Plookup Logup

Introduction
0000000000

000000 [e]e]e]e]o]e]e)

Lookup Checks. Plookup. Logup
August 14, 2025

Distributed Lab
& zkdl-camp.github.io
) github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp

Introduction Plookup Logu
©00000 0000000 0000000000

Introduction

Introduction
[o] lelele]e]

Motivation

Suppose you want to implement the AES-128 or SHA-256 using
arithmetical circuits (for instance, for national passport verification).

As the part of such algorithm, assume given a, b, ¢ € {0, 1}", you
need to implement XORing:

c=adb

Arithmetical Circuit, informally
e Bit-decompose a t0 {a;}ic[,; and check a;(1 — a;) = 0,i € [n].

e Bit-decompose b to {b;}ic[,) and check b;(1 — b;) = 0,i € [n].

o Verify ¢; = a; + b; — 2a;b; (which is precisely ¢; = a; & b;).
In Total: 3n constraints for one XORing operation. E.g., for 8-bit
XORing we would have approximately 24 constraints per operation.

Introduction
00000

Motivation (cont.)

Suppose you need to compute 10k 8-bit XOR operations during
hashing (that corresponds to ~ four SHA256 512-bit blocks).

Total constraints = 10k x 24 = 240k constraints

Lookup

With lookup, you pay 2! constraints to commit to the lookup table,
and then you use only 1 constraint per XOR. Thus in total you would
have 2!¢ + 10k ~ 75k constraints. So we get 3.2x boost!

More generally, lookup check allows to reduce complexity from
O(mn) (where m is the cost of each operation and » is the number of
operations) to O(n + d), where d is the lookup size.

Introduction
[e]e]e] le]e]

Application to Bionetta

In Bionetta, lookup checks allow to reduce the number of constraints
O(n) (where n is the circuit size in Groth16) to sublinear O(n/ log n).

More specifically, implementing ReLU(x) = max{0, x} naively
requires roughly O(b) constraints where b = log, |F|.

In UltraGroth, by splitting the integer into w-bit limbs, one can
reduce the complexity per ReLU down to b/w with the lookup
commitment cost of 2" constraints. Thus, in total, one gets
02" + tb/w) constraints with 2 being the number of ReLUs.

For optiomal value of w, this reduces to O(¢b/log(¢b)).

Introduction
0000e0

Formalizing the problem

Definition

Lookup check consits in proving/verifying that {z;}ic(x) € {#}je(a)- We
will denote multisets as 7 := {z;}ic(,) and 7 = {#;}jc(4) @and write
inclusion check 7 C 7 for short.

e 7={0,1}. Z< 7 means “all z;'s are binary”.

e 7=1{10,6,7,1,1,6,10,7,1} € {1,6,7,10} =7. On the other hand,
we have 7* := {1,6,10,5} ¢ 7.

e For 7 = {tj}je;2» With #; = j, condition “Z € 7 means “every element
z; is a w-bit integer”.

Introduction
00000e

Working with tuples

In particular, XOR example can also be reduced to this check.

e Firstinitialize all tuples 7 := {(a;, b;, ¢;)};e;22+ SUch that a; & b; = ¢;
(perceive each a;, b;, ¢; as a field element from F).

e We need to check whether Z := {(x;, yi, wi)}icpm) € 7. The verifier
samples the challenge 8 < [F, and lookup table is perceived as
fﬂ = {a; + Bb; +ﬂ2Ci}l~€[22n], witness as Zﬂ =N, +ﬂy,- +_B2W,'},'€[m],
and then the check is Zg C 75 as usual.

Conclusion
Lookup checks are cool, so let us study them!

Introduction Plookup Logu
000000 ©000000 0000000000

Plookup

Plookup
0Oe00000

plookup

Definition

Plookup is the Poly-IOP-based lookup check protocol that uses
rather exotic multiset equality check. Why | call it exotic you will see
in just a moment.

Reminder. When constructing Plon’K’, we considered the so-called
permutation check, which checked whether multisets {a;}ic[,) and
{bi}iein) are equal. This was done by running the grand product:

[lo+ar=]]w+b) yesF
i€[n] i€[n]
Can we use it for checking {z}icin1 < {tj}jea)? NoO, consider:

Z(y) =]_[(v +z), T(y)=]_[(y +1)

i€[n] Jeld]
We can merely state that roots of Z(y) and T(y) are the same.

plookup: problematic solution

Core problem

How to reduce lookup check to the multiset equality check?

