
Introduction Zero-knowledge multiplication Inner-product argument

Bulletproofs: inner-product argument
July 24, 2025

Distributed Lab
� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp


Introduction Zero-knowledge multiplication Inner-product argument

Plan

1 Introduction

2 Zero-knowledge multiplication

3 Inner-product argument



Introduction Zero-knowledge multiplication Inner-product argument

Introduction



Introduction Zero-knowledge multiplication Inner-product argument

Bulletproofs: just some basic linear algebra



Introduction Zero-knowledge multiplication Inner-product argument

Bulletproofs: Motivation

• Bulletproofs: zero-knowledge proofs with logarithmic proof size

• No trusted setup, just some basic linear algebra

• Straightforward cryptographic assumption: discrete logarithm
without bilinear pairings or other advanced assumptions

• Originally developed for efficient range proofs in confidential
transactions

• Applicable for proving arithmetic circuits satisfiability (e.g., R1CS)

• Efficient polynomial commitment scheme could be derived (e.g.,
IPA polynomial commitment)

• Heart of bulletproofs – inner-product argument



Introduction Zero-knowledge multiplication Inner-product argument

Bulletproofs: Building blocks

• Zero-knowledge multiplication protocol zk-mul

• Inner-product argument IPA

• Application: IPA polynomial commitment scheme

• Application: range proofs

• Application: arithmetic circuits satisfiability



Introduction Zero-knowledge multiplication Inner-product argument

Preliminaries

• G – cyclic group of prime order p where DLog assumption holds

• G ,B ∈ G – independent generators

• G,H ∈ Gn – vectors of generators with mutually unknown discrete
log relations

• ⟨a, b⟩ =
∑n

i=1 aibi – inner product of scalar vectors a, b ∈ Fn
p

• ⟨a,G⟩ =
∑n

i=1[ai ]Gi – inner product of a scalar vector a ∈ Fn
p

with a vector of generators G ∈ Gn

• kn = (1, k , k2, . . . , kn−1)



Introduction Zero-knowledge multiplication Inner-product argument

Zero-knowledge multiplication



Introduction Zero-knowledge multiplication Inner-product argument

Zero-knowledge multiplication

Goal: Prove knowledge of a, b ∈ Fp such that c = ab without
revealing a, b, c , i.e. consider the relation:

Rabc = {(⊥; c, a, b) | c = ab}

Curious reader could argue that this is relatively simple problem as
we have Σ-protocols framework, especially Chaum-Pedersen protocol
for DH-triplets, e.g. we could prove slightly modified relation:

R′
abc = {(P,Qa,Qb,Qc ∈ G; a, b) | Qc = [a]Qb,Qa = [a]P,Qb = [b]P}

Problem
Prover does not hide a, b, c values so that adversary could
potentially learn them if they are values especially if they are small or
have non-uniform distribution.



Introduction Zero-knowledge multiplication Inner-product argument

Multiplication of committed values

Solution
Use Pedersen commitments to bind to a, b, c values.

R′
abc =


(G ,H,B,A,V ; a, b, α, β ∈ Fp) |
V = [ab]G + [β]B,
A = [a]G + [b]H + [α]B


Here A is a binding Pedersen commitment to both a and b while V
is a binding Pedersen commitment to their product ab.

Problem
How to prove that in zero-knowledge?



Introduction Zero-knowledge multiplication Inner-product argument

Zero-knowledge polynomial multiplication

In order to provide zero-knowledge proof of R′
abc we bring out

polynomials!

l(x) = a+ sLx

r(x) = b + sRx

t(x) = l(x)r(x) = ab + (sL + sR)bx + sLsRx
2

What we have now:

• sL, sR ∈ Fp are blinding factors

• l(x) is a linear polynomial hiding value a

• r(x) is a linear polynomial hiding value b

• t(x) is a quadratic polynomial, constant term is the product ab,
the product we typically want to prove knowledge of.



