1} .
- You know the polynomial values at some points $\{(x_j, a_j)\}_{j \in [N]}$.

Definition (NTT)

Suppose $p(x) = \sum_{j=0}^{N-1} p_j x^j$. The Number Theoretic Transform (NTT) of p is defined as evaluations of p at the *N*-th roots of unity:

$$\mathsf{NTT}(p) = \left(p(\omega^0), p(\omega^1), \dots, p(\omega^{N-1})\right).$$

What is the point of NTT?

Note: To denote the result of NTT, we use hat: $\hat{p} = NTT(p)$.

Question: Given NTTs \hat{p} and \hat{q} of two polynomials p and q, how do we find the NTT of their product m(x) = p(x)q(x)?

Main NTT Property

Suppose m(x) = p(x)q(x) is the product of p and q. Then,

$$\hat{\boldsymbol{m}} = \hat{\boldsymbol{p}} \odot \hat{\boldsymbol{q}}$$

Speaking more formally, NTT : $(\mathbb{F}^{(\leq N)}[X], \times) \to (\mathbb{F}^N, \odot)$ is a homomorphism between a set of polynomials of degree up to N and their NTT domain. With certain appropriate technicalities, NTT can be extended to the isomorphism (namely, use $\mathbb{F}[X]/(X^N - 1)$).

Why? Well...
$$m(\omega^j) = p(\omega^j)q(\omega^j)$$
 :/

Final Ingredient: Inverse NTT

Now, can we restore the polynomial m(x) from its NTT \hat{m} ? Of course!

Definition

Inverse NTT The Inverse Number Theoretic Transform (INTT) is a function that restores the polynomial m(x) from its evaluations \hat{m} :

$$INTT(\hat{m}) = (m_0, m_1, \dots, m_{N-1})$$

In its essence, we solve the interpolation problem:

 $m(\omega^j) = \hat{m}_j, j \in [N],$ Goal: find coefficients m_0, \ldots, m_{N-1}

Recap	Interpolation

Roots of Unity

Number Theoretic Transform

Punchline

Figure: Illustration of the NTT Algorithm

Question

Does it resemble you one trick from Elliptic Curves?

Recap	on	Interpolation
0000		

Roots of Unity

Number Theoretic Transform

Illustration

Figure: Illustration of the FFT Algorithm. Taken from "The Fast Fourier Transform (FFT): Most Ingenious Algorithm Ever?"

Roots of Unity

Number Theoretic Transform

Details ●○○○○○○

Details

When NTT works?

Note

For NTT to work, we will impose the following requirements on our setup:

- 1. The field \mathbb{F}_p should have 2^k -roots of unity for sufficiently many k. In other words, $p = p' \cdot 2^m + 1$ with *small* $p' \in \mathbb{N}$.
- 2. The polynomial order is $N = 2^k$. Not a strict requirement, since we can always pad the polynomial with zeros.

Example

- BabyBear prime p = 15 ⋅ 2²⁷ + 1 is NTT-friendly: the order of multiplicative group is 15 ⋅ 2²⁷, so 2^k | 15 ⋅ 2²⁷ for all k ≤ 27.
- Mersenne prime $p = 2^{31} 1$ is not NTT-friendly: the order of multiplicative group is $2^{31} 2 = 2 \times (2^{30} 1)$.

Number Theoretic Transform

Why NTT takes quasilinear complexity?

Recall that we need to evaluate N expressions:

$$p(\omega^j) = \sum_{i=0}^{N-1} p_i(\omega^j)^i = \sum_{i=0}^{N-1} p_i\omega^{ij}, \quad j \in [N].$$

Naive Complexity: $\mathcal{O}(N^2)$ operations. We need N evaluations, each of which requires N multiplications.

$$p(\omega^{j}) = \sum_{i=0}^{2^{r}-1} p_{i}\omega^{ij} = \sum_{i=0}^{2^{r-1}-1} p_{2i}\omega^{2ij} + \sum_{i=0}^{2^{r-1}-1} p_{2i+1}\omega^{j(2i+1)}$$
$$= \sum_{i=0}^{2^{r-1}-1} p_{2i}(\omega^{2j})^{i} + \omega^{j} \sum_{i=0}^{2^{r-1}-1} p_{2i+1}(\omega^{2j})^{i}.$$

0000	000000000	000000	00000
Recap on Interpolation	Roots of Unity	Number Theoretic Transform	Details

Folding

Denote
$$p_E(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i}x^i$$
 and $p_O(x) = \sum_{i=0}^{2^{r-1}-1} p_{2i+1}x^i$.
Then,

$$p(\omega^j) = p_E(\omega^{2j}) + \omega^j p_O(\omega^{2j}).$$

Fact #1

We need only N/2 evaluations from Ω of p_E and p_O . Note that:

$$p(\omega^{j+N/2}) = p_E(\omega^{2j}) + \omega^j \omega^{N/2} p_O(\omega^{2j}).$$

Fact #2

- We need to evaluate two N/2-degree polynomials.
- We need to evaluate them at N/2 points. Thus, we shrink the problem size by half at each step.

Algorithm Summarized

Algorithm 1: Number Theoretic Transform (NTT)

Input : Polynomial $p(x) = \sum_{i=0}^{N-1} p_i x^i$ **Output** Vector of evaluations $NTT(\mathbf{p}, \omega)$ at $\Omega = \{\omega\}_{i \in [N]}$ 1 if N = 1 then Return : (p_0) 2 end 3 $H \leftarrow N/2$ /* Compute the domain half-size */ 4 $p_F \leftarrow (p_0, p_2, \dots, p_{N-2})$ /* Find even-indexed coefficients */ 5 $\boldsymbol{p}_{O} \leftarrow (p_1, p_3, \dots, p_{N-1}) / *$ Find odd-indexed coefficients */ 6 $\mathbf{y}_{F} \leftarrow \mathsf{NTT}(\mathbf{p}_{F}, \omega^{2})$ /* Compute NTT for even polynomial via $\frac{N}{2}$ th primitive root ω^2 */ 7 $\mathbf{y}_{O} \leftarrow \mathsf{NTT}(\mathbf{p}_{O}, \omega^{2})$ /* Compute NTT for odd polynomial via $\frac{N}{2}$ th primitive root ω^2 */ **Return** : (y_0, \ldots, y_{N-1}) with $y_i = y_{E, i \mod H} + \omega^j y_{O, i \mod H}$

Recap	Interpolation

Roots of Unity

Number Theoretic Transform

Inverse NTT

Theorem

The Inverse NTT can be computed in the same way as NTT, but with the inverse primitive root ω^{-1} :

$$p_j = rac{1}{N}\sum_{i=0}^{N-1}\omega^{-ij}\hat{p}_i$$

Thus, its complexity is also $\mathcal{O}(N \log N)$.

Conclusion

To compute m(x) = p(x)q(x), simply use the following:

 $m(x) = INTT(NTT(p) \odot NTT(q))$

The total complexity remains $\mathcal{O}(N \log N)$.

Thank you for your attention ♥

zkdl-camp.github.iogithub.com/ZKDL-Camp