Given 5 = {s;}ic[), denote by o5 the diference set {s;.1 — si}ie[n-1]
without zero elements. For example, o{1, 1,2,5,5} = {1, 3}.

Attempt #1. Suppose we sort witness 7 and get 5 as a result. We
might reasonably expect that d5 = or.

Suppose 7= {1,4,8}and 5= {1, 1,4, 8, 8, 8}. Notice that s C 7 and
moreover of = d5 = {3,4}.

Problem. Converse is false. Consider 5 := {1, 5.,5,5, 8, 8}.

Plookup
[e]e]e] lelele]

plookup: solution #1

Attempt #2. Construct § — sorted concatenation (Z, 7). First assert
permutation check of 5 and (Z,7). Then, assert that o5 = or.

Lemma

This is necessary and sufficient condition forZ C 7.

Suppose 7 =1{1,4,8},7=1{1,1,4,8,8,8},and 7" = {1,5,5,5,8, 8}.
For7and Zwe see thats = {1,1,1,4,4,8,8,8,8} and clearly
ds = {3,4} = of. As for 7¥, the sorted concatenation is
s=1{1,1,4,5,5,5,8,8,8} and so d5s* = {1, 3} # of.

Thus our protocol might simply be running two permutation checks:
(a) on 5 and (Z,7), and (b) on d5 and Jd7. However, that’s still two
grand products. We can reduce this to a single grand product.

Plookup
[ee]ele] Tele]

plookup: solution #2

Attempt #3. Why do we need this strage difference set 057 Let us
make it more general!

Definition
The randomized difference set of 5 = {s;};c[, for randomness S,
denoted as 9dgs, is defined as {s; + Bsi+1}ie[n—1]-

Lemma
Necessary and sufficient condition for lookup check is
dgs = ((1 + B)Z. 9pf) for randomly chosen S < F.

Intuition. Note that for two same consecutive integers s;, s;+1,
instead of zero, one gets (1 + B)s;. Other than that, we also have
elements of form #; + Bt;.1, which obviously form ds7. Thus,
concatenating all elements of form (1 + B)s; and dgsf gives Jgs.

lHlustration

Suppose we, again, have the following witness and table:

7=(1,4,8), 7=1{1,1,4,8.8,8}

The sorted array is5={1,1,1,4,4,8,8, 8, 8}. Now sample random
B «s$ F. Then we have:

IS ={1+B,1+81+48,(1+6)4,4+88.(1+)8,(1+)8.(1+L)8}

On the other hand, we also have:

(1+BzZ={1+B1+80+p4,(1+p8,(1+,8,(1+)8}
ogf = {1 +48.4 + 88}

Clearly, 955 = ((1 + B)Z, D).

Plookup
0O00000e

Protocol Specifics

Now, given t € F, z € F", and s € F"*¢, define bi-variate polynomials
Z and T as follows:

zBy 2 A+p" | [+ [| w0 +B)+6+8)

i€[n] i€ld-1]
TRy 2 [G +B8)+si+Bsin)
i€[n+d—1]

Theorem
Z=Tifandonly ifz Ct ands is (z,t) sorted by t.

Similarly to permutation check equation [];(y + a;) = [[;(y + b)), the
rest of the protocol is done to ensure that Z = T in the Plon¥Kish
manner. See lecture notes for concrete details.

Introduction Plookup Logu
000000 0000000 ©000000000

Logup

Logu
0000000000

«
=l

Derivatives

Similarly to calculus, we can define derivative operations over
polynomials and rational function over arbitrary fields.

Definition

Given a polynomial ¢(X) := Zj:O quf over F[X], the formal
derivative, denoted by ¢’(X) ,is given by Zle JgiXt.

Definition
For a function ¢(X)/r(X) from rational function field F(X), the formal
derivative is given by

(CI(X))' _ 4 XOrX) — gX)r'(X)
rX)) r(X)?

Logu
00®0000000

«
T

Logarithmic Derivative
Definition
The logarithmic derivative of ¢(X) € F[X] is given by the rational
function LogD[g] = ¢'(X)/q(X).

What is the derivative for logf(x) given f : R — R? By the chain
rule, f'(x)/f(x), which is given by the definition above.

Lemma
logD[gr] = logD[g] + logD[r].

