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Polynomial Interpolation
Notice
All the previous protocols use the idea that polynomials are
universal data encoders. We can encode any set of scalars
(a0, . . . , aN−1) ∈ FN using interpolation:

p(xj) = aj , j = 0, . . . ,N − 1, {xj}j∈[N] are fixed

Encode

Figure: Polynomial Interpolation as a universal encoder.
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Polynomial Interpolation

Example
In Groth16, we used interpolation of 3n polynomials:

Lj(i) = ℓi ,j , Rj(i) = ri ,j , Oj(i) = oi ,j ,

where ℓi ,j , ri ,j , oi ,j are the elements of constraint matrices L,R,O
(left, right, and output).

However, in PlonK we have witnessed
a(ωj) = Aj where Aj are the elements of the
left trace vector A.

Question
What the heck is this ω? Why do we need
it? How it helps?
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Why we need something advanced?

Recall
The interpolation formula in given by:

p(x) =
N−1∑
i=0

ai · ℓi (x), ℓi (x) =
N−1∏

j=0,j ̸=i

x − xj
xi − xj

Question
What is the naive complexity of this interpolation implementation?

Observation
Through careful choice of {xj}j∈[N], we can reduce the complexity of
interpolation, multiplication, or other complex operations to
O(N logN). Spoiler: we will use the nth roots of unity domain
Ω = {ωj}j∈[N]. Let us see why it helps.
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Roots of Unity
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Multiplicative Subgroup.

We know that Fp is a field: we have a usual arithmetic +,×.

Question
Does (Fp,×) form a group?

No, since 0 does not have an inverse. But, if we consider
(Fp \ {0},×), we do have a group structure!

Definition
A multiplicative group of a finite field F, denoted as F×, is a
multiplicative group (F \ {0},×).

Number of Elements
The number of elements in F×

p is p − 1.
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Primitive Root
Theorem
Multiplicative group of a finite field F×

p is cyclic. The generators ω
of this group are called primitive roots.

Example
ω = 3 is the primitive root of F7. Indeed,

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1.

Clearly, ⟨ω⟩ = F×
7 .

The set F×
p is not useful on its own. However, we can consider the

following set, called r-th roots of unity:

Ωr = {ω ∈ F×
p | ωr = 1} ⊂ F×

p .

Question. When such cyclic group exists?
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Roots of Unity
Theorem (Lagrange Theorem)

If H ≤ G is a subgroup of any finite group G, then ord(H) | ord(G).

Corollary

If Ωr is a subgroup of F×
p , then r | (p − 1).

Some other Notes
Moreover, one might prove in the opposite direction:
• If r | (p − 1), then there exists a subgroup Ωr ≤ F×

p .

• Its generator is given by ω = g (p−1)/r where ⟨g⟩ = F×
p .

Yet another note
Typically, we would need r to be the power of two. We will see why
in the NTT section.
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Complex Analysis Interpretation

Figure: Visualization of the roots of unity Ω5 = {z ∈ C : z5 = 1}.

On the complex plane, the generator of the r -th roots of unity Ωr is
given by ζr = e2πi/r . In a finite field, we do not have such a luxury.
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Vanishing Polynomial

Definition
The vanishing polynomial zD(x) of a set D ⊂ Fp is a polynomial
satisfying zD(d) = 0 for all d ∈ D.

Vanishing polynomials are always of form zD(x) = c ·
∏

d∈D(x − d).

The interesting question is: what is the vanishing polynomial of the
r -th roots of unity Ωr? For simplicity, assume c = 1.

Lemma
The vanishing polynomial of Ωr is zΩ(x) = x r − 1.

Proof Idea. Since for any ζ ∈ Ωr we have ζr = 1, or, equivalently,
ζr − 1. Thus, any ζ ∈ Ωr is a root of zΩ(x) = x r − 1.
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Vanishing Polynomial over R

Figure: Vanishing polynomial p(x) = (x − 1)(x − 2)(x − 4) of
D = {1, 2, 4}
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Barycentric Interpolation

Now, let us come back to the interpolation problem p(xj) = aj for
j ∈ [N]. Introduce γ(x) =

∏N−1
j=0 (x − xj).

Proposition
The Lagrange basis polynomial ℓj can be rewritten as:

ℓj(x) = γ(x) ·
wj

x − xj
, wj =

1∑N−1
k=0,k ̸=j(xj − xk)

.

Let us substitute it into the interpolation formula:

p(x) =
N−1∑
j=0

ajℓj(x) =
N−1∑
j=0

ajγ(x)
wj

x − xj
= γ(x)

N−1∑
j=0

wj

x − xj
aj .
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Barycentric Interpolation (Cont.)

Barycentric Formula: p(x) = γ(x)
N−1∑
j=0

wj

x − xj
aj

Proposition

• Computing {wj}j∈[N] costs O(N2) operations before evaluation.

• Both γ(x) and sum requires O(N) operations.

But what happens if instead of xj , we use ωj ∈ ΩN?

p(x) =
xN − 1

N

∑
j∈[N]

ωj

x − ωj
aj

Takeaway: We can interpolate in O(N) operations.
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Number Theoretic Transform
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What is NTT?
Now suppose we want to find m(x) = p(x)q(x). We’ll use NTT!

Question

What does it mean that you know polynomial p(x) ∈ F(≤N)[x ]?

This means either of two (typically):

• You know the polynomial coefficients p0, . . . , pN−1.