Introduction Zero-knowledge multiplication Inner-product argument

Zero-knowledge polynomial multiplication
Idea
If l(x)r(x) = t(x) than with high probability for random u ∈ Fp we
have l(u)r(u) = t(u) due to Schwartz-Zippel lemma

Now we can build a zero-knowledge protocol zk-mul for proving a
product of degree-one polynomials l(x)r(x) = t(x):

• Prover computes and sends to V commitments to coefficients of
l(x), r(x), t(x):

A = [a]G + [b]H + [α]B T0 = [ab]G + [τ0]B

S = [sL]G + [sR ]H + [β]B T1 = [sL + sR ]G + [τ1]B

T2 = [sLsR ]G + [τ2]B

Here A – commitment to constant terms, S – commitment to
degree-one coefficients of l(x), r(x), Ti for i = 0..2 –
commitments to coefficients of t(x).



Introduction Zero-knowledge multiplication Inner-product argument

Zero-knowledge polynomial multiplication

• Verifier draws random challenge u ∈ Fp and sends it to prover

• Prover evaluates and sends to Verifier (lu, ru, tu, αu, τu):

lu = l(u), ru = r(u), tu = t(u) = lu · ru,
αu = α+ βu, τu = τ0 + τ1u + τ2u

2

• Verifier checks:

A+ [u]S
?
= [lu]G + [ru]H + [αu]B

[tu]G + [τu]B
?
= T0 + [u]T1 + [u2]T2

tu
?
= luru



Introduction Zero-knowledge multiplication Inner-product argument

Zero-knowledge numbers multiplication

Now we could easily tweak our zk-mul protocol to prove relation

R′
abc =


(G ,H,B,A,V ; a, b, α, β ∈ Fp) |
V = [ab]G + [β]B,
A = [a]G + [b]H + [α]B


in zero-knowledge: just use prescribed commitment A as a
commitment to constant terms of l(x), r(x) and V as a
commitment T0 to constant coefficient of t(x)



Introduction Zero-knowledge multiplication Inner-product argument

zk-mul protocol: Security

Theorem
Zero-knowledge polynomial multiplication protocol zk-mul is perfect
complete, special sound and perfect honest-verifier zero-knowledge.

Here we briefly show the completeness:

• First check:

A+ [u]S
?
= [lu]G + [ru]H + [αu]B

LHS = [a]G + [b]H + [α]B + [usL]G + [usR ]H + [uβ]B

RHS = [a+ usL]G + [b + usR ]H + [α+ uβ]B =

= [a]G + [b]H + [α]B + [usL]G + [usR ]H + [uβ]B

As LHS = RHS the check is satisfied.



Introduction Zero-knowledge multiplication Inner-product argument

zk-mul protocol: Security

• Second check:

[tu]G + [τu]B
?
= T0 + [u]T1 + [u2]T2

LHS = [ab + t1u + t2u
2]G + [τ0 + τ1u + τ2u

2]B

RHS = [ab]G + [τ0]B + [u]([t1]G + [τ1]B)+

+ [u2]([t2]G + [τ2]B)

As LHS = RHS the check is satisfied.

• The third check is tu = luru holds by definition

Intuitively zk-mul protocol is also zero-knowledge as it is easy to
simulate every step of the honest prover. Special soundness holds as
it’s easy to build an extractor similar to Okamoto’s protocol
extractor for extracting openings of Pedersen commitments.



Introduction Zero-knowledge multiplication Inner-product argument

zk-mul: inner-product version

We could easily generalize zk-mul protocol to prove
t(x) = ⟨l(x), r(x)⟩ for polynomials with vector coefficients
l(x), r(x), t(x) ∈ Fn

p[x ]. Specifically using generalized zk-mul
protocol we could also prove in zero-knowledge that inner-product
relation holds for vectors a, b ∈ Fn

p:

Rzkip =

{
(G,H,G ,B,A,V ; a, b, α, γ)|A = ⟨a,G⟩+ ⟨b,H⟩+ [α]B,

V = [⟨a, b⟩]G + [γ]B

}

Problem
Proof size is linear in n as the prover should send evaluated vectors
lu, ru. We will adress this problem in the next section:
inner-product argument.



