
Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Bulletproofs: applications
July 31, 2025

Distributed Lab
� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp


Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Plan

1 Introduction

2 IPA polynomial commitment scheme

3 Range proofs

4 Arithmetic circuits



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Introduction



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Inner-product argument: illustration



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Recap: inner-product argument

• Goal: Prove ⟨a, b⟩ = c with logarithmic proof size

• Commitment: P ′ = ⟨a,G⟩+ ⟨b,H⟩+ [⟨a, b⟩]Q

• Protocol recursively compresses vectors at each step

• Final check: P ′ +
∑

([u2
i ]Li + [u−2

i ]Ri ) = [a]G + [b]H + [ab]Q

Key properties
Proof size is O(log2 n), prover and verifier both run in O(n). The
protocol doesn’t need a trusted setup. Protocol is knowledge sound
and perfect complete but not zero-knowledge.

Idea
We could provide zero-knowledge directly to inner-product argument
construction or use zk-mul protocol for outer construction.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Recap: zkmul
Consider relation Rmul = {(⊥; l(x), r(x), t(x))|t(x) = l(x)r(x)}
where l(x) = a+ sLx , r(x) = b + sRx , t(x) = l(x)r(x). Protocol
zk-mul is defined as follows:

• Prover computes and sends to V commitments to l(x), r(x), t(x):

A = [a]G + [b]H + [α]B T0 = [ab]G + [τ0]B

S = [sL]G + [sR ]H + [β]B T1 = [sL + sR ]G + [τ1]B

T2 = [sLsR ]G + [τ2]B

• Verifier draws random challenge u ∈ Fp and sends it to prover

• Prover evaluates and sends to Verifier (lu, ru, tu, αu, τu):

lu = l(u), ru = r(u), tu = lu · ru, αu = α+ βu, τu = τ0 + τ1u + τ2u
2

• Verifier checks: A+ [u]S
?
= [lu]G + [ru]H + [αu]B ,

[tu]G + [τu]B
?
= T0 + [u]T1 + [u2]T2, tu

?
= luru



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

What’s next?



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

IPA polynomial commitment
scheme



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Recap: Polynomial commitments

• Polynomial commitment scheme

C = (Setup,Commit,Open,VerifyOpen)

allows to commit to a polynomial f (x) =
∑n−1

i=0 aix
i and prove its

evaluation at some point.

• Applications: SNARKs compiled with IOP + polynomial
commitment scheme framework (e.g., Halo, Nova, Spartan, Plonk)

• Desirable properties: sublinear size, efficient, no trusted setup

Example
One famouos example is the KZG polynomial commitment scheme,
which uses bilinear pairings and requires a trusted setup.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

IPA polynomial commitment
Let f (x) =

∑n−1
i=0 aix

i be a polynomial of degree n − 1 = 2d − 1.

The non-hiding IPA polynomial commitment scheme
Cip = (Setup,Commit,Open,VerifyOpen) is defined as follows:

• Setup returns independent generators G = (G1, . . . ,Gn).

• Commit returns Com(f ) = ⟨f,G⟩ where f = (a0, . . . , an−1)

• Open given evaluation point u ∈ Fp computes
un = (1, u, u2, . . . , un−1), obtains f (u) = ⟨f, un⟩ and runs
inner-product argument Πip non-interactively setting

a = f, b = un,P = Com(f ), c = f (u)

to produce an evaluation proof πip

• VerifyOpen given evaluation point u ∈ Fp and commitment
Com(f ) validates proof πip running the non-interactive verifier V
of inner-product argument.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Range proofs



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Range proofs: motivation

• Goal: Prove v ∈ [0, 2n) without revealing v :

Rrp = {(G ,B,V , n; v , γ)|V = [v ]G + [γ]B, v ∈ [0, 2n)}

• Applications: Confidential transactions (e.g., Monero,
Mimblewimble), other privacy-preserving protocols.

