
Introduction Plookup Logup

Lookup Checks. Plookup. Logup
August 14, 2025

Distributed Lab
� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp

Introduction Plookup Logup

Introduction

Introduction Plookup Logup

Motivation

Suppose you want to implement the AES-128 or SHA-256 using
arithmetical circuits (for instance, for national passport verification).

As the part of such algorithm, assume given a, b, c ∈ {0, 1}n, you
need to implement XORing:

c = a ⊕ b

Arithmetical Circuit, informally
• Bit-decompose a to {ai}i∈[n] and check ai(1 − ai) = 0, i ∈ [n].

• Bit-decompose b to {bi}i∈[n] and check bi(1 − bi) = 0, i ∈ [n].

• Verify ci = ai + bi − 2aibi (which is precisely ci = ai ⊕ bi).
In Total: 3n constraints for one XORing operation. E.g., for 8-bit
XORing we would have approximately 24 constraints per operation.

Introduction Plookup Logup

Motivation (cont.)

Suppose you need to compute 10k 8-bit XOR operations during
hashing (that corresponds to ≈ four SHA256 512-bit blocks).

Total constraints = 10k × 24 = 240k constraints

Lookup

With lookup, you pay 216 constraints to commit to the lookup table,
and then you use only 1 constraint per XOR. Thus in total you would
have 216 + 10k ≈ 75k constraints. So we get 3.2× boost!

More generally, lookup check allows to reduce complexity from
O(mn) (where m is the cost of each operation and n is the number of
operations) to O(n + d), where d is the lookup size.

Introduction Plookup Logup

Application to Bionetta

In Bionetta, lookup checks allow to reduce the number of constraints
O(n) (where n is the circuit size in Groth16) to sublinear O(n/ log n).

More specifically, implementing ReLU(x) = max{0, x} naively
requires roughly O(b) constraints where b = log2 |F|.

In UltraGroth, by splitting the integer into w-bit limbs, one can
reduce the complexity per ReLU down to b/w with the lookup
commitment cost of 2w constraints. Thus, in total, one gets
O(2w + ℓb/w) constraints with ℓ being the number of ReLUs.

For optiomal value of w, this reduces to O(ℓb/ log(ℓb)).

Introduction Plookup Logup

Formalizing the problem

Definition
Lookup check consits in proving/verifying that {zi}i∈[n] ⊆ {tj}j∈[d]. We
will denote multisets as z⃗ := {zi}i∈[n] and t⃗ = {tj}j∈[d] and write
inclusion check z⃗ ⊆ t⃗ for short.

Example

• t⃗ = {0, 1}. z⃗ ⊆ t⃗ means “all zi’s are binary”.

• z⃗ = {10, 6, 7, 1, 1, 6, 10, 7, 1} ⊆ {1, 6, 7, 10} = t⃗. On the other hand,
we have z⃗∗ := {1, 6, 10, 5} ⊈ t⃗.

• For t⃗ = {tj}j∈[2w] with tj = j, condition “⃗z ⊆ t⃗” means “every element
zi is a w-bit integer”.

Introduction Plookup Logup

Working with tuples

In particular, XOR example can also be reduced to this check.

• First initialize all tuples t⃗ := {(ai, bi, ci)}i∈[22n] such that ai ⊕ bi = ci

(perceive each ai, bi, ci as a field element from F).

• We need to check whether z⃗ := {(xi, yi, wi)}i∈[m] ⊆ t⃗. The verifier
samples the challenge �←$ F, and lookup table is perceived as
t⃗� = {ai + �bi + �2ci}i∈[22n], witness as z⃗� := {xi + �yi + �2wi}i∈[m],
and then the check is z⃗� ⊆ t⃗� as usual.

Conclusion
Lookup checks are cool, so let us study them!

Introduction Plookup Logup

Plookup

Introduction Plookup Logup

plookup

Definition
Plookup is the Poly-IOP-based lookup check protocol that uses
rather exotic multiset equality check. Why I call it exotic you will see
in just a moment.