Introduction Zero-knowledge multiplication Inner-product argument

Inner-product argument



Introduction Zero-knowledge multiplication Inner-product argument

Motivation: Inner-product Argument

The heart of bulletproofs is inner-product argument(IPA) which
allows to soundly prove inner-product relation between two vectors
a, b ∈ Fn

p:

Rip = {(G,H,P, c ; a, b)|P = ⟨a,G⟩+ ⟨b,H⟩ ∧ ⟨a, b⟩ = c}

Firstly, let’s combine statements P = ⟨a,G⟩+ ⟨b,H⟩ ∧ ⟨a, b⟩ = c
into a single statement by multiplying the second one by a random
challenge r ∈ Fp and some orthogonal generator B ∈ G, summing
up:

R′
ip = {(G,H,Q,P ′; a, b)|P ′ = ⟨a,G⟩+ ⟨b,H⟩+ [⟨a, b⟩]Q}

Where Q = [r ]B,P ′ = P + [cr ]B = P + [c]Q



Introduction Zero-knowledge multiplication Inner-product argument

Compression step
Assuming n = 2d define by
Glo = (G1, . . . ,Gn/2),Ghi = (Gn/2+1, . . . ,Gn) ∈ Gn/2 – lower and
higher halves of vector G and
alo = (a1, . . . , an/2), ahi = (an/2+1, . . . , an) ∈ Fn/2

p – lower and
higher halves of a ∈ Fn

p.

Let uk ∈ Fp - be challenge scalar, define compressed vectors:

a(k−1) = alo · uk + u−1
k · ahi

b(k−1) = blo · u−1
k + uk · bhi

G(k−1) = Glo · u−1
k + uk · Ghi

H(k−1) = Hlo · uk + u−1
k · Hhi

Note
If n is not a power of two we could pad vectors with zeroes to the
next power of two.



Introduction Zero-knowledge multiplication Inner-product argument

Compression step: illustration



Introduction Zero-knowledge multiplication Inner-product argument

Commitment compression

Define Pk ← P ′ = ⟨a,G⟩+ ⟨b,H⟩+ [⟨a, b⟩]Q – current commitment
to vectors a, b and define Pk−1 using compressed vectors to have the
same form as Pk , but in new basis (G(k−1),H(k−1)):

Pk−1 = ⟨a(k−1),G(k−1)⟩+ ⟨b(k−1),H(k−1)⟩+ [⟨a(k−1), b(k−1)⟩]Q

Substituting compressed vectors and applying bilinearity property of
inner product we get:

Pk−1 =⟨alo,Glo⟩+ ⟨ahi,Ghi⟩ +u2
k⟨alo,Ghi⟩+ u−2

k ⟨ahi,Glo⟩+
⟨blo,Hlo⟩+ ⟨bhi,Hhi⟩ +u2

k⟨bhi,Hlo⟩+ u−2
k ⟨blo,Hhi⟩+

[⟨alo, blo⟩+ ⟨ahi, bhi⟩]Q +[u2
k⟨alo, bhi⟩+ u−2

k ⟨ahi, blo⟩]Q

The first two columns precisely represent current commitment Pk ,
for the last two columns we define Lk ,Rk as commitments to cross
terms



Introduction Zero-knowledge multiplication Inner-product argument

Commitment compression

So that we represent new commitment Pk−1 from the old one Pk

and cross terms Lk ,Rk :

Pk−1 = Pk + [u2
k ]Lk + [u−2

k ]Rk

Lk = ⟨alo,Ghi⟩+ ⟨bhi,Hlo⟩+ [⟨alo, bhi⟩]Q
Rk = ⟨ahi,Glo⟩+ ⟨blo,Hhi⟩+ [⟨ahi, blo⟩]Q

So the basic logic of compression step:

• Verifier draws challenge uk
R←− Fp and sends it to prover

• Prover computes a(k−1), b(k−1) and Lk ,Rk and sends them to
verifier

• Verifier reconstructs Pk−1 using a(k−1), b(k−1) and checks:

Pk−1 = Pk + [u2
k ]Lk + [u−2

k ]Rk



Introduction Zero-knowledge multiplication Inner-product argument

Recursive compression
Remark

We wish not send a(k−1), b(k−1) directly as this’s inefficient due to
still linear sizes, instead we apply recursion to compress this vectors
to just one element.

