Bulletproofs: applications

July 31, 2025

Introduction

Distributed Lab

zkdl-camp.github.io

github.com/ZKDL-Camp

Range proofs

Plan

1 Introduction

2 IPA polynomial commitment scheme

- 3 Range proofs
- 4 Arithmetic circuits

Inner-product argument: illustration

Recap: inner-product argument

- Goal: Prove $\langle a, b \rangle = c$ with logarithmic proof size
- Commitment: $P' = \langle a, G \rangle + \langle b, H \rangle + [\langle a, b \rangle]Q$
- Protocol recursively compresses vectors at each step
- Final check: $P' + \sum_{i}([u_i^2]L_i + [u_i^{-2}]R_i) = [a]G + [b]H + [ab]Q$

Range proofs

Key properties

Proof size is $O(\log_2 n)$, prover and verifier both run in O(n). The protocol doesn't need a trusted setup. Protocol is knowledge sound and perfect complete but not zero-knowledge.

Idea

We could provide zero-knowledge directly to inner-product argument construction or use **zk-mul** protocol for outer construction.

Recap: zkmul

Consider relation $R_{mul} = \{(\bot; I(x), r(x), t(x)) | t(x) = I(x)r(x)\}$ where $I(x) = a + s_L x, r(x) = b + s_R x, t(x) = I(x)r(x)$. Protocol **zk-mul** is defined as follows:

• Prover computes and sends to V commitments to I(x), r(x), t(x):

$$A = [a]G + [b]H + [\alpha]B T_0 = [ab]G + [\tau_0]B$$

$$S = [s_L]G + [s_R]H + [\beta]B T_1 = [s_L + s_R]G + [\tau_1]B$$

$$T_2 = [s_L s_R]G + [\tau_2]B$$

- Verifier draws random challenge $u \in \mathbb{F}_p$ and sends it to prover
- Prover evaluates and sends to Verifier $(I_u, r_u, t_u, \alpha_u, \tau_u)$:

$$I_{u} = I(u), r_{u} = r(u), t_{u} = I_{u} \cdot r_{u}, \alpha_{u} = \alpha + \beta u, \tau_{u} = \tau_{0} + \tau_{1}u + \tau_{2}u^{2}$$

• Verifier checks: $A + [u]S \stackrel{?}{=} [I_u]G + [r_u]H + [\alpha_u]B$, $[t_u]G + [\tau_u]B \stackrel{?}{=} T_0 + [u]T_1 + [u^2]T_2$, $t_u \stackrel{?}{=} I_u r_u$

What's next?

IPA polynomial commitment scheme

Recap: Polynomial commitments

Polynomial commitment scheme

$$\mathcal{C} = (\mathsf{Setup}, \mathsf{Commit}, \mathsf{Open}, \mathsf{VerifyOpen})$$

allows to commit to a polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^i$ and prove its evaluation at some point.

- Applications: SNARKs compiled with IOP + polynomial commitment scheme framework (e.g., Halo, Nova, Spartan, Plonk)
- Desirable properties: sublinear size, efficient, no trusted setup

Example

One famouos example is the **KZG** polynomial commitment scheme, which uses bilinear pairings and requires a trusted setup.

IPA polynomial commitment

Let $f(x) = \sum_{i=0}^{n-1} a_i x^i$ be a polynomial of degree $n-1 = 2^d - 1$.

The non-hiding IPA polynomial commitment scheme $C_{ip} = (Setup, Commit, Open, VerifyOpen)$ is defined as follows:

- Setup returns independent generators $G = (G_1, \ldots, G_n)$.
- Commit returns $Com(f) = \langle f, G \rangle$ where $f = (a_0, \dots, a_{n-1})$
- Open given evaluation point $u \in \mathbb{F}_p$ computes $\mathbf{u}^{\mathsf{n}} = (1, u, u^2, \dots, u^{n-1})$, obtains $f(u) = \langle \mathsf{f}, \mathsf{u}^{\mathsf{n}} \rangle$ and runs inner-product argument Π_{ip} non-interactively setting

$$a = f, b = un, P = Com(f), c = f(u)$$

to produce an evaluation proof π_{ip}

• VerifyOpen given evaluation point $u \in \mathbb{F}_p$ and commitment Com(f) validates proof π_{ip} running the non-interactive verifier \mathcal{V} of inner-product argument.

