
Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

GKR Protocol. Offline Memory
Checking
July 17, 2025

Distributed Lab
� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Introduction

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Recap: Multivariate World and Sum-Check

Univariate World:
p(X) = q(X)

∏
u∈Ω

(X − u)
Multivariate World:∑

b∈{0,1}ℓ
f (b1, . . . , bℓ) = H

Goal: build the set of constraints that boil down to Sum-Check:∑
(b1,...,bℓ)∈{0,1}ℓ

f (b1, . . . , bℓ) = H

Cost: Quasilinear prover, logarithmic verifier and proof size.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

GKR Protocol

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Motivation
Goal: Build sumcheck-based version of the circuit arithmetization.

Suppose we are given the layered fan-in two arithmetical circuit
C : Fn → Fm of size S (number of gates). The layered here means
that the circuit C can be decomposed into d layers (note that GKR
can be generalized to the unstructured arithmetical circuits as well).

Figure: Layered Circuit Structure of d = 4 layers.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Spoilers on Performance

The GKR protocol allows to achieve the following performance:

• The communication consists of O(d · polylog(S)) field elements.

• The verifier runs in O(n + d · polylog(S)) time.

• The prover runs in O(poly(S)) time.

• The soundness error is just O(d log(S)/|F|).

Assumptions:

• Assume we have d rounds in total. Output layer is the 0th layer.

• Each layer consists of Si gates.

• Assume Si = 2vi is the power of two

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Concrete Circuit
Layer 3 (Inputs)

S3 = 8, v3 = 3
Layer 2

S2 = 4, v2 = 2

Layer 1
S1 = 4, v1 = 2

Layer 0 (Output)
S0 = 2, v0 = 1

x1

x2

x3

x4

x5

x6

x7

x8

+

×

+

×

×

+

×

+

+

+

Figure: Example layered arithmetical circuit C : F8 → F2 with d = 3 layers.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Gates Encoding
Gates Encoding. Suppose Wi : {0, 1}vi → F is structured so that it
outputs the value of the i-th layer gate given the gate label. Assume
MLE of Wi is W̃i : Fvi → F.

Layer 3 Layer 2 Layer 1 Layer 0
1
2
0
1
0
2
0
1

+

×

+

×

×

+

×

+

+

+

3

0

2

0

0

2

6

0

2

6

W1(0, 0) = 0, W1(0, 1) = 2, W1(1, 0) = 6, W1(1, 1) = 0

MLE Extension: W̃1(X1, X2) = 2(1 − X1)X2 + 6X1(1 − X2)

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Wiring Encoding

Wiring Predicates. in1,i, in2,i : {0, 1}vi → {0, 1}vi+1 indicate which
pairs of wiring are connected to the ith layer gate from the layer i + 1.

Layer 3 Layer 2 Layer 1 Layer 0
1
2
0
1
0
2
0
1

+

×

+

×

×

+

×

+

+

+

3

0

2

0

0

2

6

0

2

6

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Wiring Encoding

Wiring Predicates. in1,i, in2,i : {0, 1}vi → {0, 1}vi+1 indicate which
pairs of wiring are connected to the ith layer gate from the layer i + 1.

Layer 3 Layer 2 Layer 1 Layer 0
1
2
0
1
0
2
0
1

+

×

+

×

×

+

×

+

+

+

3

0

2

0

0

2

6

0

2

6

in1,2(1, 0) = (1, 0, 1), in2,2(1, 0) = (1, 1, 0).

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Operations Encoding
Operations Encodings. add, mul : {0, 1}vi+2vi+1 → {0, 1}:
add(a, b, c) = 1 ⇐⇒ (b, c) = (in1,i(a), in2,i(a)) and a is addition gate

Layer 3 Layer 2 Layer 1 Layer 0
1
2
0
1
0
2
0
1

+

×

+

×

×

+

×

+

+

+

3

0

2

0

0

2

6

0

2

6

add2 is non-zero : ((0, 0), (0, 0, 0), (0, 0, 1)), ((1, 0), (1, 0, 0), (1, 0, 1)).