Here we come up with some kind of statement compression
algorithm reducing size of all vectors in half per compression step.
Repeating compression algorithm k times we end up with sending
vectors a(0), b(0) each of length one and P0 containing all
accumulated cross-terms:

P0 = [a
(0)
1 ]G

(0)
1 + [b

(0)
1 ]H

(0)
1 + [a

(0)
1 b

(0)
1 ]Q

P0 = Pk +
k∑

i=1

([u2
i ]Li + [u−2

i ]Ri )

Verifier compares this P0s and asserts inner-product correctness.



Introduction Zero-knowledge multiplication Inner-product argument

Inner-product argument protocol

Here we describe the inner-product argument protocol between
prover P and verifier V for relation
R′

ip = {(G,H,Q,P ′; a, b)|P ′ = ⟨a,G⟩+ ⟨b,H⟩+ [⟨a, b⟩]Q} from
scratch.

• Prover P sets

(k , a(k), b(k),G(k),H(k),Pk)← (d , a, b,G,H,P ′)

• Verifier V sets

(k ,G(k),H(k),Pk)← (d ,G,H,P ′)

• While k > 0 then parties involve in compression step protocol



Introduction Zero-knowledge multiplication Inner-product argument

Compression step protocol
• Prover P computes and sends to V

Lk = ⟨alo
(k),Ghi

(k)⟩+ ⟨bhi
(k),Hlo

(k)⟩+ [⟨alo
(k), bhi

(k)⟩]Q

Rk = ⟨ahi
(k),Glo

(k)⟩+ ⟨blo
(k),Hhi

(k)⟩+ [⟨ahi
(k), blo

(k)⟩]Q

• V draws challenge uk
R←− Fp and sends it to P

• Both P and V compute:

G(k−1) = Glo
(k) · u−1

k + uk · Ghi
(k)

H(k−1) = Hlo
(k) · uk + u−1

k · Hhi
(k)

• P computes:

a(k−1) = alo
(k) · uk + u−1

k · ahi
(k)

b(k−1) = blo
(k) · u−1

k + uk · bhi
(k)



Introduction Zero-knowledge multiplication Inner-product argument

Final step

At the final step when k = 0 parties perform final check:

• Prover P sends (a, b)← (a(0)1 , b(0)1 ) to verifier V

• Verifier performs final check:

P ′ +
d∑

i=1

([u2
i ]Li + [u−2

i ]Ri ) = [a]G
(0)
1 + [b]H

(0)
1 + [ab]Q

outputs accept if equality holds and reject otherwise.



Introduction Zero-knowledge multiplication Inner-product argument

Inner-product argument: illustration



Introduction Zero-knowledge multiplication Inner-product argument

Inner-product argument: security & performance
Remark
Overall communication complexity of inner-product argument is
2 log2 n group elements plus 2 field elements so we come up with
logarithmic proof size for our inner-product relation Rip.

Theorem (Inner-Product Argument)

The inner-product argument for relation Rip has perfect
completeness and statistical witness-extended emulation for either
extracting a non-trivial discrete logarithm relation between G,H,Q
or extracting valid witness a, b.

Note
Zero-knowledge doesn’t hold as if n = 1 then P sends witness pair
a, b directly. We’ll later compile efficient inner-product argument
with zero-knowledge zk-mul protocol to achieve efficient
zero-knowledge proofs for range proofs and arithmetic circuits.



Introduction Zero-knowledge multiplication Inner-product argument

What’s next?


	Introduction
	Zero-knowledge multiplication
	Inner-product argument

