July 17, 2025

Distributed Lab

zkdl-camp.github.io

github.com/ZKDL-Camp

Recap: Multivariate World and Sum-Check

Univariate World:

$$p(X) = q(X) \prod_{u \in \Omega} (X - u)$$

Multivariate World:

$$\sum_{\mathbf{b}\in\{0,1\}^{\ell}} f(b_1,\ldots,b_{\ell}) = H$$

Goal: build the set of constraints that boil down to Sum-Check:

$$\sum_{(b_1, \dots, b_\ell) \in \{0, 1\}^\ell} f(b_1, \dots, b_\ell) = H$$

Cost: Quasilinear prover, logarithmic verifier and proof size.

Motivation

Introduction

Goal: Build sumcheck-based version of the circuit arithmetization.

Offline Memory Checking

Suppose we are given the **layered** fan-in two arithmetical circuit $C: \mathbb{F}^n \to \mathbb{F}^m$ of size S (number of gates). The *layered* here means that the circuit C can be decomposed into d layers (note that GKR can be generalized to the unstructured arithmetical circuits as well).

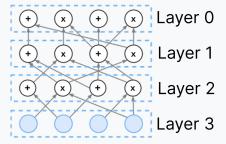


Figure: Layered Circuit Structure of d = 4 layers.

Spoilers on Performance

The GKR protocol allows to achieve the following performance:

- The communication consists of $O(d \cdot polylog(S))$ field elements.
- The verifier runs in $O(n + d \cdot polylog(S))$ time.
- The prover runs in O(poly(S)) time.
- The soundness error is just $O(d \log(S)/|\mathbb{F}|)$.

Assumptions:

- Assume we have d rounds in total. Output layer is the 0^{th} layer.
- Each layer consists of S_i gates.
- Assume $S_i = 2^{v_i}$ is the power of two

Concrete Circuit

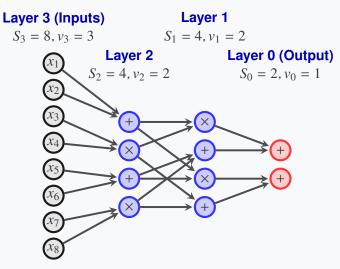


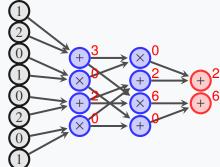
Figure: Example layered arithmetical circuit $C: \mathbb{F}^8 \to \mathbb{F}^2$ with d=3 layers.

Gates Encoding

Gates Encoding. Suppose $W_i: \{0,1\}^{v_i} \to \mathbb{F}$ is structured so that it outputs the value of the i-th layer gate given the gate label. Assume MLE of W_i is $W_i : \mathbb{F}^{v_i} \to \mathbb{F}$.

Randomized Permutation Check

Layer 3 Layer 2 Layer 1 Layer 0



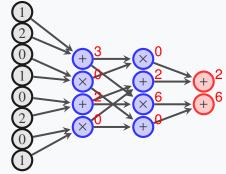
$$W_1(0,0) = 0$$
, $W_1(0,1) = 2$, $W_1(1,0) = 6$, $W_1(1,1) = 0$

MLE Extension: $W_1(X_1, X_2) = 2(1 - X_1)X_2 + 6X_1(1 - X_2)$

Wiring Encoding

Wiring Predicates. $in_{1,i}$, $in_{2,i}: \{0,1\}^{v_i} \to \{0,1\}^{v_{i+1}}$ indicate which pairs of wiring are connected to the i^{th} layer gate from the layer i + 1.

Layer 3 Layer 2 Layer 1 Layer 0

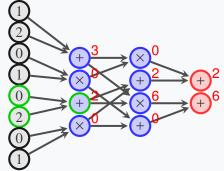


Wiring Encoding

Wiring Predicates. $in_{1,i}$, $in_{2,i}: \{0,1\}^{v_i} \to \{0,1\}^{v_{i+1}}$ indicate which pairs of wiring are connected to the i^{th} layer gate from the layer i + 1.

Randomized Permutation Check

Layer 3 Layer 2 Layer 1 Layer 0



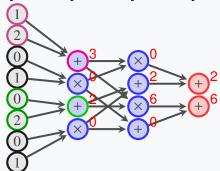
$$in_{1,2}(1,0) = (1,0,1), in_{2,2}(1,0) = (1,1,0).$$

Operations Encoding

Operations Encodings. add, mul : $\{0, 1\}^{\nu_i + 2\nu_{i+1}} \rightarrow \{0, 1\}$: $add(a, b, c) = 1 \iff (b, c) = (in_{1,i}(a), in_{2,i}(a))$ and a is addition gate

Randomized Permutation Check

Layer 3 Layer 2 Layer 1 Layer 0



add₂ is non-zero : ((0,0),(0,0,0),(0,0,1)),((1,0),(1,0,0),(1,0,1)).

