July 10, 2025

Introduction

Distributed Lab

zkdl-camp.github.io

github.com/ZKDL-Camp

Introduction

•000

Recap on Poly-IOPs and NILPs

Almost all protocols we have seen so far work over **univariate** $\mathbb{F}[X]$ **polynomials**. *Typical idea:* we aggregate information into some polynomial: say, p(X) (which is typically a combination of other polynomials), and then check whether p(u) = 0 for every $u \in \Omega$:

$$p(u) = 0$$
 for all $u \in \Omega \iff p(X) = q(X) \prod_{u \in \Omega} (X - u)$

We check this inequality at a random point $r \leftarrow \mathbb{F}$ and achieve soundness of $1 - \deg p/|\mathbb{F}|$: see **Schwartz-Zippel Lemma**.

For appropriate domains (typically $\Omega = \{\omega^j\}_{j \in [2^j]}$) we reduce all polynomials computations to $O(n \log n)$ complexity.

Motivation

But what if we could work with much smaller degrees?

Sum-Check-based Protocols

- Instead of *n*-variate univariate polynomials $\mathbb{F}[X]$ we reduce the problem to $\log n$ -variate multivariate polynomials $\mathbb{F}[X_1, \dots, X_v]$.
- The Schwartz-Zippel Lemma still holds for multivariate case:

$$\Pr_{(r_1,\ldots,r_v)\leftarrow \mathbb{S}}[f(r_1,\ldots,r_v)=0] \leq \frac{\deg f}{|\mathbb{S}|}, \quad \mathbb{S} \subseteq \mathbb{F}^v$$

Bad news: divisibility theorems do not hold:

$$f(s_1,\ldots,s_v)=0\iff (X-s_1)\ldots(X-s_v)\mid f(X_1,\ldots,X_v)$$

Sum-Check meaning

Instead of divisibility checks, we use the Sum-Check:

$$\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_v \in \{0,1\}} f(b_1, \dots, b_v) = H$$

Summary in a Nutshell

Univariate World:

$$p(X) = q(X) \prod_{i=1}^{n} (X - u)$$

Multivariate World:

$$\sum_{\mathbf{b}\in\{0,1\}^{\ell}} f(b_1,\ldots,b_{\ell}) = H$$

Succinct Arguments: Ligero (2022), Spartan (2020), Libra (2019), Hyrax(2017), GKR (2008), . . .

Applications: zkGPT (2025), deep-prove (using *Ceno*) (2024), vSQL (2017), ...

Introduction

Sum-Check MatMul Protocol

Some technicalities

Definition (Monomial)

By **monomial** in ν variables we call expression $\mu(\mathbf{X}) = X_1^{a_1} \dots X_{\nu}^{a_{\nu}}$ where a_1, \dots, a_{ν} are non-negative integers. The **degree** of a monomial is naturally defined as $\deg \mu \triangleq a_1 + \dots + a_{\nu}$.

Definition (Multivariate Polynomial)

Function $f: \mathbb{F}^{\nu} \to \mathbb{F}$ is called an ν -variate polynomial, which is denoted by $f \in \mathbb{F}[X_1, \dots, X_{\nu}]$, if $f(\mathbf{X})$ is a finite linear combination of ν -variate monomials $\{\mu_1(\mathbf{X}), \dots, \mu_n(\mathbf{X})\}$. The **degree** of f is defined as $\deg f \triangleq \max_{i \in \{1, \dots, n\}} \deg \mu_i$.

Example

 $f(X_1,X_2,X_3) = X_1^3 + 3X_1^2X_2^2 + X_3^2 + X_3$ is a linear combination of 3-variate monomials $\{X_1^3,X_1^2X_2^2,X_3^2,X_3\}$, thus $f \in \mathbb{F}[X_1,X_2,X_3]$. It has degree $\deg f = 4$, corresponding to the second monomial $X_1^2X_2^2$.

Multilinear Polynomials

Definition (Multilinear Polynomial)

Multivariate polynomial $f \in \mathbb{F}[X_1, \dots, X_{\nu}]$ is called **multilinear** if it is linear in each of the variables. Formally we have:

$$f(X_1,\ldots,X_{\nu})=\mathbf{a}_jX_j+\beta_j,\quad j\in\{1,\ldots,n\},$$

where a_j , β_j do not depend on X_j .

Example

For example, $f(X_1, X_2, X_3) = X_1X_2 + 3X_1X_3 + X_2X_3$ is a multilinear polynomial in 3 variables. For instance, for X_1 :

$$f(X_1, X_2, X_3) = (X_2 + 3X_3)X_1 + X_2X_3.$$

Similarly, $f(X_1, ..., X_{\nu}) = \prod_{i=1}^{\nu} X_i$ is a multilinear polynomial.

