Introduction Multivariate Polynomials. Multilinear Extensions. Sum-Check MatMul Protocol Sum-Check Protocol
0000 00000000 00000 0000000

Sum-Check Protocol
July 10, 2025

Distributed Lab
& zkdl-camp.github.io

wr

) github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp

Introduction Multivariate Polynomials. Multilinear Extensions. Sum-Check MatMul Protocol Sum-Check Protocol
€000 00000000 00000 0000000

Introduction

Recap on Poly-IOPs and NILPs

Almost all protocols we have seen so far work over univariate F[X]
polynomials. Typical idea: we aggregate information into some
polynomial: say, p(X) (which is typically a combination of other
polynomials), and then check whether p(u) = O for every u € Q:

pw)=0forallueQ > pX) = qgX) l_[(x —u)
ueQ)

We check this inequality at a random point r <% F and achieve
soundness of 1 — deg p/|F|: see Schwartz-Zippel Lemma.

For appropriate domains (typically Q = {a)i}je[zz]) we reduce all
polynomials computations to O(n log n) complexity.

Motivation
But what if we could work with much smaller degrees?

Sum-Check-based Protocols

e Instead of n-variate univariate polynomials F[X] we reduce the
problem to log n-variate multivariate polynomials F[Xy, ..., X,].

e The Schwartz-Zippel Lemma still holds for multivariate case:

degf
Pr [f(r.....) =0] < . SCF
b G =01 < =g

e Bad news: divisibility theorems do not hold:
fGsi, ..., s)=0 & X=-s51)...X—s) | Xy, ..., X))

Sum-Check meaning

Instead of divisibility checks, we use the Sum-Check:

Z Z Z fbr, ..., b,) =H

b1€{0,1} br€{0,1} b,€{0,1}

Introduction
ocooe

Summary in a Nutshell

Univariate World: Multivariate World:
pX) = g0 | X -w D fr.. by =H
ueQ bef0.1}

Succinct Arguments: Ligero (2022), Spartan (2020), Libra (2019),
Hyrax(2017), GKR (2008), ...

Applications: zkGPT (2025), deep-prove (using Ceno) (2024),
vSQL (2017), ...

Introduction Multivariate Polynomials. Multilinear Extensions. Sum-Check MatMul Protocol Sum-Check Protocol
0000 ©0000000 00000 0000000

Multivariate Polynomials. Multilinear
Extensions.

Multivariate Polynomials. Multilinear Extensions.
0®000000

Some technicalities

Definition (Monomial)

By monomial in v variables we call expression u(X) = X{" ... X{"
where ay, ..., a, are non-negative integers. The degree of a
monomial is naturally defined as degu = a; + - - - + a,.

Definition (Multivariate Polynomial)

Function f : F¥ — F is called an v-variate polynomial, which is

denoted by f € F[X;, ..., X1, if f(X) is a finite linear combination of
v-variate monomials {u(X), ..., 1:,(X)}. The degree of f is defined
as degf = maxie(

f(X1.X2.X3) = X; + 3X7X; + X3 + X3 is a linear combination of
3-variate monomials {X;. X7 X3, X3, X3}, thus f € F[X;, X5, X3]. It has
degree degf = 4, corresponding to the second monomial X7X?.

Multivariate Polynomials. Multilinear Extensions.
00@00000

Multilinear Polynomials

Definition (Multilinear Polynomial)

Multivariate polynomial f € F[X{, ..., X,] is called multilinear if it is
linear in each of the variables. Formally we have:

f(X] Xv) = anj +_Bj, j € {1 I’l},

where a;, ; do not depend on X;.

For example, f(X1, X2, X3) = X1X> + 3X1X3 + Xo X3 is a multilinear
polynomial in 3 variables. For instance, for X:

FX1.X2,.X3) = (X2 + 3X3)X| + X2X3.

Similarly, f(Xi,..., X,) = [1;_, X; is a multilinear polynomial.

Multivariate Polynomials. Multilinear Extensions.
000@0000

Boolean Hypercube

Definition (Boolean Hypercube)

By v-dimensional boolean hypercube we simply denote the set
{0, 1} (which is a set of binary strings of length v).

Binary String

n-dimensional
boolean
hypercube

Figure: Cryptographers love overcomplicating things.

Multivariate Polynomials. Multilinear Extensions.
00000000

Boolean Hypercube Extensions

Definition (Boolean Hypercube Extension)

Suppose we are given the values on the boolean cybercube
f:{0,1}Y - F. We call f : F¥ — F an extension if f(b) = f(b) for
every b € {0, 1}".