 $add_2(X, Y, Z) = (1 - X_1)(1 - X_2)(1 - Y_1)(1 - Y_2)(1 - Y_3)(1 - Z_1)(1 - Z_2)Z_3$

Reducing to Sum-Check

Remark

Note that the operations encodings add_i and mul_i (and thus MLEs add_i and mul_i) do not depend on the solution witness $\{\mathbf{x}^{\langle i \rangle}\}_{i \in [d+1]}$, while the gates encodings W_i do depend.

Idea: Prover sends the claimed value of \widetilde{W}_0 (say, $D: \{0,1\}^{\nu_0} \to \mathbb{F}$), then reduce the claim to the next around with \widetilde{W}_1 (in general, prove the reducing from \widetilde{W}_i to \widetilde{W}_{i+1}).

Sum-Check Protocol Applied

Lemma

Introduction

The following statement holds:

$$\begin{split} \widetilde{W}_i(\mathbf{z}) &= \sum_{\boldsymbol{b}, \boldsymbol{c} \in \{0,1\}^{v_{i+1}}} \left[\widetilde{\mathsf{add}}_i(\mathbf{z}, \boldsymbol{a}, \boldsymbol{b}) (\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c})) \right. \\ &+ \left. \widetilde{\mathsf{mul}}_i(\mathbf{z}, \boldsymbol{b}, \boldsymbol{c}) \widetilde{W}_{i+1}(\boldsymbol{b}) \widetilde{W}_{i+1}(\boldsymbol{c}) \right]. \end{split}$$

Why Lemma works?

Both sides are multilinear polynomials, thus it suffices to check the equality only over the boolean hypercube $\mathbf{z} \in \{0, 1\}^{v_i}$.

Fix $\mathbf{z} = \mathbf{z}_0 \in \{0, 1\}^{v_i}$. Without loss of generality, assume \mathbf{z}_0 is the addition gate. This way, we reduced the check to:

$$\widetilde{W}_i(\mathbf{z}_0) = \sum_{\boldsymbol{b}, \boldsymbol{c} \in \{0,1\}^{v_{i+1}}} \widetilde{\mathsf{add}}_i(\mathbf{z}, \boldsymbol{a}, \boldsymbol{b}) (\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$$

According to add definition, the only term that is not zero in the sum is for $(\mathbf{b}, \mathbf{c}) = (\text{in}_{1,i}(\mathbf{z}_0), \text{in}_{2,i}(\mathbf{z}_0))$. Therefore, our sum is:

$$\widetilde{W}_i(\mathbf{z}_0) = \widetilde{W}_{i+1}(\mathsf{in}_{1,i}(\mathbf{z}_0)) + \widetilde{W}_{i+1}(\mathsf{in}_{2,i}(\mathbf{z}_0))$$

Kev Procedure

Apply the Sum-Check protocol on the function

$$f_i(b, c; \mathbf{r}_i) = \widetilde{\mathsf{add}}_i(\mathbf{r}_i, b, c)(\widetilde{W}_{i+1}(b) + \widetilde{W}_{i+1}(c)) + \widetilde{\mathsf{mul}}_i(\mathbf{r}_i, b, c)\widetilde{W}_{i+1}(b)\widetilde{W}_{i+1}(c).$$

Caveat with Sum-Check

Note that the verifier \mathcal{V} does not know W_{i+1} .

In fact, he does not need to until the last round, where he needs to call an oracle access O^{f_i} at $(\boldsymbol{b}^*, \boldsymbol{c}^*) \leftarrow \mathbb{F}^{2v_{i+1}}$.

This requires evaluating:

- add_i($\mathbf{r}_i, \mathbf{b}^*, \mathbf{c}^*$) can be done by \mathcal{V} .
- $\text{mul}_i(\mathbf{r}_i, b^*, c^*)$ can be done by \mathcal{V} .
- $\widetilde{W}_{i+1}(b^*)$ and $\widetilde{W}_{i+1}(c^*)$ \mathcal{V} needs \mathcal{P} 's assistance.