Boolean Hypercube

Definition (Boolean Hypercube)

By v-dimensional boolean hypercube we simply denote the set $\{0, 1\}^v$ (which is a set of binary strings of length v).

Figure: Cryptographers love overcomplicating things.

Definition (Boolean Hypercube Extension)

Multivariate Polynomials, Multilinear Extensions,

Suppose we are given the values on the boolean cybercube $f: \{0,1\}^{\nu} \to \mathbb{F}$. We call $\widetilde{f}: \mathbb{F}^{\nu} \to \mathbb{F}$ an **extension** if $f(\mathbf{b}) = f(\mathbf{b})$ for every **b** $\in \{0, 1\}^{\nu}$.

Extension
$$\widetilde{f}: \mathbb{F}_5^2 \to \mathbb{F}_5$$

 $\widetilde{f}(X_1, X_2) = X_1^2 + X_2^2 + 1$

Sum-Check MatMul Protocol

Multilinear Extensions

Definition (MLE)

An extension $\widetilde{f}: \mathbb{F}^{\nu} \to \mathbb{F}$ of $f: \{0,1\}^{V} \to \mathbb{F}$ is called **multilinear** if $\widetilde{f} \in \mathbb{F}[X_1, \dots, X_v]$ is a multilinear polynomial.

Example

For the previous example f(0,0) = 1, f(1,0) = f(0,1) = 2, f(1,1) = 3(over \mathbb{F}_5) the multilinear extension is given by $f(X_1, X_2) = X_1 + X_2 + 1$.

The question though is how many extensions \tilde{f} we can build.

- If \widetilde{f} is a multivariate polynomial, there might be infinite number of choices: for example above, take $\widetilde{f}_n(X_1, X_2) = X_1^n + X_2^n + 1$.
- However, if \widetilde{f} is multilinear, it is **unique**.
- Additionally, is there an analogy to the Lagrange Interpolation for such case: how to build f practically?

Lagrange Interpolation of multilinear polynomials

Theorem (Lagrange Interpolation of Multilinear Polynomials)

Any function over the v-dimensional hypercube $f: \{0,1\}^v \to \mathbb{F}$ has a unique v-variate multilinear extension $\widetilde{f} \in \mathbb{F}[X_1,\ldots,X_v]$. It is defined using the **Lagrange interpolation of multilinear polynomials**:

$$\widetilde{f}(\mathbf{X}) = \sum_{\boldsymbol{b} \in \{0,1\}^v} f(\boldsymbol{b}) \cdot \mathsf{eq}(\mathbf{X}; \boldsymbol{b}),$$

where the set $\{eq(X; b)\}_{b \in \{0,1\}^{\nu}}$ is referred to as **the set of multilinear Lagrange basis polynomials** over $\{0,1\}^{\nu}$. Each basis polynomial (among 2^{ν}) eq(X; b) is defined as:

$$eq(X; b) \triangleq \prod_{i=1}^{\nu} \{X_i b_i + (1 - X_i)(1 - b_i)\}.$$

Lagrange Interpolation: Example

Suppose we want to build the MLE for $f: \{0,1\}^2 \to \mathbb{F}_{11}$ given by:

$$f(0,0) = 3$$
, $f(0,1) = 4$, $f(1,0) = 1$, $f(1,1) = 2$

Step 1. Define multilinear Lagrange basis polynomials:

$$\begin{split} \mathsf{eq}(X_1,X_2;(0,0)) &= (1-X_1)(1-X_2), & \mathsf{eq}(X_1,X_2;(0,1)) &= (1-X_1)X_2, \\ \mathsf{eq}(X_1,X_2;(1,0)) &= X_1(1-X_2), & \mathsf{eq}(X_1,X_2;(1,1)) &= X_1X_2 \end{split}$$

Step 2. Find the appropriate linear combination:

$$\begin{split} \widetilde{f}(X_1, X_2) &= \sum_{\boldsymbol{b} \in \{0, 1\}^2} f(\boldsymbol{b}) \cdot \text{eq}(\mathbf{X}; \boldsymbol{b}) \\ &= 3(1 - X_1)(1 - X_2) + 4(1 - X_1)X_2 + X_1(1 - X_2) + 2X_1X_2 \\ &= \boxed{-2X_1 + X_2 + 3} \end{split}$$

Fact: Generally, $\widetilde{f}(r)$ for $r \leftarrow \$ \mathbb{F}^{v}$ can be computed in $O(2^{v})$ time.

Introduction

MatMul Sum-Check Protocol

MatMul Protocol

Goal: Verify that C = AB for matrices $A, B, C \in \mathbb{F}^{n \times n}$.

Naïve approach: Send A, B to the verifier \mathcal{V} , then \mathcal{V} computes AB.