Range proofs

Range proofs: motivation

• **Goal:** Prove $v \in [0, 2^n)$ without revealing v:

$$\mathcal{R}_{rp} = \{(G, B, V, n; v, \gamma) | V = [v]G + [\gamma]B, v \in [0, 2^n)\}$$

Range proofs

- Applications: Confidential transactions (e.g., Monero, Mimblewimble), other privacy-preserving protocols.
- Idea: Prove $v = \sum_{i=0}^{n-1} v_i 2^i$ and $\forall i \in 0... n-1 : v_i \in \{0,1\}$

Naive approach

One could prove $v = \sum_{i=0}^{n-1} v_i 2^i$ and $\forall i \in 0... n-1 : v_i \in \{0,1\}$ using Σ -protocols, but this would be inefficient due to linear proof.

Firstly, write v in base-2 representation: $v = \sum_{i=0}^{\lfloor \log_2 v \rfloor} 2^i v_i$ and $a_1 = (v_0, v_1, \dots, v_{n-1})$ be the vector of bits padded with zeroes to length n, define $a_R = a_I - 1^n$ so the range validation that v lays in $[0,2^n)$ implies two checks:

Range proofs

- The following inner-product equality holds: $\langle a_L, 2^n \rangle = v$
- Each bit v_i must be either 0 or 1:

$$a_L - a_R - 1^n = 0^n$$
$$a_L \circ a_R = 0^n$$

Example

Let $a_i = (1, 0, 1, 0)$, $a_R = (0, -1, 0, -1)$, then $a_i \circ a_R = (0, 0, 0, 0)$

This two checks imply verification that some vector is zero vector, for that we use some challenge $y \in \mathbb{F}_p$ and check inner-product equalities

$$\langle a_L \circ a_R, y^n \rangle = 0$$
 and $\langle a_L - a_R - 1^n, y^n \rangle = 0$

This checks are sound because the prover doesn't know challenge y in advance. So we must combine three inner-product checks:

- 1. $\langle a_L, 2^n \rangle = v$
- 2. $\langle a_L, a_R \circ y^n \rangle = 0$
- 3. $\langle a_L a_R 1^n, y^n \rangle = 0$

into one soundly summing up with powers of other challenge $z \in \mathbb{F}_p$:

$$z^2 \cdot \langle a_L, 2^n \rangle + z \cdot \langle a_L - a_R - 1^n, y^n \rangle + \langle a_L, a_R \circ y^n \rangle = z^2 v$$

Using some dark linear algebra wizardry we could combine the three inner-product checks into a single one inner-product check:

$$\langle a_L - z \cdot 1^n, z^2 \cdot 2^n + z \cdot y^n + a_R \circ y^n \rangle = z^2 v + \delta(y, z)$$

Where $\delta(y, z)$ could easily be computed by verifier:

$$\delta(y,z) = (z - z^2)\langle 1^n, y^n \rangle - z^3\langle 1^n, 2^n \rangle$$

Now it's time to bring out **zk-mul** for inner-products!

Firstly, construct the blinding polynomials for a_L and a_R :

$$a'_L \leftarrow a_L + s_L x \quad a'_R \leftarrow a_R + s_R x$$

Compute polynomials $I(x) = I_0 + I_1 x$, $r(x) = r_0 + r_1 x$:

$$I(x) = a'_{L} - z \cdot 1^{n} = (a_{L} + s_{L}x) - z \cdot 1^{n} = a_{L} - z \cdot 1^{n} + s_{L}x$$

$$r(x) = z^{2} \cdot 2^{n} + z \cdot y^{n} + a'_{R} \circ y^{n} = z^{2} \cdot 2^{n} + z \cdot y^{n} + (a_{R} + s_{R}x) \circ y^{n}$$

$$= z^{2} \cdot 2^{n} + z \cdot y^{n} + a_{R} \circ y^{n} + s_{R} \circ y^{n}x$$

$$t(x) = \langle I(x), r(x) \rangle = t_0 + t_1 x + t_2 x^2$$

Range proofs

Now \mathcal{P} needs to apply **zk-mul** for proving:

$$t_0 = \langle \mathsf{a}_L - z \cdot 1^n, \mathsf{z}^2 \cdot 2^n + z \cdot \mathsf{y}^n + \mathsf{a}_R \circ \mathsf{y}^n \rangle = \mathsf{z}^2 \mathsf{v} + \delta(\mathsf{y}, \mathsf{z})$$

Note: V could compute commitment $Com(t_0)$ using V = Com(v)

Remark

We couldn't apply raw **zk-mul** as l₀ depends on verifier-provided challenges, instead \mathcal{P} firstly commits to a_L, a_R and blinders s_L, s_R , obtaints challenges y, z from V and computes rest of the commitments.