ãdd2(X, Y, Z) = (1 − X1)(1 − X2)(1 − Y1)(1 − Y2)(1 − Y3)(1 − Z1)(1 − Z2)Z3

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Reducing to Sum-Check
Remark
Note that the operations encodings addi and muli (and thus MLEs
ãddi and m̃uli) do not depend on the solution witness {x⟨i⟩}i∈[d+1],
while the gates encodings Wi do depend.

Idea: Prover sends the claimed value of W̃0 (say, D : {0, 1}v0 → F),
then reduce the claim to the next around with W̃1 (in general, prove
the reducing from W̃i to W̃i+1).

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Sum-Check Protocol Applied

Lemma
The following statement holds:

W̃i(z) =
∑

b,c∈{0,1}vi+1

[
ãddi(z, a, b)(W̃i+1(b) + W̃i+1(c))

+ m̃uli(z, b, c)W̃i+1(b)W̃i+1(c)
]
.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Why Lemma works?
Both sides are multilinear polynomials, thus it suffices to check the
equality only over the boolean hypercube z ∈ {0, 1}vi .

Fix z = z0 ∈ {0, 1}vi . Without loss of generality, assume z0 is the
addition gate. This way, we reduced the check to:

W̃i(z0) =
∑

b,c∈{0,1}vi+1

ãddi(z, a, b)(W̃i+1(b) + W̃i+1(c))

According to ãdd definition, the only term that is not zero in the sum
is for (b, c) = (in1,i(z0), in2,i(z0)). Therefore, our sum is:

W̃i(z0) = W̃i+1(in1,i(z0)) + W̃i+1(in2,i(z0))

Key Procedure

Apply the Sum-Check protocol on the function

fi(b, c; ri) = ãddi(ri, b, c)(W̃i+1(b) + W̃i+1(c)) + m̃uli(ri, b, c)W̃i+1(b)W̃i+1(c).

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Caveat with Sum-Check

Note that the verifierV does not know W̃i+1.

In fact, he does not need to until the last round, where he needs to
call an oracle access O fi at (b∗, c∗)←$ F2vi+1 .

This requires evaluating:

• ãddi(ri, b∗, c∗) — can be done byV.

• m̃uli(ri, b∗, c∗) — can be done byV.

• W̃i+1(b∗) and W̃i+1(c∗) —V needs P’s assistance.

P sends two values zb = W̃i+1(b∗) and zc = W̃i+1(c∗). If we had only
one value to check, we could use the standard Sum-Check
reduction, but here we have two randomnesses!

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Line Restriction Trick

Proposition

Let ℓ : F→ Fvi+1 be the line such that ℓ(0) = b∗ and ℓ(1) = c∗. Then,
the prover P sends the univariate polynomial q(X) claimed to be
equal to W̃i+1 ◦ ℓ — the restriction of W̃i+1 to the line ℓ. V checks
whether indeed ℓ(0) = zb and ℓ(1) = zc, then chooses a random

point r∗
R
←− Fvi+1 and checks whether W̃i+1(ℓ(r∗)) = q(r∗).

This way, the interaction ends with new claim about next(previous)
layer W̃i+1(ri+1) with ri+1 = ℓ(r∗).

In the last round,V computes W̃d(rd) on his own.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Protocol Summary

• P sends function D : {0, 1}v0 → F, claimed to equal W0.

• V picks random r0 ←$ Fv0 and lets m0 ← D̃(r0).

• For each round i ∈ [d] do the following:
◦ Define the 2vi+1-variate polynomial:

fi(b, c; ri) = ãddi(ri, b, c)(W̃i+1(b)+W̃i+1(c))+m̃uli(ri, b, c)W̃i+1(b)W̃i+1(c).

◦ P claims
∑

b,c∈{0,1}vi+1 fi(b, c; ri) = mi.
◦ P andV interact using Sum-Check protocol until the last round when
V needs to evalutate fi at b∗, c∗ ←$ Fvi+1 .