Consequently, we can infer:

ﬁ(X Pr aj)

Jj=1

n n 1

:ZlogD[X+aj]:. X+aj

J=1 J=1

logD

Logu
0008000000

Finally something useful

Theorem (On fractional permutation check)

Leta = {a;}iein) and b= {bi}iein) be two sequences of elements from
F. To verify with overwhelming probability whether two multisets are
equal, it suffices to check

n 1 n 1
Zy+aj :;V"_bj

=1

for randomly chosen y <% F.

Intuition. Take logarithmic derivative from both sides of a
permutation check equation szl(y +aj) = H]’?:l(y + bj) and you are
done (see prev. slide). Other direction is a bit trickier to prove, but
still trivial enough.

Logu

«
T

[e]e]e]e] lele]ele]e)

Central Equation

Theorem (On fractional lookup check)

Given two sequences of elements {t;}icja) and {zi}ic[n), the inclusion
check {z;}icrn) € {ti}icra) is satisfied if and only if there exist the set of
multiplicities {u;}icia) where y; = #{j € [n] : z; = t;} such that:

Z I _ Wi
X+7z X+t

i€[n] ie[d]

In particular, checking such equality at random point from F results
in the soundness error of up to (n + d)/|F|, which becomes
negligible for fairly large |F|.

This is the central equation used in a large number of studies on its
own. What follows is just one variation of how to apply SumCheck
using this equation.

Logu
00000e0000

Bringing Sum-Check
Suppose the lookup table size is d = 2" for some v. Then, the table
T = {t;}jefa) can be viewed as a function ¢ : {0, 1}" — F.

Problem: attempting to define Z = {z;}ic[, in @ similar manner fails
since in practice n > d, so the function {0, 1}¥ — F has a too-small
domain. Instead, split Zinto m = [n/d] f-ns zi, . . ., Zm {0, 1}V > F

In other words, we reduced the problem of {z;}ic(n € {#j}je1a) tO
Uietm{zi®}xeto.1y S {8(X)}xefo.1y-

Sum-Check equation is as follows:

Z Z 1 Z u(x)
x€{0,1} ze[m]y zi(X) xe{O,l}VV+t(X)

where 1(X) = Seq #y € 10, 11 1 2(y) = 1(0)}.

Logup
0000008000

Running Sum-Check. Or Not?

Idea #1: Run Sum-Check on the sum:
B 1 wu(x)
<= ,.EZ[,,;J yra® v+

Problem. {(x) is a fraction, so we can’t quite run the Sum-Check
yet. ldea of logup is to split the sum into 2 terms:

p(x) 1 1
Z(X) = = — e
y+i1(x) y+z0(x) Y+ 20-2(X)
&(x),0 terms
1 1
Y+ z2-1(X) Y + 220-2(X)

4 (x),2 terms
We form k ~ m/? helper columns {h;(x)}icix) that satisfy: (a) h;(x)
agrees with (x) over {0, 1}, (b) Yxcio.1y 2n; hi(x) = 0.

Logup
0000000800

Enforcing correct helper columns

Idea #2: Combine k zero-checks using random scalars {A;}icjx) <$ F
and merge into a single Sum-Check protocol.

For simplicity, assume each §(x) = Ycr 4% Note that:

irj(x)”

qi(x) Xjer, @i [Nrer g re(x)
=) === = hi(x)
%) [Tjez; ri(x)
= e[[r0=>q [] nm
jel; el keI\)
_ a1) -y—1x)
For8=2, ho(®) = 1565 ~ 7@ =~ grio)yra@) - 11US, We

enforce the following equality:

ho(X)(y + 1(X)(y + 20(X)) = uX)(y + 20(X)) — y — #(X)

Final Sum-Check

This way, one runs the Sum-Check on the following function for
randomly sampled a «§ F":

2w +eaa | [[rx) = > a0 [] nf=0

relk] iel, iel, JjeI \{i}

o The first term enforces that > c(o.1pv 2 repry 2-(X) = 0.

e The second term checks whether the helper columns are
consistent with each g(x) (see prev. slide). For this, we check the
equality ;(x) [1jer, rj(X) = Yjer, g [rer,\jjj 7x(X) at a random point
a by multiplying by eq(x; a) and taking a linear combination of
these equations.

Lemma

The larger ¢ is (size of each chunk), the more complex computations
are involved but smaller commitment sizes are required.

Thank you for your attention

v

/N

& zkdl-camp.github.io
¢) github.com/ZKDL-Camp

20

DL

https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	Introduction
	Plookup
	Logup