0 1 0 1 2 3 4

I111]2 oj112]0[0]2
Extend

0l2]3 — 1|l2|3]|1]|1]3

Function f : {0, 1}> — Fs 210111414]1

31011141411

41213111113

Extension f : F2 > Fs
fX1LX) =X+ X2 +1

Multivariate Polynomials. Multilinear Extensions.
00000800

Multilinear Extensions

Definition (MLE)

An extension f : F* — Fof f : {0.1}" — Fis called multilinear if
feFX,..., X,] is a multilinear polynomial.

For the previous example f(0,0) = 1,f(1,0) =f(0,1) = 2,/(1,1) =3
(over Fs) the multilinear extension is given by f(X;, X>) = X1 + X, + 1.
The question though is how many extensionsfwe can build.

° Iffis a multivariate polynomial, there might be infinite number of
choices: for example above, take f,(X1, X2) = X| + X + 1.

e However, if f is multilinear, it is unique.

» Additionally, is there an analogy to the Lagrange Interpolation for
such case: how to build f practically?

Multivariate Polynomials. Multilinear Extensions.
00000000

Lagrange Interpolation of multilinear polynomials

Theorem (Lagrange Interpolation of Multilinear Polynomials)

Any function over the v-dimensional hypercube f : {0, 1} — F has a
unique v-variate multilinear extension f € F[X1, ..., X,]. It is defined
using the Lagrange interpolation of multilinear polynomials:

FX)= > fb)-eqX:b),

be{0,1}V

where the set {eq(X; b)}se0,1y» iS referred to as the set of
multilinear Lagrange basis polynomials over {0, 1}". Each basis
polynomial (among 2') eq(X;b) is defined as:

14

eq(X;b) = | [(Xibi + (1 - Xp(1 -).
i=1

Multivariate Polynomials. Multilinear Extensions.
0000000@

Lagrange Interpolation: Example
Suppose we want to build the MLE for f : {0, 1}> — Fy; given by:

f0,00=3, f0,1)=4, f1,00=1, f(1,1)=2

Step 1. Define multilinear Lagrange basis polynomials:

eq(X1.X2;(0.0)) = (1 =X - X2). eq(X;,X5;(0.1) = (1 - X1)Xa,
eq(X1. X2;(1,0)) = Xi(1 - X3), eq(X;.X3; (1, 1)) = X1 Xp

Step 2. Find the appropriate linear combination:

fXiX) = > f®)-eq(X;b)

be(0,1)2
= 3(1 - X1 —-X5) + 4(1 -XXo + X1(1 —Xp) + 2X1X,

=-2X1+X,+3

Fact: Generally, f(r) for r <$ F" can be computed in O(2") time.

Introduction Multivariate Polynomials. Multilinear Extensions. Sum-Check MatMul Protocol Sum-Check Protocol
0000 00000000 00000 0000000

Sum-Check MatMul Protocol

MatMul Sum-Check Protocol
MatMul Protocol

Goal: Verify that C = AB for matrices A, B, C € F™".

Naive approach: Send A, B to the verifier V, then <V computes AB.
Time Complexity: O(n®), Space Complexity: O(n?).

Freiveld’s Protocol: Send A, B, C to the verifier V. Sample r «s$ F"
and verify that A(Br) = Cr.

Time Complexity: O(n?), Space Complexity: O(n?).

Sum-Check Protocol. Apply the sum-check to some particular
equation formed by multilinear extensions of matrices.

Time Complexity: O(n*), Space Complexity: O(log n).

Where the hell should the Sum-Check be applied here?

Sum-Check MatMul Protocol
[e]e] le]e]

Matrices Multilinear Extensions

For simplicity assume n = 2* for some .

Idea: Instead of perceiving A, B, C as the collection of n? field
elements, perceive them as functions

fa.fz.fc 10,1192 x {0, 1}'°¢” — F, mapping two binarized indices
of the matrix to the corresponding value. For example,
fA(i,j) = AiJ, where i= (i] ilogn)’] = (j] jlogn)-

Suppose A = [(2) (1)] € F2X2. Then, f is defined as:

Ja(0,0) =fa(1,1) =0, fa(0.1) =1, f4(1,0)=2

Its MLE is given byﬁ(x, Y)=(0-X)Y+2X(1-Y)=2X+Y - 3XY.

Sum-Check MatMul Protocol
[e]e]e] o]

The Trick

Given functions fs, fs,fc : {0,1}'°2" x {0, 1}*°8”" — F, we build the
corresponding MLEs f4,f5. fc : F'°2" x Fl°2" — . Now what?

Lemma

fexy) = > fax.b)-fzb.y)

bG{O,l}]"g n

Reasoning. Both sides are multilinear polynomials in x and y.
Since MLE over {0, 1}?!°2” is unique, it suffices to check the equality
only overi.j € {0, 1}'°¢”. Then,

fe@j)="), fa@.b) -fab.j)

bE{(),l}]“‘:’”
Note that this is exactly the check C;; = 31, _| A; »Bs!