◦ P andV compute the line ℓ : F→ Fvi+1 s.t. ℓ(0) = b∗ and ℓ(1) = c∗.
◦ P sends q claimed to equal W̃i+1 ◦ ℓ.
◦ V validates the last round of sum-check using ℓ(0) and ℓ(1), then

chooses r∗ ←$ Fvi+1 and sets ri+1 ← ℓ(r∗) and mi+1 ← q(ri+1).
◦ The check reduces to verifying W̃i+1(ri+1) = mi+1.

• V directly checks whether md = W̃d(rd).

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Grand Product Check

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Grand Product Relation

RGP =
{
(p ∈ F, v ∈ Fm) : p =

m∏
i=0

vi
}

Assume that m is a power of 2.

Let ṽ be an MLE of v, by viewing v as a function mapping
{0, 1}log m → F.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Main Lemma

Lemma
A scalar p and a vector v satisfies the relation RGP if and only if
there exists a multilinear polynomial f in log m + 1 variables such
that f (1, . . . , 1, 0) = p and ∀x ∈ {0, 1}log m the following hold:

f (0, x) = v(x)

f (1, x) = f (x, 0) · f (x, 1)

Such polynomial f has the following construction:
• f (1, . . . , 1) = 0

• For all ℓ ∈ [log m] and x ∈ {0, 1}log m−ℓ:

f (1ℓ, 0, x) =
∏

y∈{0,1}ℓ
v(x, y)

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Example
Let m = 4 (log m = 2), v = {1, 2, 3, 4}, consequently
p = 1 × 2 × 3 × 4 = 24, then:

v(x1, x2) = 1 + 2x1 + x2

v(x1, x2) : v(0, 0) = 1, v(0, 1) = 2, v(1, 0) = 3, v(1, 1) = 4.

Now, we define f as follows:

f (0, 0, 0) = 1, f (0, 0, 1) = 2, f (0, 1, 0) = 3, f (0, 1, 1) = 4,

and:
f (1, 0, 0) = f (0, 0, 0) × f (0, 0, 1) = 1 × 2 = 2,

f (1, 0, 1) = f (0, 1, 0) × f (0, 1, 1) = 3 × 4 = 12,

f (1, 1, 0) = f (1, 0, 0) × f (1, 0, 1) = 2 × 12 = 24 = p,

f (1, 1, 1) = 0.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Example

f (1, 1, 0) = 24

f (1, 0, 0) = 2

f (0, 0, 0)

v(0, 0) = 1

f (0, 0, 1)

v(0, 1) = 2

f (1, 0, 1) = 12

f (0, 1, 0)

v(1, 0) = 3

f (0, 1, 1)

v(1, 1) = 4

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Where Is Sum-Check?

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Zero-Check

∀x ∈ {0, 1}log m : f (1, x) = f (x, 0) · f (x, 1)

∀x ∈ {0, 1}log m : f (1, x) − f (x, 0) · f (x, 1) = 0

One can use the sum-check protocol to prove the evaluation of g
that is referred to a MLE of f (1, x) − f (x, 0) · f (x, 1):

g(t) =
∑

x∈{0,1}log m

ẽq(t, x) · (f (1, x) − f (x, 0) · f (x, 1))

By the Schwartz–Zippel lemma, for random τ ∈ Flog m, g(τ) = 0 if and
only if g = 0, except for a soundness error of log m

|F| .

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Thus, to prove the existence of f and hence the grand product
relationship, it suffices to prove, for some verifier selected random
τ, γ ∈ Fℓ, that:

0 =
∑

x∈{0,1}log m

ẽq(x, τ) · (f (1, x) − f (x, 0) · f (x, 1)) (1)

f (0, γ) = ṽ(γ) (2)

f (1, . . . , 1, 0) = p (3)

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Algorithm 1: Grand Product Check

1 P: Compute polynomials v ∈ Flog m[x], f ∈ Flog m+1[x] such that

p =
∏

x∈{0,1}log m

v(x) and f , v satisfy (1), (2), (3).