 \mathcal{P} sends two values $z_h = W_{i+1}(\boldsymbol{b}^*)$ and $z_c = W_{i+1}(\boldsymbol{c}^*)$. If we had only one value to check, we could use the standard Sum-Check reduction, but here we have two randomnesses!

Line Restriction Trick

Proposition

Let $\ell: \mathbb{F} \to \mathbb{F}^{v_{i+1}}$ be the line such that $\ell(0) = \boldsymbol{b}^*$ and $\ell(1) = \boldsymbol{c}^*$. Then, the prover \mathcal{P} sends the univariate polynomial q(X) claimed to be equal to $\widetilde{W}_{i+1} \circ \ell$ — the restriction of \widetilde{W}_{i+1} to the line ℓ . \mathcal{V} checks whether indeed $\ell(0) = z_b$ and $\ell(1) = z_c$, then chooses a random point $\mathbf{r}^* \overset{R}{\leftarrow} \mathbb{F}^{v_{i+1}}$ and checks whether $\widetilde{W}_{i+1}(\ell(\mathbf{r}^*)) = q(\mathbf{r}^*)$.

This way, the interaction ends with new claim about next(previous) layer $\widetilde{W}_{i+1}(\mathbf{r}_{i+1})$ with $\mathbf{r}_{i+1} = \ell(\mathbf{r}^*)$.

In the last round, $\mathcal V$ computes $\widetilde W_d(\mathbf r_d)$ on his own.

Protocol Summary

- \mathcal{P} sends function $D: \{0,1\}^{\nu_0} \to \mathbb{F}$, claimed to equal W_0 .
- $\mathcal V$ picks random $\mathbf r_0 \leftarrow \mathbb F^{v_0}$ and lets $m_0 \leftarrow D(\mathbf r_0)$.
- For each round $i \in [d]$ do the following:
 - o Define the $2v_{i+1}$ -variate polynomial:

$$f_i(\boldsymbol{b},\boldsymbol{c};\mathbf{r}_i) = \widetilde{\mathsf{add}}_i(\mathbf{r}_i,\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c})) + \widetilde{\mathsf{mul}}_i(\mathbf{r}_i,\boldsymbol{b},\boldsymbol{c})\widetilde{W}_{i+1}(\boldsymbol{b})\widetilde{W}_{i+1}(\boldsymbol{c}).$$

- $\circ \mathcal{P}$ claims $\sum_{\boldsymbol{b},\boldsymbol{c}\in\{0,1\}^{v_{i+1}}} f_i(\boldsymbol{b},\boldsymbol{c};\mathbf{r}_i) = m_i$.
- \mathcal{P} and \mathcal{V} interact using Sum-Check protocol until the last round when \mathcal{V} needs to evalutate f_i at $\boldsymbol{b}^*, \boldsymbol{c}^* \leftarrow \mathbb{F}^{v_{i+1}}$.
- $\circ \mathcal{P}$ and \mathcal{V} compute the line $\ell : \mathbb{F} \to \mathbb{F}^{v_{i+1}}$ s.t. $\ell(0) = b^*$ and $\ell(1) = c^*$.
- $\circ \mathcal{P}$ sends q claimed to equal $\widetilde{W}_{i+1} \circ \ell$.
- \mathcal{V} validates the last round of sum-check using $\ell(0)$ and $\ell(1)$, then chooses $\mathbf{r}^* \leftarrow \mathbb{F}^{v_{i+1}}$ and sets $\mathbf{r}_{i+1} \leftarrow \ell(\mathbf{r}^*)$ and $m_{i+1} \leftarrow q(\mathbf{r}_{i+1})$.
- The check reduces to verifying $\widetilde{W}_{i+1}(\mathbf{r}_{i+1}) = m_{i+1}$.
- \mathcal{V} directly checks whether $m_d = \widetilde{W}_d(\mathbf{r}_d)$.

Grand Product Check

Grand Product Relation

$$\mathcal{R}_{GP} = \{ (p \in \mathbb{F}, \mathbf{v} \in \mathbb{F}^m) : p = \prod_{i=0}^m v_i \}$$

Assume that m is a power of 2.