Now, apply Sum-Check on h(z) = fu(r1. 2)f5(z. r2) for ry,ry «s Flogn,

Sum-Check MatMul Protocol
[e]e]e]e])

Idea of Spartan

This protocol might sound too abstract, but this idea of using matrix
MLEs is used in Spartan! Recall that in QAP we check:

QAP Check: Z 70:(X) - Z ziri(X) — Z 70iX) =0, XeQ

Spartan General Idea:

1. Commit to the MLE extension fz(Y) of the solution-witness z.
2. In universal setup, find MLEs /7, fx, fo.

3. Reduce R1CS satisfability to zero-check on

(X) = Y AX.bb) - > feX.b)zb) - " Fo(X. b)f(b)
b b b

4. Apply some dark magic to make above work.

Introduction Multivariate Polynomials. Multilinear Extensions. Sum-Check MatMul Protocol Sum-Check Protocol
0000 00000000 00000 ©000000

Sum-Check Protocol

Sum-Check Protocol
0®00000

Sum-Check Protocol Goal

Sum-Check Goal

Prover # wants to convince the verifier <V that:

bi€{0,1} by€{0,1) bye{0,1}
Note: f € F[X,..., X,] is not necessarily a multilinear polynomial.
Naive IP: V takes f and computes the sum. It requires the time and
space O(2") — not gud for succinct argument systems.

Round 1. The prover # sends the value C; € F which is the claimed
value of H. Then, the prover computes:

A= Y Kb b))

(b.....b,)E(0. 11!
Question: If f is multilinear, then what form does f; have?

Sum-Check, Round #1

Assume prover sends s1(X). Verify V needs to check:

1. 51(X1) is indeed f(X1).
2. s1(X1) (and thus fi1(X1)) is consistent with the claimed C;.

Second is easy: check s1(0) + s;(1) = H. Indeed:

Sl(O) ahy Sl(l)

= Z £(0,bs, . .., b,) + Z (1, by, ..., b
(by,..., b,)€{0,1 }V*I (by,..., b,)e{0,1 }"'*l
= > fbi....b)=H

(b1.....b,)€0,1}Y

For the second, apply the Schwartz-Zippel Lemma: pick r| «$ F
and check whether s;(r1) = f1(r1). Computing s;(r}) is trivial, but
how to compute fi(ry) effectively?

Sum-Check, Subsequent Rounds
Idea: Apply the same procedure again!
Round 2. The prover # computes s,(X») claimed to equal:

H(Xp) = Z f(r1. X0, b3, ..., by).

(b3,...,by)E(0,1}2

For the consistency check, V verifies that s2(0) + s2(1) = s1(ry).
Then, the verification boils down to checking whether s,(r») = f2(r2).
Round j. The prover $ computes s;(X;) claimed to equal:

JiX5) = Z fri ..o o, X by .- by).

(Bt ernby)E10. 1)

For the consistency check, V verifies that 5;(0) + s;(1) = sj_1(rj-1).
Then, the verification boils down to checking whether s;(r;) = fi(r;).

Sum-Check Protocol
[ee]ele] Tele]

Sum-Check, Wrap-up

Last Round. The verifier V picks a random r, «<$ F and verifies
whether s,(r,) = Of(ry, ..., r,) Where O/ () is an oracle access to
the function f (e.g., commitment + opening).

Lemma (Sum-Check Soundness Lemma)

Letf € F[Xy,...,X,] be a multivariate polynomial of degree at most
d in each variable, defined over the finite field E. For any given

H € F, let L be the language of all polynomials f (given as an
oracle) such that

H= > > o > flbr,... by

b1€{0,1} br€{0.1} b,€{0,1}

The sumcheck protocol is an IOP for £ with the completness error
6¢c = 0 and the soundness error 65 < vd /|F|.

Sum-Check Protocol
0O0000e0

Sum-Check Performance

Lemma (Sum-Check Performance)

Assume the average cost of calling O/ () is T, d = degf, and n = 2.
Then, the following is true about the performance of Sum-Check:
e Proof Size: O(dlogn).

e Verifier Time: O(dlogn) + T.

e Prover Time: O(nT).

However, this is an IP. How to turn it to the non-interactive protocol?

Simply apply the Fiat-Shamir heuristic! At round j, the transcript is
t=(H,s1.r1,..., Sj-1.7j-1,j), thus the randomness can be
sampled simply as r; < OR(z) for a random oracle OX(-).

Now the coding time!

Thank you for your attention

v

/N

& zkdl-camp.github.io
¢) github.com/ZKDL-Camp

20

DL

https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	Introduction
	Multivariate Polynomials. Multilinear Extensions.
	Sum-Check MatMul Protocol
	Sum-Check Protocol