Time Complexity: $O(n^3)$, Space Complexity: $O(n^2)$.

Freiveld's Protocol: Send A, B, C to the verifier \mathcal{V} . Sample $r \leftarrow \mathbb{F}^n$ and verify that A(Br) = Cr.

Time Complexity: $O(n^2)$, Space Complexity: $O(n^2)$.

Sum-Check Protocol. Apply the sum-check to some particular equation formed by multilinear extensions of matrices.

Time Complexity: $O(n^2)$, Space Complexity: $O(\log n)$.

Question

Where the hell should the Sum-Check be applied here?

Matrices Multilinear Extensions

For simplicity assume $n = 2^k$ for some k.

Idea: Instead of perceiving A, B, C as the collection of n^2 field elements, perceive them as functions

 $f_A, f_B, f_C : \{0, 1\}^{\log n} \times \{0, 1\}^{\log n} \to \mathbb{F}$, mapping two binarized indices of the matrix to the corresponding value. For example,

$$f_A(i,j) = A_{i,j}$$
, where $i = (i_1, \dots, i_{\log n}), j = (j_1, \dots, j_{\log n}).$

Example

Suppose
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} \in \mathbb{F}_{13}^{2 \times 2}$$
. Then, f_A is defined as:

$$f_A(0,0) = f_A(1,1) = 0$$
, $f_A(0,1) = 1$, $f_A(1,0) = 2$

Its MLE is given by $\widetilde{f}_A(X, Y) = (1 - X)Y + 2X(1 - Y) = 2X + Y - 3XY$.

The Trick

Given functions $f_A, f_B, f_C : \{0, 1\}^{\log n} \times \{0, 1\}^{\log n} \to \mathbb{F}$, we build the corresponding MLEs $\widetilde{f}_A, \widetilde{f}_B, \widetilde{f}_C : \mathbb{F}^{\log n} \times \mathbb{F}^{\log n} \to \mathbb{F}$. Now what?

Lemma

$$\widetilde{f}_C(\mathbf{x}, \mathbf{y}) = \sum_{\boldsymbol{b} \in \{0,1\}^{\log n}} \widetilde{f}_A(\mathbf{x}, \boldsymbol{b}) \cdot \widetilde{f}_B(\boldsymbol{b}, \mathbf{y})$$

Reasoning. Both sides are multilinear polynomials in \mathbf{x} and \mathbf{y} . Since MLE over $\{0,1\}^{2\log n}$ is unique, it suffices to check the equality only over $i,j\in\{0,1\}^{\log n}$. Then,

$$\widetilde{f}_C(i,j) = \sum_{m{b} \in \{0,1\}^{\log n}} \widetilde{f}_A(i,m{b}) \cdot \widetilde{f}_B(m{b},j)$$

Note that this is exactly the check $C_{i,j} = \sum_{b=1}^{n} A_{i,b} B_{b,j}!$

Now, apply Sum-Check on $h(\mathbf{z}) = \widetilde{f}_A(r_1, \mathbf{z})\widetilde{f}_B(\mathbf{z}, r_2)$ for $r_1, r_2 \leftarrow \mathbb{F}^{\log n}$.

Idea of Spartan

This protocol might sound too abstract, but this idea of using matrix MLEs is used in **Spartan**! Recall that in QAP we check:

QAP Check:
$$\sum_i z_i \ell_i(X) \cdot \sum_i z_i r_i(X) - \sum_i z_i o_i(X) = 0, \quad X \in \Omega$$

Spartan General Idea:

- 1. Commit to the MLE extension $f_Z(Y)$ of the solution-witness z.
- 2. In universal setup, find MLEs \widetilde{f}_L , \widetilde{f}_R , \widetilde{f}_O .
- 3. Reduce R1CS satisfability to zero-check on

$$\zeta(\mathbf{X}) = \sum_{\boldsymbol{b}} \widetilde{f}_L(\mathbf{X}, \boldsymbol{b}) \widetilde{f}_Z(\boldsymbol{b}) \cdot \sum_{\boldsymbol{b}} \widetilde{f}_R(\mathbf{X}, \boldsymbol{b}) \widetilde{f}_Z(\boldsymbol{b}) - \sum_{\boldsymbol{b}} \widetilde{f}_O(\mathbf{X}, \boldsymbol{b}) \widetilde{f}_Z(\boldsymbol{b})$$

4. Apply some dark magic to make above work.

Introduction

Sum-Check Protocol Goal

Sum-Check Goal

Prover \mathcal{P} wants to convince the verifier \mathcal{V} that:

$$\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_{\nu} \in \{0,1\}} f(b_1, \dots, b_{\nu}) = H$$

Note: $f \in \mathbb{F}[X_1, \dots, X_{\nu}]$ is not necessarily a multilinear polynomial.