During verification phase V should adjust commitments to I(x), r(x)by himself using homomorphic proterties of Pedersen commitment scheme.

Range proofs: building the protocol

- Setup returns independent generators $G, H \in \mathbb{G}^n$
- Prover does bit decomposition of v: $a_L \leftarrow v$, $a_R \leftarrow a_L 1^n$, choses blinding terms $s_L, s_R \in \mathbb{F}_p^n$, $\alpha, \beta \in \mathbb{F}_p$, sends commitments:

$$A = \langle \mathsf{a}_L, \mathsf{G} \rangle + \langle \mathsf{a}_R, \mathsf{H} \rangle + [\alpha] B \quad S = \langle \mathsf{s}_L, \mathsf{G} \rangle + \langle \mathsf{s}_R, \mathsf{H} \rangle + [\beta] B$$

- Verifier $\mathcal V$ samples challenges $y,z \xleftarrow{R} \mathbb F_p$ and sends them to $\mathcal P$
- Prover \mathcal{P} reconstructs polynomials I(x), r(x), t(x): $I(x) = a_I - z \cdot 1^n + s_I x$

$$r(x) = z^{2} \cdot 2^{n} + z \cdot y^{n} + a_{R} \circ y^{n} + s_{R} \circ y^{n} x$$

$$t(x) = \langle I(x), r(x) \rangle = t_{0} + t_{1}x + t_{2}x^{2}$$

$$t_{0} = \langle a_{L} - z \cdot 1^{n}, z^{2} \cdot 2^{n} + z \cdot y^{n} + a_{R} \circ y^{n} \rangle = z^{2}v + \delta(y, z)$$

$$t_{1} = \langle a_{L} - z \cdot 1^{n}, y^{n} \circ s_{R} \rangle + \langle y^{n} \circ (a_{R} + z \cdot 1^{n}) + z^{2} \cdot 2^{n}, s_{L} \rangle$$

$$t_{2} = \langle s_{L}, y^{n} \circ s_{R} \rangle$$

Range proofs: proving

• Prover \mathcal{P} draws blinding factors $\tau_1, \tau_2 \xleftarrow{R} \mathbb{F}_p$ and sends to \mathcal{V} commitments for coefficients of t(x):

$$T_1 = [t_1]G + [\tau_1]B$$

 $T_2 = [t_2]G + [\tau_2]B$

Note: prover does not have to send commitment to t_0 as it's the inner-product we want to prove and it could be computed from high-level commitment V.

- Verifier \mathcal{V} samples and sends to \mathcal{P} evaluation point $u \stackrel{R}{\leftarrow} \mathbb{F}_p$
- Prover \mathcal{P} evaluates polynomials at u:

and sends $(l_u, r_u, t_u, \alpha_u, \tau_u)$ to \mathcal{V} .

$$\begin{aligned}
\mathsf{I}_{u} &= \mathsf{I}(u) & \alpha_{u} &= \alpha + \beta u \\
\mathsf{r}_{u} &= \mathsf{r}(u) & \tau_{u} &= z^{2} \gamma + \tau_{1} u + \tau_{2} u^{2} \\
t_{u} &= t(u) &= t_{0} + t_{1} u + t_{2} u^{2}
\end{aligned}$$