Let \widetilde{v} be an MLE of v, by viewing v as a function mapping $\{0,1\}^{\log m} \to \mathbb{F}.$

Main Lemma

Lemma

A scalar p and a vector v satisfies the relation \mathcal{R}_{GP} if and only if there exists a multilinear polynomial f in $\log m + 1$ variables such that $f(1, \ldots, 1, 0) = p$ and $\forall x \in \{0, 1\}^{\log m}$ the following hold:

$$f(0,x) = v(x)$$

$$f(1,x) = f(x,0) \cdot f(x,1)$$

Such polynomial f has the following construction:

- f(1, ..., 1) = 0
- For all $\ell \in [\log m]$ and $x \in \{0, 1\}^{\log m \ell}$:

$$f(1^{\ell}, 0, x) = \prod_{v \in \{0,1\}^{\ell}} v(x, y)$$

Let $m = 4 (\log m = 2)$, $\mathbf{v} = \{1, 2, 3, 4\}$, consequently $p = 1 \times 2 \times 3 \times 4 = 24$, then:

$$v(x_1, x_2) = 1 + 2x_1 + x_2$$

 $v(x_1, x_2) : v(0, 0) = 1, v(0, 1) = 2, v(1, 0) = 3, v(1, 1) = 4.$

Randomized Permutation Check

Now, we define f as follows:

$$f(0,0,0) = 1$$
, $f(0,0,1) = 2$, $f(0,1,0) = 3$, $f(0,1,1) = 4$,

and:

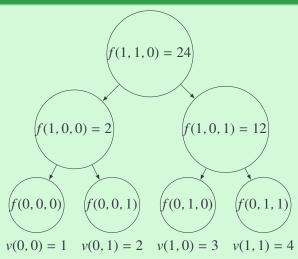
$$f(1,0,0) = f(0,0,0) \times f(0,0,1) = 1 \times 2 = 2,$$

$$f(1,0,1) = f(0,1,0) \times f(0,1,1) = 3 \times 4 = 12,$$

$$f(1,1,0) = f(1,0,0) \times f(1,0,1) = 2 \times 12 = 24 = p,$$

$$f(1,1,1) = 0.$$

Example



Where Is Sum-Check?

Zero-Check

$$\forall x \in \{0, 1\}^{\log m} : f(1, x) = f(x, 0) \cdot f(x, 1)$$

$$\forall x \in \{0, 1\}^{\log m} : f(1, x) - f(x, 0) \cdot f(x, 1) = 0$$

One can use the sum-check protocol to prove the evaluation of g that is referred to a MLE of $f(1,x) - f(x,0) \cdot f(x,1)$:

$$g(t) = \sum_{x \in \{0,1\}^{\log m}} \widetilde{eq}(t,x) \cdot (f(1,x) - f(x,0) \cdot f(x,1))$$

By the Schwartz–Zippel lemma, for random $\tau \in \mathbb{F}^{\log m}$, $g(\tau) = 0$ if and only if g = 0, except for a soundness error of $\frac{\log m}{|\mathbb{F}|}$.

Thus, to prove the existence of f and hence the grand product relationship, it suffices to prove, for some verifier selected random $\tau, \gamma \in \mathbb{F}^{\ell}$, that:

$$0 = \sum_{x \in \{0.1\}^{\log m}} \widetilde{eq}(x, \tau) \cdot (f(1, x) - f(x, 0) \cdot f(x, 1)) \tag{1}$$

$$f(0,\gamma) = \widetilde{v}(\gamma) \tag{2}$$

$$f(1, \dots, 1, 0) = p$$
 (3)

Algorithm 1: Grand Product Check

1 \mathcal{P} : Compute polynomials $v \in \mathbb{F}^{\log m}[x], f \in \mathbb{F}^{\log m+1}[x]$ such that

$$p = \prod_{x \in \{0,1\}^{\log m}} v(x)$$
 and f, v satisfy (1), (2), (3).

- **2** \mathcal{P} : $C_f \leftarrow \mathsf{Commit}(f)$; $C_v \leftarrow \mathsf{Commit}(v)$; send C_f , C_v to \mathcal{V} .
- 3 \mathcal{V} : Choose random $\tau, \gamma \in \mathbb{F}^{\log m}$ and send them to \mathcal{P} .
- **4** \mathcal{P} : Compute $g(x) = \widetilde{eq}(x, \tau) (f(1, x) f(x, 0) f(x, 1)).$
- 5 \mathcal{P} & \mathcal{V} : Run SumCheckProtocol $(0, g, C_f)$
- 6 \mathcal{V} : $a \leftarrow \mathsf{QUERY}(C_f, (0, \gamma)), \ v(\gamma) \leftarrow \mathsf{QUERY}(C_v, \gamma).$
- 7 if $a \neq v(y)$ then
- 8 V rejects.
- 9 end
- 10 \mathcal{V} : $r \leftarrow \mathsf{QUERY}(C_f, (1, \dots, 1, 0))$.
- 11 if $r \neq p$ then
- 12 V rejects.
- 13 **end**

Randomized Permutation Check

$$A = \{(1, 2, 3), (4, 0, 6)\}, B = \{(4, 0, 6), (1, 2, 3)\}.$$

The naive approach would be to sort both sequences and then compare them.