• Idea: Prove v =
∑n−1

i=0 vi2i and ∀i ∈ 0..n − 1 : vi ∈ {0, 1}

Naive approach

One could prove v =
∑n−1

i=0 vi2i and ∀i ∈ 0..n − 1 : vi ∈ {0, 1}
using Σ-protocols, but this would be inefficient due to linear proof.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Compiling range proof into inner-product

Firstly, write v in base-2 representation: v =
∑⌊log2 v⌋

i=0 2ivi and
aL = (v0, v1, . . . , vn−1) be the vector of bits padded with zeroes to
length n, define aR = aL − 1n so the range validation that v lays in
[0, 2n) implies two checks:

• The following inner-product equality holds: ⟨aL, 2n⟩ = v

• Each bit vi must be either 0 or 1:

aL − aR − 1n = 0n

aL ◦ aR = 0n

Example
Let aL = (1, 0, 1, 0), aR = (0,−1, 0,−1), then aL ◦ aR = (0, 0, 0, 0)



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Compiling range proof into inner-product
This two checks imply verification that some vector is zero vector,
for that we use some challenge y ∈ Fp and check inner-product
equalities

⟨aL ◦ aR , yn⟩ = 0 and ⟨aL − aR − 1n, yn⟩ = 0

This checks are sound because the prover doesn’t know challenge y
in advance. So we must combine three inner-product checks:

1. ⟨aL, 2n⟩ = v

2. ⟨aL, aR ◦ yn⟩ = 0

3. ⟨aL − aR − 1n, yn⟩ = 0

into one soundly summing up with powers of other challenge z ∈ Fp:

z2 · ⟨aL, 2n⟩+ z · ⟨aL − aR − 1n, yn⟩+ ⟨aL, aR ◦ yn⟩ = z2v



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Compiling range proof into inner-product
Using some dark linear algebra wizardry we could combine the three
inner-product checks into a single one inner-product check:

⟨aL − z · 1n, z2 · 2n + z · yn + aR ◦ yn⟩ = z2v + δ(y , z)

Where δ(y , z) could easily be computed by verifier:

δ(y , z) = (z − z2)⟨1n, yn⟩ − z3⟨1n, 2n⟩

Now it’s time to bring out zk-mul for inner-products!

Firstly, construct the blinding polynomials for aL and aR :

a′L ← aL + sLx a′R ← aR + sRx

Compute polynomials l(x) = l0 + l1x , r(x) = r0 + r1x :

l(x) = a′L − z · 1n = (aL + sLx)− z · 1n = aL − z · 1n + sLx

r(x) = z2 · 2n + z · yn + a′R ◦ yn = z2 · 2n + z · yn + (aR + sRx) ◦ yn

= z2 · 2n + z · yn + aR ◦ yn + sR ◦ ynx



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Compiling range proof into inner-product

t(x) = ⟨l(x), r(x)⟩ = t0 + t1x + t2x
2

Now P needs to apply zk-mul for proving:

t0 = ⟨aL − z · 1n, z2 · 2n + z · yn + aR ◦ yn⟩ = z2v + δ(y , z)

Note: V could compute commitment Com(t0) using V = Com(v)

Remark
We couldn’t apply raw zk-mul as l0 depends on verifier-provided
challenges, instead P firstly commits to aL, aR and blinders sL, sR ,
obtaints challenges y , z from V and computes rest of the
commitments.
During verification phase V should adjust commitments to l(x), r(x)
by himself using homomorphic proterties of Pedersen commitment
scheme.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Range proofs: building the protocol
• Setup returns independent generators G,H ∈ Gn

• Prover does bit decomposition of v : aL ← v, aR ← aL − 1n,
choses blinding terms sL, sR ∈ Fn

p, α, β ∈ Fp, sends commitments:

A = ⟨aL,G⟩+ ⟨aR ,H⟩+ [α]B S = ⟨sL,G⟩+ ⟨sR ,H⟩+ [β]B

• Verifier V samples challenges y , z
R←− Fp and sends them to P

• Prover P reconstructs polynomials l(x), r(x), t(x):

l(x) = aL − z · 1n + sLx

r(x) = z2 · 2n + z · yn + aR ◦ yn + sR ◦ ynx

t(x) = ⟨l(x), r(x)⟩ = t0 + t1x + t2x
2

t0 = ⟨aL − z · 1n, z2 · 2n + z · yn + aR ◦ yn⟩ = z2v + δ(y , z)

t1 = ⟨aL − z · 1n, yn ◦ sR⟩+ ⟨yn ◦ (aR + z · 1n) + z2 · 2n, sL⟩
t2 = ⟨sL, yn ◦ sR⟩



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Range proofs: proving
• Prover P draws blinding factors τ1, τ2

R←− Fp and sends to V
commitments for coefficients of t(x):

T1 = [t1]G + [τ1]B

T2 = [t2]G + [τ2]B

Note: prover does not have to send commitment to t0 as it’s the
inner-product we want to prove and it could be computed from
high-level commitment V .

