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Recap on Poly-IOPs and NILPs

Almost all protocols we have seen so far work over univariate F[X]
polynomials. Typical idea: we aggregate information into some
polynomial: say, p(X) (which is typically a combination of other
polynomials), and then check whether p(u) = 0 for every u ∈ Ω:

p(u) = 0 for all u ∈ Ω ⇐⇒ p(X) = q(X)
∏
u∈Ω

(X − u)

We check this inequality at a random point r ←$ F and achieve
soundness of 1 − deg p/|F|: see Schwartz-Zippel Lemma.

For appropriate domains (typically Ω = {ωj}j∈[2t]) we reduce all
polynomials computations to O(n log n) complexity.

Motivation
But what if we could work with much smaller degrees?
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Sum-Check-based Protocols

• Instead of n-variate univariate polynomials F[X] we reduce the
problem to log n-variate multivariate polynomials F[X1, . . . , Xv].

• The Schwartz-Zippel Lemma still holds for multivariate case:

Pr
(r1,...,rv)←$S

[f (r1, . . . , rv) = 0] ≤
deg f
|S|

, S ⊆ Fv

• Bad news: divisibility theorems do not hold:

f (s1, . . . , sv) = 0 ⇍⇒ (X − s1) . . . (X − sv) | f (X1, . . . , Xv)

Sum-Check meaning

Instead of divisibility checks, we use the Sum-Check:∑
b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

f (b1, . . . , bv) = H
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Summary in a Nutshell

Univariate World:
p(X) = q(X)

∏
u∈Ω

(X − u)
Multivariate World:∑

b∈{0,1}ℓ
f (b1, . . . , bℓ) = H

Succinct Arguments: Ligero (2022), Spartan (2020), Libra (2019),
Hyrax(2017), GKR (2008), . . .

Applications: zkGPT (2025), deep-prove (using Ceno) (2024),
vSQL (2017), . . .
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Multivariate Polynomials. Multilinear
Extensions.
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Some technicalities
Definition (Monomial)

By monomial in v variables we call expression µ(X) = Xα1
1 . . . Xαv

v
where α1, . . . , αv are non-negative integers. The degree of a
monomial is naturally defined as deg µ ≜ α1 + · · · + αv.

Definition (Multivariate Polynomial)

Function f : Fv → F is called an v-variate polynomial, which is
denoted by f ∈ F[X1, . . . , Xv], if f (X) is a finite linear combination of
v-variate monomials {µ1(X), . . . , µn(X)}. The degree of f is defined
as deg f ≜ maxi∈{1,...,n} deg µi.

Example

f (X1, X2, X3) = X3
1 + 3X2

1X2
2 + X2

3 + X3 is a linear combination of
3-variate monomials {X3

1 , X2
1X2

2 , X2
3 , X3}, thus f ∈ F[X1, X2, X3]. It has

degree deg f = 4, corresponding to the second monomial X2
1X2

2 .
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Multilinear Polynomials

Definition (Multilinear Polynomial)

Multivariate polynomial f ∈ F[X1, . . . , Xv] is called multilinear if it is
linear in each of the variables. Formally we have:

f (X1, . . . , Xv) = αjXj + �j, j ∈ {1, . . . , n},

where αj, �j do not depend on Xj.

Example
For example, f (X1, X2, X3) = X1X2 + 3X1X3 + X2X3 is a multilinear
polynomial in 3 variables. For instance, for X1:

f (X1, X2, X3) = (X2 + 3X3)X1 + X2X3.

Similarly, f (X1, . . . , Xv) =
∏v

i=1 Xi is a multilinear polynomial.
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Boolean Hypercube
Definition (Boolean Hypercube)

By v-dimensional boolean hypercube we simply denote the set
{0, 1}v (which is a set of binary strings of length v).

Figure: Cryptographers love overcomplicating things.
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Boolean Hypercube Extensions
Definition (Boolean Hypercube Extension)
Suppose we are given the values on the boolean cybercube
f : {0, 1}v → F. We call f̃ : Fv → F an extension if f̃ (b) = f (b) for
every b ∈ {0, 1}v.

Function f : {0, 1}2 → F5
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Multilinear Extensions
Definition (MLE)

An extension f̃ : Fv → F of f : {0, 1}V → F is called multilinear if
f̃ ∈ F[X1, . . . , Xv] is a multilinear polynomial.