• You know the polynomial values at some points {(xj , aj)}j∈[N].

Definition (NTT)

Suppose p(x) =
∑N−1

j=0 pjx
j . The Number Theoretic Transform

(NTT) of p is defined as evaluations of p at the N-th roots of unity:

NTT(p) =
(
p(ω0), p(ω1), . . . , p(ωN−1)

)
.
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What is the point of NTT?

Note: To denote the result of NTT, we use hat: p̂ = NTT(p).

Question: Given NTTs p̂ and q̂ of two polynomials p and q, how do
we find the NTT of their product m(x) = p(x)q(x)?

Main NTT Property
Suppose m(x) = p(x)q(x) is the product of p and q. Then,

m̂ = p̂ ⊙ q̂

Speaking more formally, NTT : (F(≤N)[X ],×)→ (FN ,⊙) is a
homomorphism between a set of polynomials of degree up to N and
their NTT domain. With certain appropriate technicalities, NTT can
be extended to the isomorphism (namely, use F[X ]/(XN − 1)).

Why? Well... m(ωj) = p(ωj)q(ωj) :/
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Final Ingredient: Inverse NTT

Now, can we restore the polynomial m(x) from its NTT m̂? Of
course!

Definition
Inverse NTT The Inverse Number Theoretic Transform (INTT) is
a function that restores the polynomial m(x) from its evaluations m̂:

INTT(m̂) = (m0,m1, . . . ,mN−1)

In its essence, we solve the interpolation problem:

m(ωj) = m̂j , j ∈ [N], Goal: find coefficients m0, . . . ,mN−1
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Punchline
Polynomial Space F(≤N)[x ]

NTT Space

p, q m = p · q

p̂, q̂ m̂ = p̂ ⊙ q̂

O(N2)

O(N logN)

O(N)

O(N logN)

Figure: Illustration of the NTT Algorithm

Question
Does it resemble you one trick from Elliptic Curves?



Recap on Interpolation Roots of Unity Number Theoretic Transform Details

Illustration

Figure: Illustration of the FFT Algorithm. Taken from “The Fast Fourier
Transform (FFT): Most Ingenious Algorithm Ever?”
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Details
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When NTT works?

Note
For NTT to work, we will impose the following requirements on our
setup:
1. The field Fp should have 2k -roots of unity for sufficiently many k .

In other words, p = p′ · 2m + 1 with small p′ ∈ N.

2. The polynomial order is N = 2k . Not a strict requirement, since
we can always pad the polynomial with zeros.

Example

• BabyBear prime p = 15 · 227 + 1 is NTT-friendly: the order of
multiplicative group is 15 · 227, so 2k | 15 · 227 for all k ≤ 27.

• Mersenne prime p = 231 − 1 is not NTT-friendly: the order of
multiplicative group is 231 − 2 = 2× (230 − 1).
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Why NTT takes quasilinear complexity?
Recall that we need to evaluate N expressions:

p(ωj) =
N−1∑
i=0

pi (ω
j)i =

N−1∑
i=0

piω
ij , j ∈ [N].

Naive Complexity: O(N2) operations. We need N evaluations,
each of which requires N multiplications.

p(ωj) =
2r−1∑
i=0

piω
ij =

2r−1−1∑
i=0

p2iω
2ij +

2r−1−1∑
i=0

p2i+1ω
j(2i+1)

=
2r−1−1∑
i=0

p2i (ω
2j)i + ωj

2r−1−1∑
i=0

p2i+1(ω
2j)i .
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Folding

Denote pE (x) =
∑2r−1−1

i=0 p2ix
i and pO(x) =

∑2r−1−1
i=0 p2i+1x

i .
Then,

p(ωj) = pE (ω
2j) + ωjpO(ω

2j).

Fact #1

We need only N/2 evaluations from Ω of pE and pO . Note that:

p(ωj+N/2) = pE (ω
2j) + ωjωN/2pO(ω

2j).

Fact #2

• We need to evaluate two N/2-degree polynomials.

• We need to evaluate them at N/2 points.
Thus, we shrink the problem size by half at each step.
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Algorithm Summarized

Algorithm 1: Number Theoretic Transform (NTT)

Input : Polynomial p(x) =
∑N−1

j=0 pjx
j

Output
:

Vector of evaluations NTT(p, ω) at Ω = {ω}j∈[N]

1 if N = 1 then
Return : (p0)

2 end
3 H ← N/2 /* Compute the domain half-size */

4 pE ← (p0, p2, . . . , pN−2) /* Find even-indexed coefficients */

5 pO ← (p1, p3, . . . , pN−1) /* Find odd-indexed coefficients */

6 yE ← NTT(pE , ω
2) /* Compute NTT for even polynomial via

N
2 th primitive root ω2 */

7 yO ← NTT(pO , ω
2) /* Compute NTT for odd polynomial via

N
2 th primitive root ω2 */

Return : (y0, . . . , yN−1) with yj = yE , j mod H + ωjyO, j mod H
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Inverse NTT
Theorem
The Inverse NTT can be computed in the same way as NTT, but
with the inverse primitive root ω−1:

pj =
1
N

N−1∑
i=0

ω−ij p̂i

Thus, its complexity is also O(N logN).

Conclusion
To compute m(x) = p(x)q(x), simply use the following:

m(x) = INTT(NTT(p)⊙ NTT(q))

The total complexity remains O(N logN).
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