Range proofs: verification

Verifier V checks:

$$A + [u]S + \langle -z \cdot 1^{n}, G \rangle + \langle z \cdot y^{n} + z^{2} \cdot 2^{n}, y^{-n} \circ H \rangle$$

$$\stackrel{?}{=} \langle I_{u}, G \rangle + \langle r_{u}, y^{-n} \circ H \rangle + [\alpha_{u}]B$$

$$[t_{u}]G + [\tau_{u}]B \stackrel{?}{=} [z^{2}]V + [\delta(y, z)]G + [u]T_{1} + [u^{2}]T_{2}$$

$$t_{u} \stackrel{?}{=} \langle I_{u}r_{u} \rangle$$

Range proofs

Remark

To provide logarithmic size-proof instead of sending I_{μ} , r_{μ} parties could run an inner-product argument IPA on inputs $(G, y^{-n} \circ H, P, t_{ij}; I_{ij}, r_{ij})$ where:

$$P = A + [u]S + \langle -z \cdot 1^n, G \rangle + \langle z \cdot y^n + z^2 \cdot 2^n, y^{-n} \circ H \rangle - [\alpha_u]B$$

Range proofs: efficiency & extensions

Theorem

The range proof protocol Π_{rp} has perfect completeness, computational extended witness emulation, perfect honest-verifier zero-knowledge

Note that protocol is efficient as it has logarithmic proof size.

Remark

The range proof protocol could be extended to support proving multiple range proofs at once with some efficiency improvements.

Range proofs & subset-sum NP-complete problem

One of the most famous *NP-complete* problems is the **subset-sum problem**: given a set of numbers presented as vector s and number $v \in \mathbb{N}$, does a some subset sums up to v. It turns out that we could use our **range-proof** protocol for this problem. One could simply replace first inner-product check $\langle a_L, 2^n \rangle = v$ with $\langle a_L, s \rangle = v$ where a_L is the secret vector of bits that encode positions of s that sum up to v.

Example

Let s=(6,8,2,3) and v=14. Then setting $a_L=(1,1,0,0)$ we could use Π_{rp} to prove that there exists a subset of s that sums up to v=14 without disclosing that subset.

Therefore, **bulletproofs range proof** protocol is capable to prove a knowledge of witness to any *NP*-problem as they all could be reduced to the **subset-sum problem**

Bulletproofs for arithmetic circuits

• Goal: Prove that a circuit computes correctly without revealing inputs or intermediate values (circuit satisfiability problem).

Range proofs

- Approach: Use inner-product argument to prove correctness of arithmetic circuits
- Applications: Privacy-preserving smart contracts, confidential computations, zero-knowledge proofs for complex computations

Bulletproofs arithmetization slightly differs from the classic R1CS, however it could be transformed vice-versa easily. Also bulletproofs arithmetization is more convenient and human-friendly for encoding most of the arithmetic circuits than the R1CS.

Arithmetic circuits: variables

There is two types of variables in *bulletproofs* constraint system:

• **High-level variables** $v \in \mathbb{F}_p^m$ are the private witness inputs to the circuit, typically provided with Pedersen commitments $V \in \mathbb{G}^m$.

Range proofs

• Low-level variables $a_L, a_R, a_O \in \mathbb{F}_p^n$ are the intermediate witness values of computation.

We will define circuit as a set of multiplication constraints operating with low-level variables and set of linear constraints which links low-level variables between each other and high-level variables as well.

Arithmetic circuits: constraints

Multiplication constraints are defined with one vector equation:

$$a_L \circ a_R = a_O$$

Range proofs

Linear constraints are defined via:

$$W_L \cdot a_L + W_R \cdot a_R + W_O \cdot a_O = W_V \cdot v + c$$

Where a_{I} , a_{R} , a_{O} – vectors of left and right inputs for multiplication gates and output values (all of them are low-level variables). $W_1, W_R, W_O \in \mathbb{F}_p^{q \times n}, W_V \in \mathbb{F}_p^{q \times m}$ – public matrices of weights for linear constraints (obviously known to verifier). $c \in \mathbb{F}_p^q$ – public vector of constants. Typically they encode wiring of the circuit and other linear relations between variables.

