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Motivation

Suppose you want to implement the AES-128 or SHA-256 using
arithmetical circuits (for instance, for national passport verification).

As the part of such algorithm, assume given a, b, c ∈ {0, 1}n, you
need to implement XORing:

c = a ⊕ b

Arithmetical Circuit, informally
• Bit-decompose a to {ai}i∈[n] and check ai(1 − ai) = 0, i ∈ [n].

• Bit-decompose b to {bi}i∈[n] and check bi(1 − bi) = 0, i ∈ [n].

• Verify ci = ai + bi − 2aibi (which is precisely ci = ai ⊕ bi).
In Total: 3n constraints for one XORing operation. E.g., for 8-bit
XORing we would have approximately 24 constraints per operation.
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Motivation (cont.)

Suppose you need to compute 10k 8-bit XOR operations during
hashing (that corresponds to ≈ four SHA256 512-bit blocks).

Total constraints = 10k × 24 = 240k constraints

Lookup

With lookup, you pay 216 constraints to commit to the lookup table,
and then you use only 1 constraint per XOR. Thus in total you would
have 216 + 10k ≈ 75k constraints. So we get 3.2× boost!

More generally, lookup check allows to reduce complexity from
O(mn) (where m is the cost of each operation and n is the number of
operations) to O(n + d), where d is the lookup size.
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Application to Bionetta

In Bionetta, lookup checks allow to reduce the number of constraints
O(n) (where n is the circuit size in Groth16) to sublinear O(n/ log n).

More specifically, implementing ReLU(x) = max{0, x} naively
requires roughly O(b) constraints where b = log2 |F|.

In UltraGroth, by splitting the integer into w-bit limbs, one can
reduce the complexity per ReLU down to b/w with the lookup
commitment cost of 2w constraints. Thus, in total, one gets
O(2w + ℓb/w) constraints with ℓ being the number of ReLUs.

For optiomal value of w, this reduces to O(ℓb/ log(ℓb)).
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Formalizing the problem

Definition
Lookup check consits in proving/verifying that {zi}i∈[n] ⊆ {tj}j∈[d]. We
will denote multisets as z⃗ := {zi}i∈[n] and t⃗ = {tj}j∈[d] and write
inclusion check z⃗ ⊆ t⃗ for short.

Example

• t⃗ = {0, 1}. z⃗ ⊆ t⃗ means “all zi’s are binary”.

• z⃗ = {10, 6, 7, 1, 1, 6, 10, 7, 1} ⊆ {1, 6, 7, 10} = t⃗. On the other hand,
we have z⃗∗ := {1, 6, 10, 5} ⊈ t⃗.

• For t⃗ = {tj}j∈[2w] with tj = j, condition “⃗z ⊆ t⃗” means “every element
zi is a w-bit integer”.
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Working with tuples

In particular, XOR example can also be reduced to this check.

• First initialize all tuples t⃗ := {(ai, bi, ci)}i∈[22n] such that ai ⊕ bi = ci

(perceive each ai, bi, ci as a field element from F).

• We need to check whether z⃗ := {(xi, yi, wi)}i∈[m] ⊆ t⃗. The verifier
samples the challenge �←$ F, and lookup table is perceived as
t⃗� = {ai + �bi + �2ci}i∈[22n], witness as z⃗� := {xi + �yi + �2wi}i∈[m],
and then the check is z⃗� ⊆ t⃗� as usual.

Conclusion
Lookup checks are cool, so let us study them!



Introduction Plookup Logup

Plookup
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plookup

Definition
Plookup is the Poly-IOP-based lookup check protocol that uses
rather exotic multiset equality check. Why I call it exotic you will see
in just a moment.

Reminder. When constructing PlonK , we considered the so-called
permutation check, which checked whether multisets {ai}i∈[n] and
{bi}i∈[n] are equal. This was done by running the grand product:∏

i∈[n]

(γ + ai) =
∏
i∈[n]

(γ + bi), γ ←$ F

Can we use it for checking {zi}i∈[n] ⊆ {tj}j∈[d]? No, consider:

Z(γ) =
∏
i∈[n]

(γ + zi), T(γ) =
∏
j∈[d]

(γ + tj)

We can merely state that roots of Z(γ) and T(γ) are the same.
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plookup: problematic solution

Core problem
How to reduce lookup check to the multiset equality check?

Definition
Given s⃗ = {si}i∈[n], denote by ∂⃗s the diference set {si+1 − si}i∈[n−1]
without zero elements. For example, ∂{1, 1, 2, 5, 5} = {1, 3}.

Attempt #1. Suppose we sort witness z⃗ and get s⃗ as a result. We
might reasonably expect that ∂⃗s = ∂⃗t.

Example

Suppose t⃗ = {1, 4, 8} and s⃗ = {1, 1, 4, 8, 8, 8}. Notice that s⃗ ⊆ t⃗ and
moreover ∂⃗t = ∂⃗s = {3, 4}.