• Verifier V samples and sends to P evaluation point u R←− Fp

• Prover P evaluates polynomials at u:

lu = l(u) αu = α+ βu

ru = r(u) τu = z2γ + τ1u + τ2u
2

tu = t(u) = t0 + t1u + t2u
2

and sends (lu, ru, tu, αu, τu) to V.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Range proofs: verification

• Verifier V checks:

A+ [u]S + ⟨−z · 1n,G⟩+ ⟨z · yn + z2 · 2n, y−n ◦ H⟩
?
= ⟨lu,G⟩+ ⟨ru, y−n ◦ H⟩+ [αu]B

[tu]G + [τu]B
?
= [z2]V + [δ(y , z)]G + [u]T1 + [u2]T2

tu
?
= ⟨luru⟩

Remark
To provide logarithmic size-proof instead of sending lu, ru parties
could run an inner-product argument IPA on inputs
(G, y−n ◦ H,P, tu; lu, ru) where:

P = A+ [u]S + ⟨−z · 1n,G⟩+ ⟨z · yn + z2 · 2n, y−n ◦ H⟩ − [αu]B



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Range proofs: efficiency & extensions

Theorem
The range proof protocol Πrp has perfect completeness,
computational extended witness emulation, perfect honest-verifier
zero-knowledge

Note that protocol is efficient as it has logarithmic proof size.

Remark
The range proof protocol could be extended to support proving
multiple range proofs at once with some efficiency improvements.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Range proofs & subset-sum NP-complete problem

One of the most famous NP-complete problems is the subset-sum
problem: given a set of numbers presented as vector s and number
v ∈ N, does a some subset sums up to v . It turns out that we could
use our range-proof protocol for this problem. One could simply
replace first inner-product check ⟨aL, 2n⟩ = v with ⟨aL, s⟩ = v where
aL is the secret vector of bits that encode positions of s that sum up
to v .

Example
Let s = (6, 8, 2, 3) and v = 14. Then setting aL = (1, 1, 0, 0) we
could use Πrp to prove that there exists a subset of s that sums up
to v = 14 without disclosing that subset.

Therefore, bulletproofs range proof protocol is capable to prove a
knowledge of witness to any NP-problem as they all could be
reduced to the subset-sum problem



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Bulletproofs for arithmetic circuits

• Goal: Prove that a circuit computes correctly without revealing
inputs or intermediate values (circuit satisfiability problem).

• Approach: Use inner-product argument to prove correctness of
arithmetic circuits

• Applications: Privacy-preserving smart contracts, confidential
computations, zero-knowledge proofs for complex computations

Bulletproofs arithmetization slightly differs from the classic R1CS,
however it could be transformed vice-versa easily. Also bulletproofs
arithmetization is more convenient and human-friendly for encoding
most of the arithmetic circuits than the R1CS.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: variables

There is two types of variables in bulletproofs constraint system:

• High-level variables v ∈ Fm
p are the private witness inputs to the

circuit, typically provided with Pedersen commitments V ∈ Gm.

• Low-level variables aL, aR , aO ∈ Fn
p are the intermediate witness

values of computation.

We will define circuit as a set of multiplication constraints operating
with low-level variables and set of linear constraints which links
low-level variables between each other and high-level variables as
well.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: constraints

Multiplication constraints are defined with one vector equation:

aL ◦ aR = aO

Linear constraints are defined via:

WL · aL + WR · aR + WO · aO = WV · v + c

Where aL, aR, aO – vectors of left and right inputs for multiplication
gates and output values (all of them are low-level variables).
WL,WR,WO ∈ Fq×n

p ,WV ∈ Fq×m
p – public matrices of weights for

linear constraints(obviously known to verifier). c ∈ Fq
p – public

vector of constants. Typically they encode wiring of the circuit and
other linear relations between variables.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: example