Arithmetic circuits: example

Example

Consider the following elliptic curve membership circuit. Here witness (v_1, v_2) should satisfy elliptic curve equation:

$$y^2 = x^3 + ax + b$$

Range proofs

The arithmetization for this circuit is as follows:

Low-level variables:

$$\mathbf{a}_L = \begin{bmatrix} x \\ x \\ y \end{bmatrix}, \quad \mathbf{a}_R = \begin{bmatrix} x \\ x^2 \\ y \end{bmatrix}, \quad \mathbf{a}_O = \begin{bmatrix} x^2 \\ x^3 \\ y^2 \end{bmatrix}$$

High-level variables:

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Example

Introduction

Multiplication constraints:

$$a_L \circ a_R = a_O \Rightarrow \begin{bmatrix} x \cdot x = x^2 \\ x \cdot x^2 = x^3 \\ y \cdot y = y^2 \end{bmatrix}$$

Range proofs

Linear constraints:

$$a_{L}^{(1)} = v_{1} a_{R}^{(1)} = v_{1}$$

$$a_{L}^{(2)} - a_{L}^{(1)} = 0 a_{R}^{(2)} - a_{O}^{(1)} = 0$$

$$a_{L}^{(3)} = v_{2} a_{R}^{(3)} = v_{2}$$

$$a_{O}^{(3)} - a_{O}^{(2)} - a \cdot a_{L}^{(1)} = b$$

$$W_{L} \cdot a_{L} + W_{R} \cdot a_{R} + W_{O} \cdot a_{O} = W_{V} \cdot v + c$$

Arithmetic circuits: example

Example

Introduction

$$W_{V} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad c = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Bulletproofs for circuits: relation

Consider the relation:

$$\mathcal{R}_{\textit{sat}} = \left\{ \begin{array}{l} (\textit{G}, \textit{B}, \textit{V}, \textit{W}_{\textit{L}}, \textit{W}_{\textit{R}}, \textit{W}_{\textit{O}}, \textit{W}_{\textit{V}}, \textit{c}; \textit{a}_{\textit{L}}, \textit{a}_{\textit{R}}, \textit{a}_{\textit{O}}, \textit{v}, \textit{r})| \\ \forall \textit{i} = 1..m : \textit{V}_{\textit{i}} = [\textit{v}_{\textit{i}}]\textit{G} + [\textit{r}_{\textit{i}}]\textit{B} \land \\ \textit{a}_{\textit{L}} \circ \textit{a}_{\textit{R}} = \textit{a}_{\textit{O}} \land \\ \textit{W}_{\textit{L}} \cdot \textit{a}_{\textit{L}} + \textit{W}_{\textit{R}} \cdot \textit{a}_{\textit{R}} + \textit{W}_{\textit{O}} \cdot \textit{a}_{\textit{O}} = \textit{W}_{\textit{V}} \cdot \textit{v} + \textit{c} \end{array} \right\}$$

Where
$$\mathbf{a}_L, \mathbf{a}_R, \mathbf{a}_O \in \mathbb{F}_p^n$$
, $\mathbf{v}, \mathbf{r} \in \mathbb{F}_p^m$, $\mathbf{W}_L, \mathbf{W}_R, \mathbf{W}_O \in \mathbb{F}_p^{q \times n}$, $\mathbf{W}_V \in \mathbb{F}_p^{q \times m}$, $\mathbf{c} \in \mathbb{F}_p^q$.

Note

Informally this relation states that there exists a valid witness v that satisfies all constraints of the circuit. For the verifier witness is presented only as commitments vector V.

We could use similar to *range-proofs* technique to compile constraints of the circuit into inner-product relation. For multiplicative constraints take random $y \in \mathbb{F}_p$ and apply zero check:

$$\langle a_I \circ a_R - a_O, y^n \rangle = 0$$

Same for linear constraints, but for different randomness $z \in \mathbb{F}_p$:

$$\langle W_I \cdot a_I + W_R \cdot a_R + W_O \cdot a_O - W_V \cdot v - c, z^q \rangle = 0$$

Combine this two checks to one using the same randomness z:

$$\langle a_L \circ a_R - a_O, y^n \rangle + \langle z \cdot z^q, W_L \cdot a_L + W_R \cdot a_R + W_O \cdot a_O - W_V \cdot v - c \rangle$$

= 0

This check is sound as typically a prover could not control values of y, z before he commits to a_L, a_R, a_O and v.