Problem. Converse is false. Consider s⃗∗ := {1, 5, 5, 5, 8, 8}.
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plookup: solution #1

Attempt #2. Construct s⃗ — sorted concatenation (⃗z, t⃗). First assert
permutation check of s⃗ and (⃗z, t⃗). Then, assert that ∂⃗s = ∂⃗t.

Lemma
This is necessary and sufficient condition for z⃗ ⊆ t⃗.

Example

Suppose t⃗ = {1, 4, 8}, z⃗ = {1, 1, 4, 8, 8, 8}, and z⃗∗ = {1, 5, 5, 5, 8, 8}.
For t⃗ and z⃗ we see that s⃗ = {1, 1, 1, 4, 4, 8, 8, 8, 8} and clearly
∂⃗s = {3, 4} = ∂⃗t. As for z⃗∗, the sorted concatenation is
s⃗∗ = {1, 1, 4, 5, 5, 5, 8, 8, 8} and so ∂⃗s∗ = {1, 3} , ∂⃗t.

Thus our protocol might simply be running two permutation checks:
(a) on s⃗ and (⃗z, t⃗), and (b) on ∂⃗s and ∂⃗t. However, that’s still two
grand products. We can reduce this to a single grand product.
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plookup: solution #2

Attempt #3. Why do we need this strage difference set ∂⃗s? Let us
make it more general!

Definition
The randomized difference set of s⃗ = {si}i∈[n] for randomness �,
denoted as ∂�s⃗, is defined as {si + �si+1}i∈[n−1].

Lemma
Necessary and sufficient condition for lookup check is
∂�s⃗ = ((1 + �)⃗z, ∂�⃗t) for randomly chosen �←$ F.

Intuition. Note that for two same consecutive integers si, si+1,
instead of zero, one gets (1 + �)si. Other than that, we also have
elements of form ti + �ti+1, which obviously form ∂�⃗t. Thus,
concatenating all elements of form (1 + �)si and ∂�⃗t gives ∂�s⃗.
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Illustration

Suppose we, again, have the following witness and table:

t⃗ = {1, 4, 8}, z⃗ = {1, 1, 4, 8, 8, 8}

The sorted array is s⃗ = {1, 1, 1, 4, 4, 8, 8, 8, 8}. Now sample random
�←$ F. Then we have:

∂�s⃗ = {1+ �, 1+ �, 1+ 4�, (1+ �)4, 4+ 8�, (1+ �)8, (1+ �)8, (1+ �)8}

On the other hand, we also have:

(1 + �)⃗z = {1 + �, 1 + �, (1 + �)4, (1 + �)8, (1 + �)8, (1 + �)8}

∂�⃗t = {1 + 4�, 4 + 8�}

Clearly, ∂�s⃗ = ((1 + �)⃗z, ∂�⃗t).
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Protocol Specifics

Now, given t ∈ Fd, z ∈ Fn, and s ∈ Fn+d, define bi-variate polynomials
Z and T as follows:

Z(�, γ) ≜ (1 + �)n
∏
i∈[n]

(γ + zi)
∏

i∈[d−1]

(γ(1 + �) + ti + �ti+1)

T(�, γ) ≜
∏

i∈[n+d−1]

(γ(1 + �) + si + �si+1)

Theorem
Z ≡ T if and only if z ⊆ t and s is (z, t) sorted by t.

Similarly to permutation check equation
∏

j(γ + aj) =
∏

j(γ + bj), the
rest of the protocol is done to ensure that Z = T in the PlonK ish
manner. See lecture notes for concrete details.



Introduction Plookup Logup

Logup
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Derivatives

Similarly to calculus, we can define derivative operations over
polynomials and rational function over arbitrary fields.

Definition

Given a polynomial q(X) :=
∑d

j=0 qjXj over F[X], the formal
derivative, denoted by q′(X) ,is given by

∑d
j=1 jqjXj−1.

Definition
For a function q(X)/r(X) from rational function field F(X), the formal
derivative is given by(

q(X)
r(X)

)′
=

q′(X)r(X) − q(X)r′(X)
r(X)2
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Logarithmic Derivative
Definition
The logarithmic derivative of q(X) ∈ F[X] is given by the rational
function LogD[q] = q′(X)/q(X).

Motivation
What is the derivative for log f (x) given f : R→ R? By the chain
rule, f ′(x)/f (x), which is given by the definition above.

Lemma
logD[qr] = logD[q] + logD[r].

Consequently, we can infer:

logD

 n∏
j=1

(X + aj)

 = n∑
j=1

logD
[
X + aj

]
=

n∑
j=1

1
X + aj
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Finally something useful

Theorem (On fractional permutation check)

Let a⃗ = {ai}i∈[n] and b⃗ = {bi}i∈[n] be two sequences of elements from
F. To verify with overwhelming probability whether two multisets are
equal, it suffices to check

n∑
j=1

1
γ + aj

=

n∑
j=1

1
γ + bj

for randomly chosen γ ←$ F.