Example
Consider the following elliptic curve membership circuit. Here
witness (v1, v2) should satisfy elliptic curve equation:

y2 = x3 + ax + b

The arithmetization for this circuit is as follows:
Low-level variables:

aL =

xx
y

 , aR =

 x
x2

y

 , aO =

x2

x3

y2


High-level variables:

v =

[
v1
v2

]



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: example
Example
Multiplication constraints:

aL ◦ aR = aO ⇒

 x · x = x2

x · x2 = x3

y · y = y2


Linear constraints:

a(1)L = v1 a(1)R = v1

a(2)L − a(1)L = 0 a(2)R − a(1)O = 0

a(3)L = v2 a(3)R = v2

a(3)O − a(2)O − a · a(1)L = b

WL · aL + WR · aR + WO · aO = WV · v + c



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: example
Example

WL =



1 0 0
0 0 0
−1 1 0
0 0 0
0 0 1
0 0 0
−a 0 0


, WR =



0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0


, WO =



0 0 0
0 0 0
0 0 0
−1 0 0
0 0 0
0 0 0
0 −1 1


,

WV =



1 0
1 0
0 0
0 0
0 1
0 1
0 0


, c =



0
0
0
0
0
0
b





Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Bulletproofs for circuits: relation

Consider the relation:

Rsat =


(G ,B,V,WL,WR ,WO ,WV , c; aL, aR , aO , v, r)|
∀i = 1..m : Vi = [vi ]G + [ri ]B∧
aL ◦ aR = aO∧
WL · aL + WR · aR + WO · aO = WV · v + c


Where aL, aR , aO ∈ Fn

p, v, r ∈ Fm
p , WL,WR ,WO ∈ Fq×n

p ,
WV ∈ Fq×m

p , c ∈ Fq
p.

Note
Informally this relation states that there exists a valid witness v that
satisfies all constraints of the circuit. For the verifier witness is
presented only as commitments vector V.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: compiling into inner-product
We could use similar to range-proofs technique to compile
constraints of the circuit into inner-product relation. For
multiplicative constraints take random y ∈ Fp and apply zero check:

⟨aL ◦ aR − aO , yn⟩ = 0

Same for linear constraints, but for different randomness z ∈ Fp:

⟨WL · aL + WR · aR + WO · aO −WV · v − c, zq⟩ = 0

Combine this two checks to one using the same randomness z :

⟨aL ◦ aR − aO , yn⟩+ ⟨z · zq,WL · aL + WR · aR + WO · aO −WV · v − c⟩
= 0

This check is sound as typically a prover could not control values of
y , z before he commits to aL, aR, aO and v.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: compiling into inner-product
Denote wc = ⟨z · zq, c⟩ and flattened linear constraints(still public
and easily computed by verifier):

wL = WT
L · (z · zq) wR = WT

R · (z · zq)
wO = WT

O · (z · zq) wV = WT
V · (z · zq)

Again doing some linear algebra witchcraft we could separate aL, aO
to be on the left side of the inner-product and aR to be on the right:

wc + ⟨wV , v⟩+ δ(y , z) =

⟨aL + y−n ◦ wR , yn ◦ aR + wL⟩+ ⟨aO ,−yn + wO⟩

Where δ(y , z) = ⟨y−n ◦ wR ,wL⟩ – easily computable by V.

Here we have a sum of 2 separate inner-products, we could express it
as second-degree coefficient of the following polynomial:

⟨ax + cx2, d + bx⟩ = s1x + s2x
2 + s3x

3 =

x · ⟨a, d⟩+ x2 · (⟨a, b⟩+ ⟨c, d⟩) + x3 · ⟨c, b⟩



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: compiling into inner-product
a← aL + y−n ◦ wR b← yn ◦ aR + wL

c← aO d← −yn + wO

Desired sum of inner products is the second-degree coefficient s2:

wc + ⟨wV , v⟩+ δ(y , z) = s2

To obtain final polynomials l(x), r(x) we must firstly blind aL, aR :

aL ← aL + sLx2 aR ← aR + sRx2

And finally compute polynomials l(x), r(x) as follows:

l(x) = sL · x3 + aO · x2 + (aL + y−n ◦ wR) · x
r(x) = yn ◦ sR · x3 + (yn ◦ aR + wL) · x − yn + wO

t(x) = ⟨l(x), r(x)⟩ =
6∑

i=0

tixi

Where t2 = wc + ⟨wV , v⟩+ δ(y , z) – desired sum of inner-products.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: witness commitments

Here we could again apply modified zk-mul to prove that t2 is a
valid sum of inner-products:

• Setup: returns vectors of independent generators G,H ∈ Gn.