Reed-Solomon Fingerprinting

Definition (Reed-Solomon Fingerprinting)

Let $\mathbf{a} \in \mathbb{F}^n$, then for a random $\gamma \in \mathbb{F}$, the Reed-Solomon fingerprinting of a is defined as:

$$h_{\gamma}(\mathbf{a}) = \sum_{i \in n} a_i \cdot \gamma^i.$$

 $h_{\nu}(\mathbf{a})$ uniquely identifies the sequence \mathbf{a} with high probability, i.e., let $\mathbf{b} \in F^n$ and $\mathbf{a} \neq \mathbf{b}$, then, according to the Schwartz-Zippel lemma:

$$\Pr[h_{\gamma}(\mathbf{a}) = h_{\gamma}(\mathbf{b})] \leq \frac{n}{|\mathbb{F}|}.$$

Reed-Solomon Fingerprinting

Example

Consider all operations in \mathbb{F}_7 , and set n = 3, $\gamma = 3$. Let

$$\mathbf{a} = (1, 2, 3), \quad \mathbf{b} = (4, 0, 6).$$

Then

$$h_{\gamma}(1,2,3) = 1 \cdot 3^0 + 2 \cdot 3^1 + 3 \cdot 3^2 = 1 + 6 + 6 = 13 \equiv 6,$$

 $h_{\gamma}(4,0,6) = 4 \cdot 1 + 0 \cdot 3 + 6 \cdot 2 = 4 + 0 + 12 = 16 \equiv 2.$

Randomized Permutation Check

Definition (Randomized Permutation Check)

Let A and B be two multisets of tuples in \mathbb{F}^n . Define

$$\mathcal{H}_{\tau,\gamma}(X) = \prod_{x \in X} (h_{\gamma}(x) - \tau).$$

Then comparing $\mathcal{H}_{r,v}(A)$ and $\mathcal{H}_{r,v}(B)$ yields a randomized test for whether *A* and *B* are permutations of one another. Concretely:

• (Completeness) If A = B (as multisets), then

$$\mathcal{H}_{\tau,\gamma}(A)=\mathcal{H}_{\tau,\gamma}(B)$$

with probability 1 over uniform $\tau, \nu \in \mathbb{F}$.

• (Soundness) If $A \neq B$, then

$$\Pr\left[\mathcal{H}_{\tau,\gamma}(A) = \mathcal{H}_{\tau,\gamma}(B)\right] \leq \frac{\max(|A|,|B|)}{|\mathbb{F}|}.$$

Example

GKR Protocol

Consider all operations in \mathbb{F}_7 , set n=3, $\tau=5$, and $\nu=3$. Let $A = \{(1, 2, 3), (4, 0, 6)\}, B = \{(4, 0, 6), (1, 2, 3)\}.$

First compute the Reed-Solomon fingerprints modulo 7:

$$h_{\gamma}(1,2,3) = 1 \cdot 3^0 + 2 \cdot 3^1 + 3 \cdot 3^2 = 1 + 6 + 6 = 13 \equiv 6,$$

 $h_{\gamma}(4,0,6) = 4 \cdot 1 + 0 \cdot 3 + 6 \cdot 2 = 4 + 0 + 12 = 16 \equiv 2.$

Now form the shifted products:

$$\mathcal{H}_{\tau,\gamma}(A) = (6-5)(2-5) = 1 \cdot (-3) \equiv 4,$$

 $\mathcal{H}_{\tau,\gamma}(B) = (2-5)(6-5) = (-3) \cdot 1 \equiv 4,$

so the test *accepts A* vs. *B* (they are indeed permutations).

Now consider a non-permutation $B' = \{(1,2,3), (2,1,3)\}.$

$$h_{\gamma}(2,1,3) = 2 \cdot 1 + 1 \cdot 3 + 3 \cdot 2 = 2 + 3 + 6 = 11 \equiv 4.$$

 $\mathcal{H}_{\tau,\gamma}(B') = (6-5)(4-5) = 1 \cdot (-1) \equiv 6 \neq 4,$

so the test rejects A vs. B'.