Naïve IP: \mathcal{V} takes f and computes the sum. It requires the time and space $O(2^{\nu})$ — not gud for *succinct* argument systems.

Round 1. The prover \mathcal{P} sends the value $C_1 \in \mathbb{F}$ which is the claimed value of H. Then, the prover computes:

$$f_1(X_1) := \sum_{(b_2,\dots,b_{\nu})\in\{0,1\}^{\nu-1}} f(X_1,b_2,\dots,b_{\nu})$$

Question: If f is multilinear, then what form does f_1 have?

Sum-Check, Round #1

Assume prover sends $s_1(X_1)$. Verify $\mathcal V$ needs to check:

- 1. $s_1(X_1)$ is indeed $f_1(X_1)$.
- 2. $s_1(X_1)$ (and thus $f_1(X_1)$) is consistent with the claimed C_1 .

Second is easy: check $s_1(0) + s_1(1) = H$. Indeed:

$$s_{1}(0) + s_{1}(1)$$

$$= \sum_{(b_{2},...,b_{\nu})\in\{0,1\}^{\nu-1}} f(0,b_{2},...,b_{\nu}) + \sum_{(b_{2},...,b_{\nu})\in\{0,1\}^{\nu-1}} f(1,b_{2},...,b_{\nu})$$

$$= \sum_{(b_{1},...,b_{\nu})\in\{0,1\}^{\nu}} f(b_{1},...,b_{\nu}) = H$$

For the second, apply the Schwartz-Zippel Lemma: pick $r_1 \leftarrow \mathbb{F}$ and check whether $s_1(r_1) = f_1(r_1)$. Computing $s_1(r_1)$ is trivial, but how to compute $f_1(r_1)$ effectively?

Sum-Check, Subsequent Rounds

Idea: Apply the same procedure again!

Round 2. The prover \mathcal{P} computes $s_2(X_2)$ claimed to equal:

$$f_2(X_2) = \sum_{\substack{(b_3,\dots,b_{\nu})\in\{0,1\}^{\nu-2}}} f(r_1,X_2,b_3,\dots,b_{\nu}).$$

For the consistency check, \mathcal{V} verifies that $s_2(0) + s_2(1) = s_1(r_1)$. Then, the verification boils down to checking whether $s_2(r_2) = f_2(r_2)$.

Round *j*. The prover \mathcal{P} computes $s_j(X_j)$ claimed to equal:

$$f_j(X_j) = \sum_{(b_{j+1},\ldots,b_{\nu})\in\{0,1\}^{\nu-j}} f(r_1,\ldots,r_{j-1},X_j,b_{j+1},\ldots,b_{\nu}).$$

For the consistency check, \mathcal{V} verifies that $s_j(0) + s_j(1) = s_{j-1}(r_{j-1})$. Then, the verification boils down to checking whether $s_j(r_j) = f_j(r_j)$.

Sum-Check, Wrap-up

<u>Last Round.</u> The verifier \mathcal{V} picks a random $r_{\nu} \leftarrow \mathbb{F}$ and verifies whether $s_{\nu}(r_{\nu}) = O^f(r_1, \ldots, r_{\nu})$ where $O^f(\cdot)$ is an oracle access to the function f (e.g., commitment + opening).

Lemma (Sum-Check Soundness Lemma)

Let $f \in \mathbb{F}[X_1, \dots, X_{\nu}]$ be a multivariate polynomial of degree at most d in each variable, defined over the finite field \mathbb{F} . For any given $H \in \mathbb{F}$, let \mathcal{L} be the language of all polynomials f (given as an oracle) such that

$$H = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \cdots \sum_{b_{\nu} \in \{0,1\}} f(b_1, \dots, b_{\nu}).$$

The sumcheck protocol is an IOP for \mathcal{L} with the completness error $\delta_C = 0$ and the soundness error $\delta_S \leq vd/|\mathbb{F}|$.

Sum-Check Performance

Lemma (Sum-Check Performance)

Assume the average cost of calling $O^f(\cdot)$ is T, $d = \deg f$, and $n = 2^{\nu}$. Then, the following is true about the performance of Sum-Check:

- **Proof Size:** $O(d \log n)$.
- *Verifier Time:* $O(d \log n) + T$.
- Prover Time: O(nT).

However, this is an IP. How to turn it to the *non-interactive* protocol?

Simply apply the **Fiat-Shamir heuristic**! At round j, the transcript is $\tau = (H, s_1, r_1, \dots, s_{j-1}, r_{j-1}, s_j)$, thus the randomness can be sampled simply as $r_j \leftarrow O^R(\tau)$ for a random oracle $O^R(\cdot)$.

Now the coding time!

Thank you for your attention