• Prover P choses blinding factors α, β, γ ∈ Fp, sL, sR ∈ Fn
p and

sends the following commitments to V:

AI = ⟨aL,G⟩+ ⟨aR ,H⟩+ [α]B

AO = ⟨aO ,G⟩+ [γ]B

S = ⟨sL,G⟩+ ⟨sR ,H⟩+ [β]B

• Verifier samples challenges y , z
R←− Fp and sends them to P.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: product commitments
• Using challenges y , z prover forms polynomials l(x), r(x), t(x):

l(x) = sL · x3 + aO · x2 + (aL + y−n ◦ wR) · x
r(x) = yn ◦ sR · x3 + (yn ◦ aR + wL) · x − yn + wO

t(x) = ⟨l(x), r(x)⟩ = t1x + t2x
2 + t3x

3 + t4x
4 + t5x

5 + t6x
6

P choses random blinding factors τ1, τ3, τ4, τ5, τ6 ∈ Fp and sends
to V commitments to its coefficients:

T1 = [t1]G + [τ1]B T3 = [t3]G + [τ3]B T4 = [t4]G + [τ4]B

T5 = [t5]G + [τ5]B T6 = [t6]G + [τ6]B

Note: Prover does not send separate commitment to t2 as the
verifier could derive it from V and the circuit public parameters:

t2 = wc + ⟨wV , v⟩+ δ(y , z)

T2 = ⟨wV ,V⟩+ [δ(y , z) + wc ]G



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: evaluating polynomials

• Verifier samples and sends to P random evaluation point u R←− Fp.

• Prover evaluates polynomials at u:

lu = l(u)
ru = r(u)
tu = ⟨lu, ru⟩ = t(u)

τu = τ1 · u + ⟨wV , r⟩u2 + τ3 · u3 + τ4 · u4 + τ5 · u5 + τ6 · u6

αu = αu + γu2 + βu3

and sends (lu, ru, tu, αu, τu) to V.



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: verification
• Verifier performs checks:

[u]AI + [u2]AO + [u3]S − ⟨1,H⟩+
u · (⟨y−n ◦ wL,G⟩+ ⟨y−n ◦ wR ,H⟩) + ⟨y−n ◦ wO ,H⟩
?
= ⟨lu,G⟩+ ⟨ru, y−n ◦ H⟩+ [αu]B

[tu]G + [τu]B
?
= [u]T1 + u2 · (⟨wV ,V⟩+ [δ(y , z) + wc ]G )+

[u3]T3 + [u4]T4 + [u5]T5 + [u6]T6

tu
?
= ⟨lu, ru⟩

Remark
To provide logarithmic proof instead of sending lu, ru parties could
run IPA on inputs (G, y−n ◦ H,P, tu; lu, ru) where:

P =[u]AI + [u2]AO + [u3]S − ⟨1,H⟩+
u · (⟨y−n ◦ wL,G⟩+ ⟨y−n ◦ wR ,H⟩) + ⟨y−n ◦ wO ,H⟩ − [αu]B



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Arithmetic circuits: efficiency & extensions

Theorem
The arithmetic circuits protocol has perfect completeness,
computational extended witness emulation, perfect honest-verifier
zero-knowledge

The protocol is efficient as it has logarithmic proof size.

Remark
The arithmetic circuits protocol protocol could be slightly
modified to provide intermediate random challenges inside the circuit.
For example it would allow proving permutation check :
{a, b} = {c , d} ⇐⇒ (a− x) · (b − x) = (c − x) · (d − x) for some
random challenge x .



Introduction IPA polynomial commitment scheme Range proofs Arithmetic circuits

Questions?


	Introduction
	IPA polynomial commitment scheme
	Range proofs
	Arithmetic circuits