Range proofs

Denote $w_c = \langle z \cdot z^q, c \rangle$ and flattened linear constraints(still public and easily computed by verifier):

$$\mathbf{w}_{L} = \mathbf{W}_{L}^{T} \cdot (z \cdot \mathbf{z}^{q}) \quad \mathbf{w}_{R} = \mathbf{W}_{R}^{T} \cdot (z \cdot \mathbf{z}^{q})$$
$$\mathbf{w}_{O} = \mathbf{W}_{O}^{T} \cdot (z \cdot \mathbf{z}^{q}) \quad \mathbf{w}_{V} = \mathbf{W}_{V}^{T} \cdot (z \cdot \mathbf{z}^{q})$$

Again doing some linear algebra witchcraft we could separate a_{I} , a_{O} to be on the left side of the inner-product and a_R to be on the right:

$$w_c + \langle w_V, v \rangle + \delta(y, z) =$$
$$\langle a_L + y^{-n} \circ w_R, y^n \circ a_R + w_L \rangle + \langle a_O, -y^n + w_O \rangle$$

Where $\delta(y,z) = \langle y^{-n} \circ w_R, w_I \rangle$ – easily computable by \mathcal{V} .

Here we have a sum of 2 separate inner-products, we could express it as second-degree coefficient of the following polynomial:

$$\langle \mathsf{a} \mathsf{x} + \mathsf{c} \mathsf{x}^2, \mathsf{d} + \mathsf{b} \mathsf{x} \rangle = s_1 \mathsf{x} + s_2 \mathsf{x}^2 + s_3 \mathsf{x}^3 = \mathsf{x} \cdot \langle \mathsf{a}, \mathsf{d} \rangle + \mathsf{x}^2 \cdot (\langle \mathsf{a}, \mathsf{b} \rangle + \langle \mathsf{c}, \mathsf{d} \rangle) + \mathsf{x}^3 \cdot \langle \mathsf{c}, \mathsf{b} \rangle$$

Arithmetic circuits: compiling into inner-product

$$\mathbf{a} \leftarrow \mathbf{a}_L + \mathbf{y}^{-n} \circ \mathbf{w}_R \quad \mathbf{b} \leftarrow \mathbf{y}^n \circ \mathbf{a}_R + \mathbf{w}_L$$

$$\mathbf{c} \leftarrow \mathbf{a}_O \qquad \qquad \mathbf{d} \leftarrow -\mathbf{y}^n + \mathbf{w}_O$$

Desired sum of inner products is the second-degree coefficient s_2 :

$$w_c + \langle w_V, v \rangle + \delta(v, z) = s_2$$

To obtain final polynomials I(x), r(x) we must firstly blind a_L , a_R :

$$a_1 \leftarrow a_1 + s_1 x^2$$
 $a_R \leftarrow a_R + s_R x^2$

And finally compute polynomials I(x), r(x) as follows:

$$I(x) = s_L \cdot x^3 + a_O \cdot x^2 + (a_L + y^{-n} \circ w_R) \cdot x$$

$$r(x) = y^n \circ s_R \cdot x^3 + (y^n \circ a_R + w_L) \cdot x - y^n + w_O$$

$$t(x) = \langle I(x), r(x) \rangle = \sum_{i=0}^{\infty} t_i x_i$$

Where $t_2 = w_c + \langle w_V, v \rangle + \delta(y, z)$ – desired sum of inner-products.

Here we could again apply modified \mathbf{zk} - \mathbf{mul} to prove that t_2 is a valid sum of inner-products:

- Setup: returns vectors of independent generators $G, H \in \mathbb{G}^n$.
- Prover \mathcal{P} choses blinding factors $\alpha, \beta, \gamma \in \mathbb{F}_p$, $\mathsf{s}_L, \mathsf{s}_R \in \mathbb{F}_p^n$ and sends the following commitments to \mathcal{V} :

$$A_{I} = \langle a_{L}, G \rangle + \langle a_{R}, H \rangle + [\alpha]B$$

$$A_{O} = \langle a_{O}, G \rangle + [\gamma]B$$

$$S = \langle s_{L}, G \rangle + \langle s_{R}, H \rangle + [\beta]B$$

• Verifier samples challenges $y, z \stackrel{R}{\leftarrow} \mathbb{F}_p$ and sends them to \mathcal{P} .