2 P: Cf ← Commit(f); Cv ← Commit(v); send Cf , Cv toV.
3 V: Choose random τ, γ ∈ Flog m and send them to P.
4 P: Compute g(x) = ẽq(x, τ)

(
f (1, x) − f (x, 0) f (x, 1)

)
.

5 P &V: Run SumCheckProtocol(0, g, Cf)
6 V: a← Query(Cf , (0, γ)), v(γ)← Query(Cv, γ).
7 if a , v(γ) then
8 V rejects.
9 end

10 V: r ← Query(Cf , (1, . . . , 1, 0)).
11 if r , p then
12 V rejects.
13 end

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Randomized Permutation Check

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

The goal is to verify, with high probability, whether two sequences of
tuples are permutations of each other, without performing a full sort
or pairwise comparison.

A = {(1, 2, 3), (4, 0, 6)}, B = {(4, 0, 6), (1, 2, 3)}.

The naive approach would be to sort both sequences and then
compare them.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Reed-Solomon Fingerprinting

Definition (Reed-Solomon Fingerprinting)

Let a ∈ Fn, then for a random γ ∈ F, the Reed-Solomon
fingerprinting of a is defined as:

hγ(a) =
∑
i∈n

ai · γ
i.

hγ(a) uniquely identifies the sequence a with high probability, i.e.,
let b ∈ Fn and a , b, then, according to the Schwartz-Zippel lemma:

Pr[hγ(a) = hγ(b)] ≤
n
|F|

.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Reed-Solomon Fingerprinting

Example
Consider all operations in F7, and set n = 3, γ = 3. Let

a = (1, 2, 3), b = (4, 0, 6).

Then

hγ(1, 2, 3) = 1 · 30 + 2 · 31 + 3 · 32 = 1 + 6 + 6 = 13 ≡ 6,

hγ(4, 0, 6) = 4 · 1 + 0 · 3 + 6 · 2 = 4 + 0 + 12 = 16 ≡ 2.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Randomized Permutation Check

Definition (Randomized Permutation Check)
Let A and B be two multisets of tuples in Fn. Define

Hτ,γ(X) =
∏
x∈X

(
hγ(x) − τ

)
.

Then comparing Hτ,γ(A) and Hτ,γ(B) yields a randomized test for
whether A and B are permutations of one another. Concretely:
• (Completeness) If A = B (as multisets), then

Hτ,γ(A) = Hτ,γ(B)

with probability 1 over uniform τ, γ ∈ F.

• (Soundness) If A , B, then

Pr
[
Hτ,γ(A) = Hτ,γ(B)

]
≤

max(|A|, |B|)
|F|

.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Example
Consider all operations in F7, set n = 3, τ = 5, and γ = 3.
Let A = {(1, 2, 3), (4, 0, 6)}, B = {(4, 0, 6), (1, 2, 3)}.

First compute the Reed–Solomon fingerprints modulo 7:

hγ(1, 2, 3) = 1 · 30 + 2 · 31 + 3 · 32 = 1 + 6 + 6 = 13 ≡ 6,

hγ(4, 0, 6) = 4 · 1 + 0 · 3 + 6 · 2 = 4 + 0 + 12 = 16 ≡ 2.

Now form the shifted products:

Hτ,γ(A) = (6 − 5) (2 − 5) = 1 · (−3) ≡ 4,

Hτ,γ(B) = (2 − 5) (6 − 5) = (−3) · 1 ≡ 4,

so the test accepts A vs. B (they are indeed permutations).

Now consider a non-permutation B′ = {(1, 2, 3), (2, 1, 3)}.

hγ(2, 1, 3) = 2 · 1 + 1 · 3 + 3 · 2 = 2 + 3 + 6 = 11 ≡ 4.
Hτ,γ(B′) = (6 − 5) (4 − 5) = 1 · (−1) ≡ 6 , 4,

so the test rejects A vs. B′.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Offline Memory Checking

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Motivation

Consider Alice, who stores two values on Bob’s dedicated server at
addresses 0 and 1. Initially, Bob’s memory contains

M = {(0, 100), (1, 200)}.