Offline Memory Checking

Motivation

GKR Protocol

Consider Alice, who stores two values on Bob's dedicated server at addresses 0 and 1. Initially, Bob's memory contains

$$M = \{(0, 100), (1, 200)\}.$$

Alice then performs the following operations in sequence:

- 1. writes 150 at address 0. Bob updates his memory to $\{(0, 150), (1, 200)\}.$
- 2. read from address 0 and obtains the reply 150.
- 3. reads from address 1 and (honestly) obtains 200.

However, Bob can cheat on the very last step by returning a wrong value:

$$(1,200) \longrightarrow (1,300).$$

Without keeping an auditable record of all reads, Alice cannot later prove that all replies came from correct memory contents.

Memory Model

Each **memory cell** can be described as a tuple (addr, val, counter).

Randomized Permutation Check

- addr is the address of the memory cell;
- val is the value stored at that address;
- counter is a counter that is incremented each time the value at that address is written to.

The protocol utilizes four sets of tuples:

- init contains the initial memory state;
- write contains memory cels that represent write operations;
- read contains memory cels that represent read operations;
- final contains the final memory state, where all counters are set to the last value.

- Init: load initial state; all counters = 0;
- Read:

- Query untrusted memory at addr → (val.counter);
- Append (addr.val.counter) to **reads**:
- Append (addr,val,counter+1) to writes.
- Write:
 - Query untrusted memory at addr \rightarrow (val.counter);
 - Append (addr,val,counter) to reads;
 - Append (addr,newval,counter+1) to writes.

Consistency Check

After all reads and writes are done, the **final** set is populated with the final memory state.

Lemma

One can check the consistency of the memory operations by verifying that:

read
$$\cup$$
 final = write \cup init.

Equivalently, via randomized permutation check:

$$\mathcal{H}_{\tau,\gamma}(\text{read})\cdot\mathcal{H}_{\tau,\gamma}(\text{final})=\mathcal{H}_{\tau,\gamma}(\text{write})\cdot\mathcal{H}_{\tau,\gamma}(\text{init}).$$

Suppose the initial memory is:

$$\mathbf{init} = \{(0, 2, 0), (1, 5, 0), (2, 7, 0), (3, 9, 0)\},\$$

while read = \emptyset and write = \emptyset .

step	operation	Δ read _{step}	Δ write _{step}
1	$read(1) \rightarrow (5,0)$	(1, 5, 0)	-
2	write((1,6))	-	(1, 6, 1)
3	$read(2) \rightarrow (7,0)$	(2,7,0)	-
4	write((2,7))	-	(2,7,1)

read =
$$\{(1,5,0), (2,7,0)\}$$
, write = $\{(1,6,1), (2,7,1)\}$
final = $\{(0,2,0), (1,6,1), (2,7,1), (3,9,0)\}$

One can clearly see that read \cup final = write \cup init.

$$\{(\mathbf{1}, \mathbf{5}, \mathbf{0}), (\mathbf{2}, \mathbf{7}, \mathbf{0})\} \cup \{(0, 2, 0), (\mathbf{1}, \mathbf{6}, \mathbf{1}), (\mathbf{2}, \mathbf{7}, \mathbf{1}), (3, 9, 0)\} =$$

= $\{(\mathbf{1}, \mathbf{6}, \mathbf{1}), (\mathbf{2}, \mathbf{7}, \mathbf{1})\} \cup \{(0, 2, 0), (\mathbf{1}, \mathbf{5}, \mathbf{0}), (\mathbf{2}, \mathbf{7}, \mathbf{0}), (3, 9, 0)\}$

Suppose the initial memory is:

$$\mathbf{init} = \{(0, 2, 0), (1, 5, 0), (2, 7, 0), (3, 9, 0)\},\$$

while read = \emptyset and write = \emptyset .

step	operation	Δ read _{step}	Δ write _{step}
1	$read(1) \rightarrow (a, 0)$	(1, a, 0)	-
2	write((1,6))	-	(1, 6, 1)

read =
$$\{(1, a, 0)\}$$
, **write** = $\{(1, 6, 1)\}$, **final** = $\{(0, 2, 0), (1, 6, 1), (2, 7, 1), (3, 9, 0)\}$

The verifier checks read \cup final = write \cup init:

$$\{(1, a, 0)\} \cup \{(0, 2, 0), (1, 6, 1), (2, 7, 0), (3, 9, 0)\} \neq$$

$$\neq \{(1, 6, 1)\} \cup \{(0, 2, 0), (1, 5, 0), (2, 7, 0), (3, 9, 0)\}$$

and rejects.

Thank you for your attention

zkdl-camp.github.io
 github.com/ZKDL-Camp