Example
For the previous example f (0, 0) = 1, f (1, 0) = f (0, 1) = 2, f (1, 1) = 3
(over F5) the multilinear extension is given by f̃ (X1, X2) = X1 + X2 + 1.

The question though is how many extensions f̃ we can build.

• If f̃ is a multivariate polynomial, there might be infinite number of
choices: for example above, take f̃n(X1, X2) = Xn

1 + Xn
2 + 1.

• However, if f̃ is multilinear, it is unique.

• Additionally, is there an analogy to the Lagrange Interpolation for
such case: how to build f̃ practically?
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Lagrange Interpolation of multilinear polynomials

Theorem (Lagrange Interpolation of Multilinear Polynomials)

Any function over the v-dimensional hypercube f : {0, 1}v → F has a
unique v-variate multilinear extension f̃ ∈ F[X1, . . . , Xv]. It is defined
using the Lagrange interpolation of multilinear polynomials:

f̃ (X) =
∑

b∈{0,1}v
f (b) · eq(X; b),

where the set {eq(X; b)}b∈{0,1}v is referred to as the set of
multilinear Lagrange basis polynomials over {0, 1}v. Each basis
polynomial (among 2v) eq(X; b) is defined as:

eq(X; b) ≜
v∏

i=1

{Xibi + (1 − Xi)(1 − bi)}.
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Lagrange Interpolation: Example
Suppose we want to build the MLE for f : {0, 1}2 → F11 given by:

f (0, 0) = 3, f (0, 1) = 4, f (1, 0) = 1, f (1, 1) = 2

Step 1. Define multilinear Lagrange basis polynomials:

eq(X1, X2; (0, 0)) = (1 − X1)(1 − X2), eq(X1, X2; (0, 1)) = (1 − X1)X2,

eq(X1, X2; (1, 0)) = X1(1 − X2), eq(X1, X2; (1, 1)) = X1X2

Step 2. Find the appropriate linear combination:

f̃ (X1, X2) =
∑

b∈{0,1}2
f (b) · eq(X; b)

= 3(1 − X1)(1 − X2) + 4(1 − X1)X2 + X1(1 − X2) + 2X1X2

= −2X1 + X2 + 3

Fact: Generally, f̃ (r) for r←$ Fv can be computed in O(2v) time.
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Sum-Check MatMul Protocol
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MatMul Sum-Check Protocol
MatMul Protocol
Goal: Verify that C = AB for matrices A, B, C ∈ Fn×n.

Naïve approach: Send A, B to the verifierV, thenV computes AB.

Time Complexity: O(n3), Space Complexity: O(n2).

Freiveld’s Protocol: Send A, B, C to the verifierV. Sample r←$ Fn

and verify that A(Br) = Cr.

Time Complexity: O(n2), Space Complexity: O(n2).

Sum-Check Protocol. Apply the sum-check to some particular
equation formed by multilinear extensions of matrices.

Time Complexity: O(n2), Space Complexity: O(log n).

Question
Where the hell should the Sum-Check be applied here?
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Matrices Multilinear Extensions

For simplicity assume n = 2k for some k.

Idea: Instead of perceiving A, B, C as the collection of n2 field
elements, perceive them as functions
fA, fB, fC : {0, 1}log n × {0, 1}log n → F, mapping two binarized indices
of the matrix to the corresponding value. For example,

fA(i, j) = Ai,j, where i = (i1, . . . , ilog n), j = (j1, . . . , jlog n).

Example

Suppose A =
[
0 1
2 0

]
∈ F2×2

13 . Then, fA is defined as:

fA(0, 0) = fA(1, 1) = 0, fA(0, 1) = 1, fA(1, 0) = 2

Its MLE is given by f̃A(X, Y) = (1 − X)Y + 2X(1 − Y) = 2X + Y − 3XY.
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The Trick
Given functions fA, fB, fC : {0, 1}log n × {0, 1}log n → F, we build the
corresponding MLEs f̃A, f̃B, f̃C : Flog n × Flog n → F. Now what?

Lemma

f̃C(x, y) =
∑

b∈{0,1}log n

f̃A(x, b) · f̃B(b, y)

Reasoning. Both sides are multilinear polynomials in x and y.
Since MLE over {0, 1}2 log n is unique, it suffices to check the equality
only over i, j ∈ {0, 1}log n. Then,

f̃C(i, j) =
∑

b∈{0,1}log n

f̃A(i, b) · f̃B(b, j)

Note that this is exactly the check Ci,j =
∑n

b=1 Ai,bBb,j!