Alice then performs the following operations in sequence:

1. writes 150 at address 0. Bob updates his memory to
{(0, 150), (1, 200)}.

2. read from address 0 and obtains the reply 150.
3. reads from address 1 and (honestly) obtains 200.

However, Bob can cheat on the very last step by returning a wrong
value:

(1, 200) −→ (1, 300).

Without keeping an auditable record of all reads, Alice cannot later
prove that all replies came from correct memory contents.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Memory Model

Each memory cell can be described as a tuple (addr, val, counter).

• addr is the address of the memory cell;
• val is the value stored at that address;
• counter is a counter that is incremented each time the value at

that address is written to.

The protocol utilizes four sets of tuples:

• init – contains the initial memory state;
• write – contains memory cels that represent write operations;
• read – contains memory cels that represent read operations;
• final – contains the final memory state, where all counters are set

to the last value.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Memory Operations

• Init: load initial state; all counters = 0;

• Read:
◦ Query untrusted memory at addr→ (val,counter);
◦ Append (addr,val,counter) to reads;
◦ Append (addr,val,counter+1) to writes.

• Write:
◦ Query untrusted memory at addr→ (val,counter);
◦ Append (addr,val,counter) to reads;
◦ Append (addr,newval,counter+1) to writes.

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Consistency Check

After all reads and writes are done, the final set is populated with
the final memory state.

Lemma
One can check the consistency of the memory operations by
verifying that:

read ∪ final = write ∪ init.
Equivalently, via randomized permutation check:

Hτ,γ(read) · Hτ,γ(final) = Hτ,γ(write) · Hτ,γ(init).

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Example
Suppose the initial memory is:

init = {(0, 2, 0), (1, 5, 0), (2, 7, 0), (3, 9, 0)},

while read = ∅ and write = ∅.

step operation ∆readstep ∆writestep

1 read(1)→ (5, 0) (1, 5, 0) -
2 write((1,6)) - (1, 6, 1)
3 read(2)→ (7, 0) (2, 7, 0) -
4 write((2,7)) - (2, 7, 1)

read = {(1, 5, 0), (2, 7, 0)}, write = {(1, 6, 1), (2, 7, 1)}
final = {(0, 2, 0), (1, 6, 1), (2, 7, 1), (3, 9, 0)}

One can clearly see that read ∪ final = write ∪ init.

{(1, 5, 0), (2, 7, 0)} ∪ {(0, 2, 0), (1, 6, 1), (2, 7, 1), (3, 9, 0)} =

= {(1, 6, 1), (2, 7, 1)} ∪ {(0, 2, 0), (1, 5, 0), (2, 7, 0), (3, 9, 0)}

Introduction GKR Protocol Grand Product Check Randomized Permutation Check Offline Memory Checking

Example
Suppose the initial memory is:

init = {(0, 2, 0), (1, 5, 0), (2, 7, 0), (3, 9, 0)},

while read = ∅ and write = ∅.

step operation ∆readstep ∆writestep

1 read(1)→ (a, 0) (1, a, 0) -
2 write((1,6)) - (1, 6, 1)

read = {(1, a, 0)}, write = {(1, 6, 1)},
final = {(0, 2, 0), (1, 6, 1), (2, 7, 1), (3, 9, 0)}

The verifier checks read ∪ final = write ∪ init:

{(1, a, 0)} ∪ {(0, 2, 0), (1, 6, 1), (2, 7, 0), (3, 9, 0)} ,

, {(1, 6, 1)} ∪ {(0, 2, 0), (1, 5, 0), (2, 7, 0), (3, 9, 0)}

and rejects.

Thank you for your attention

♥

� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	Introduction
	GKR Protocol
	Grand Product Check
	Randomized Permutation Check
	Offline Memory Checking