Intuition. Take logarithmic derivative from both sides of a
permutation check equation

∏n
j=1(γ + aj) =

∏n
j=1(γ + bj) and you are

done (see prev. slide). Other direction is a bit trickier to prove, but
still trivial enough.
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Central Equation
Theorem (On fractional lookup check)
Given two sequences of elements {ti}i∈[d] and {zi}i∈[n], the inclusion
check {zi}i∈[n] ⊆ {ti}i∈[d] is satisfied if and only if there exist the set of
multiplicities {µi}i∈[d] where µi = #{j ∈ [n] : zj = ti} such that:∑

i∈[n]

1
X + zi

=
∑
i∈[d]

µi

X + ti

In particular, checking such equality at random point from F results
in the soundness error of up to (n + d)/|F|, which becomes
negligible for fairly large |F|.

Note
This is the central equation used in a large number of studies on its
own. What follows is just one variation of how to apply SumCheck
using this equation.
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Bringing Sum-Check
Suppose the lookup table size is d = 2v for some v. Then, the table
t⃗ = {tj}j∈[d] can be viewed as a function t : {0, 1}v → F.

Problem: attempting to define z⃗ = {zi}i∈[n] in a similar manner fails
since in practice n > d, so the function {0, 1}v → F has a too-small
domain. Instead, split z⃗ into m = ⌈n/d⌉ f-ns z1, . . . , zm : {0, 1}v → F.

Note
In other words, we reduced the problem of {zi}i∈[n] ⊆ {tj}j∈[d] to⋃

i∈[m]{zi(x)}x∈{0,1}v ⊆ {t(x)}x∈{0,1}v .

Sum-Check equation is as follows:

∑
x∈{0,1}v

∑
i∈[m]

1
γ + zi(x)

=
∑

x∈{0,1}v

µ(x)
γ + t(x)

,

where µ(x) =
∑

i∈[m] #{y ∈ {0, 1}v : zi(y) = t(x)}.
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Running Sum-Check. Or Not?

Idea #1: Run Sum-Check on the sum:

ζ (x) =
∑
i∈[m]

1
γ + zi(x)

−
µ(x)

γ + t(x)

Problem. ζ (x) is a fraction, so we can’t quite run the Sum-Check
yet. Idea of logup is to split the sum into ℓ terms:

ζ (x) =
µ(x)

γ + t(x)
−

1
γ + z0(x)

− · · · −
1

γ + zℓ−2(x)︸                                               ︷︷                                               ︸
ζ0(x),ℓ terms

−
1

γ + zℓ−1(x)
− · · · −

1
γ + z2ℓ−2(x)︸                                      ︷︷                                      ︸

ζ1(x),ℓ terms

− . . .

We form k ≈ m/ℓ helper columns {hi(x)}i∈[k] that satisfy: (a) hi(x)
agrees with ζi(x) over {0, 1}v, (b)

∑
x∈{0,1}v

∑k
i=1 hi(x) = 0.
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Enforcing correct helper columns

Idea #2: Combine k zero-checks using random scalars {λi}i∈[k] ←$ F

and merge into a single Sum-Check protocol.

For simplicity, assume each ζi(x) =
∑

j∈Ii

qj(x)
rj(x) . Note that:

ζi(x) =
∑
j∈Ii

qj(x)
rj(x)

=

∑
j∈Ii qj

∏
k∈Ii\{j} rk(x)∏

j∈Ii rj(x)
= hi(x)

=⇒ hi(x)
∏
j∈Ii

rj(x) =
∑
j∈Ii

qj

∏
k∈Ii\{j}

rk(x)

Example

For ℓ = 2, h0(x) = µ(x)
γ+t(x) −

1
γ+z0(x) =

µ(x)(γ+z0(x))−γ−t(x)
(γ+t(x))(γ+z0(x)) . Thus, we

enforce the following equality:

h0(x)(γ + t(x))(γ + z0(x)) = µ(x)(γ + z0(x)) − γ − t(x)
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Final Sum-Check
This way, one runs the Sum-Check on the following function for
randomly sampled a←$ Fn:

∑
r∈[k]

hr(x) + eq(x; a)λr

hr(x)
∏
i∈Ir

ri(x) −
∑
i∈Ir

qi(x)
∏

j∈Ir\{i}

rj(x)

 = 0

• The first term enforces that
∑

x∈{0,1}v
∑

r∈[k] hr(x) = 0.

• The second term checks whether the helper columns are
consistent with each ζi(x) (see prev. slide). For this, we check the
equality hi(x)

∏
j∈Ii rj(x) =

∑
j∈Ii qj

∏
k∈Ii\{j} rk(x) at a random point

a by multiplying by eq(x; a) and taking a linear combination of
these equations.

Lemma
The larger ℓ is (size of each chunk), the more complex computations
are involved but smaller commitment sizes are required.
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