Now, apply Sum-Check on h(z) = f̃A(r1, z)̃fB(z, r2) for r1, r2 ←$ Flog n.
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Idea of Spartan

This protocol might sound too abstract, but this idea of using matrix
MLEs is used in Spartan! Recall that in QAP we check:

QAP Check:
∑

i

ziℓi(X) ·
∑

i

ziri(X) −
∑

i

zioi(X) = 0, X ∈ Ω

Spartan General Idea:

1. Commit to the MLE extension f̃Z(Y) of the solution-witness z.

2. In universal setup, find MLEs f̃L, f̃R, f̃O.

3. Reduce R1CS satisfability to zero-check on

ζ (X) =
∑

b

f̃L(X, b)̃fZ(b) ·
∑

b

f̃R(X, b)̃fZ(b) −
∑

b

f̃O(X, b)̃fZ(b)

4. Apply some dark magic to make above work.
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Sum-Check Protocol
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Sum-Check Protocol Goal
Sum-Check Goal
Prover P wants to convince the verifierV that:∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

f (b1, . . . , bv) = H

Note: f ∈ F[X1, . . . , Xv] is not necessarily a multilinear polynomial.

Naïve IP:V takes f and computes the sum. It requires the time and
space O(2v) — not gud for succinct argument systems.

Round 1. The prover P sends the value C1 ∈ F which is the claimed
value of H. Then, the prover computes:

f1(X1) :=
∑

(b2,...,bv)∈{0,1}v−1

f (X1, b2, . . . , bv)

Question: If f is multilinear, then what form does f1 have?
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Sum-Check, Round #1

Assume prover sends s1(X1). VerifyV needs to check:

1. s1(X1) is indeed f1(X1).

2. s1(X1) (and thus f1(X1)) is consistent with the claimed C1.

Second is easy: check s1(0) + s1(1) = H. Indeed:

s1(0) + s1(1)

=
∑

(b2,...,bv)∈{0,1}v−1

f (0, b2, . . . , bv) +
∑

(b2,...,bv)∈{0,1}v−1

f (1, b2, . . . , bv)

=
∑

(b1,...,bv)∈{0,1}v
f (b1, . . . , bv) = H

For the second, apply the Schwartz-Zippel Lemma: pick r1 ←$ F

and check whether s1(r1) = f1(r1). Computing s1(r1) is trivial, but
how to compute f1(r1) effectively?
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Sum-Check, Subsequent Rounds
Idea: Apply the same procedure again!

Round 2. The prover P computes s2(X2) claimed to equal:

f2(X2) =
∑

(b3,...,bv)∈{0,1}v−2

f (r1, X2, b3, . . . , bv).

For the consistency check,V verifies that s2(0) + s2(1) = s1(r1).
Then, the verification boils down to checking whether s2(r2) = f2(r2).

Round j. The prover P computes sj(Xj) claimed to equal:

fj(Xj) =
∑

(bj+1,...,bv)∈{0,1}v−j

f (r1, . . . , rj−1, Xj, bj+1, . . . , bv).

For the consistency check,V verifies that sj(0) + sj(1) = sj−1(rj−1).
Then, the verification boils down to checking whether sj(rj) = fj(rj).
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Sum-Check, Wrap-up

Last Round. The verifierV picks a random rv ←$ F and verifies
whether sv(rv) = O f (r1, . . . , rv) where O f (·) is an oracle access to
the function f (e.g., commitment + opening).

Lemma (Sum-Check Soundness Lemma)
Let f ∈ F[X1, . . . , Xv] be a multivariate polynomial of degree at most
d in each variable, defined over the finite field F. For any given
H ∈ F, let L be the language of all polynomials f (given as an
oracle) such that

H =
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

f (b1, . . . , bv).

The sumcheck protocol is an IOP for L with the completness error
δC = 0 and the soundness error δS ≤ vd/|F|.
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Sum-Check Performance

Lemma (Sum-Check Performance)

Assume the average cost of calling O f (·) is T, d = deg f , and n = 2v.
Then, the following is true about the performance of Sum-Check:
• Proof Size: O(d log n).

• Verifier Time: O(d log n) + T.

• Prover Time: O(nT).

However, this is an IP. How to turn it to the non-interactive protocol?

Simply apply the Fiat-Shamir heuristic! At round j, the transcript is
τ = (H, s1, r1, . . . , sj−1, rj−1, sj), thus the randomness can be
sampled simply as rj ← O

R(τ) for a random oracle OR(·).

Now the coding time!
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