Range proofs

Arithmetic circuits: product commitments

• Using challenges y, z prover forms polynomials I(x), r(x), t(x):

$$I(x) = s_L \cdot x^3 + a_O \cdot x^2 + (a_L + y^{-n} \circ w_R) \cdot x$$

$$r(x) = y^n \circ s_R \cdot x^3 + (y^n \circ a_R + w_L) \cdot x - y^n + w_O$$

$$t(x) = \langle I(x), r(x) \rangle = t_1 x + t_2 x^2 + t_3 x^3 + t_4 x^4 + t_5 x^5 + t_6 x^6$$

 \mathcal{P} choses random blinding factors $\tau_1, \tau_3, \tau_4, \tau_5, \tau_6 \in \mathbb{F}_p$ and sends to \mathcal{V} commitments to its coefficients:

$$T_1 = [t_1]G + [\tau_1]B$$
 $T_3 = [t_3]G + [\tau_3]B$ $T_4 = [t_4]G + [\tau_4]B$
 $T_5 = [t_5]G + [\tau_5]B$ $T_6 = [t_6]G + [\tau_6]B$

Note: Prover does not send separate commitment to t_2 as the verifier could derive it from V and the circuit public parameters:

$$t_2 = w_c + \langle w_V, v \rangle + \delta(y, z)$$

$$T_2 = \langle w_V, V \rangle + [\delta(y, z) + w_c]G$$

Arithmetic circuits: evaluating polynomials

- ullet Verifier samples and sends to $\mathcal P$ random evaluation point $u \stackrel{R}{\leftarrow} \mathbb F_p$.
- Prover evaluates polynomials at *u*:

$$I_{u} = I(u)$$

$$r_{u} = r(u)$$

$$t_{u} = \langle I_{u}, r_{u} \rangle = t(u)$$

$$\tau_{u} = \tau_{1} \cdot u + \langle w_{V}, r \rangle u^{2} + \tau_{3} \cdot u^{3} + \tau_{4} \cdot u^{4} + \tau_{5} \cdot u^{5} + \tau_{6} \cdot u^{6}$$

$$\alpha_{u} = \alpha u + \gamma u^{2} + \beta u^{3}$$

and sends $(I_u, r_u, t_u, \alpha_u, \tau_u)$ to \mathcal{V} .

Range proofs

Arithmetic circuits: verification

Verifier performs checks:

$$[u]A_{I} + [u^{2}]A_{O} + [u^{3}]S - \langle 1, \mathsf{H} \rangle +$$

$$u \cdot (\langle \mathsf{y}^{-n} \circ \mathsf{w}_{L}, \mathsf{G} \rangle + \langle \mathsf{y}^{-n} \circ \mathsf{w}_{R}, \mathsf{H} \rangle) + \langle \mathsf{y}^{-n} \circ \mathsf{w}_{O}, \mathsf{H} \rangle$$

$$\stackrel{?}{=} \langle \mathsf{I}_{u}, \mathsf{G} \rangle + \langle \mathsf{r}_{u}, \mathsf{y}^{-n} \circ \mathsf{H} \rangle + [\alpha_{u}]B$$

$$[t_{u}]G + [\tau_{u}]B \stackrel{?}{=} [u]T_{1} + u^{2} \cdot (\langle \mathsf{w}_{V}, \mathsf{V} \rangle + [\delta(y, z) + w_{c}]G) +$$

$$[u^{3}]T_{3} + [u^{4}]T_{4} + [u^{5}]T_{5} + [u^{6}]T_{6}$$

$$t_{u} \stackrel{?}{=} \langle \mathsf{I}_{u}, \mathsf{r}_{u} \rangle$$

Remark

To provide logarithmic proof instead of sending l_u, r_u parties could run **IPA** on inputs $(G, y^{-n} \circ H, P, t_u; l_u, r_u)$ where:

$$P = [u]A_I + [u^2]A_O + [u^3]S - \langle 1, H \rangle + u \cdot (\langle y^{-n} \circ w_L, G \rangle + \langle y^{-n} \circ w_R, H \rangle) + \langle y^{-n} \circ w_O, H \rangle - [\alpha_u]B$$

Arithmetic circuits: efficiency & extensions

Theorem

The arithmetic circuits protocol has perfect completeness, computational extended witness emulation, perfect honest-verifier zero-knowledge

Range proofs

The protocol is efficient as it has logarithmic proof size.

Remark

The arithmetic circuits protocol protocol could be slightly modified to provide intermediate random challenges inside the circuit. For example it would allow proving permutation check: $\{a,b\} = \{c,d\} \iff (a-x)\cdot(b-x) = (c-x)\cdot(d-x)$ for some random challenge x.

You don't understand?