Reminder. When constructing PlonK , we considered the so-called
permutation check, which checked whether multisets {ai}i∈[n] and
{bi}i∈[n] are equal. This was done by running the grand product:∏

i∈[n]

(γ + ai) =
∏
i∈[n]

(γ + bi), γ ←$ F

Can we use it for checking {zi}i∈[n] ⊆ {tj}j∈[d]? No, consider:

Z(γ) =
∏
i∈[n]

(γ + zi), T(γ) =
∏
j∈[d]

(γ + tj)

We can merely state that roots of Z(γ) and T(γ) are the same.

Introduction Plookup Logup

plookup: problematic solution

Core problem
How to reduce lookup check to the multiset equality check?

Definition
Given s⃗ = {si}i∈[n], denote by ∂⃗s the diference set {si+1 − si}i∈[n−1]
without zero elements. For example, ∂{1, 1, 2, 5, 5} = {1, 3}.

Attempt #1. Suppose we sort witness z⃗ and get s⃗ as a result. We
might reasonably expect that ∂⃗s = ∂⃗t.

Example

Suppose t⃗ = {1, 4, 8} and s⃗ = {1, 1, 4, 8, 8, 8}. Notice that s⃗ ⊆ t⃗ and
moreover ∂⃗t = ∂⃗s = {3, 4}.

Problem. Converse is false. Consider s⃗∗ := {1, 5, 5, 5, 8, 8}.

Introduction Plookup Logup

plookup: solution #1

Attempt #2. Construct s⃗ — sorted concatenation (⃗z, t⃗). First assert
permutation check of s⃗ and (⃗z, t⃗). Then, assert that ∂⃗s = ∂⃗t.

Lemma
This is necessary and sufficient condition for z⃗ ⊆ t⃗.

Example

Suppose t⃗ = {1, 4, 8}, z⃗ = {1, 1, 4, 8, 8, 8}, and z⃗∗ = {1, 5, 5, 5, 8, 8}.
For t⃗ and z⃗ we see that s⃗ = {1, 1, 1, 4, 4, 8, 8, 8, 8} and clearly
∂⃗s = {3, 4} = ∂⃗t. As for z⃗∗, the sorted concatenation is
s⃗∗ = {1, 1, 4, 5, 5, 5, 8, 8, 8} and so ∂⃗s∗ = {1, 3} , ∂⃗t.

Thus our protocol might simply be running two permutation checks:
(a) on s⃗ and (⃗z, t⃗), and (b) on ∂⃗s and ∂⃗t. However, that’s still two
grand products. We can reduce this to a single grand product.

Introduction Plookup Logup

plookup: solution #2

Attempt #3. Why do we need this strage difference set ∂⃗s? Let us
make it more general!

Definition
The randomized difference set of s⃗ = {si}i∈[n] for randomness �,
denoted as ∂�s⃗, is defined as {si + �si+1}i∈[n−1].

Lemma
Necessary and sufficient condition for lookup check is
∂�s⃗ = ((1 + �)⃗z, ∂�⃗t) for randomly chosen �←$ F.

Intuition. Note that for two same consecutive integers si, si+1,
instead of zero, one gets (1 + �)si. Other than that, we also have
elements of form ti + �ti+1, which obviously form ∂�⃗t. Thus,
concatenating all elements of form (1 + �)si and ∂�⃗t gives ∂�s⃗.

Introduction Plookup Logup

Illustration

Suppose we, again, have the following witness and table:

t⃗ = {1, 4, 8}, z⃗ = {1, 1, 4, 8, 8, 8}

The sorted array is s⃗ = {1, 1, 1, 4, 4, 8, 8, 8, 8}. Now sample random
�←$ F. Then we have:

∂�s⃗ = {1+ �, 1+ �, 1+ 4�, (1+ �)4, 4+ 8�, (1+ �)8, (1+ �)8, (1+ �)8}

On the other hand, we also have:

(1 + �)⃗z = {1 + �, 1 + �, (1 + �)4, (1 + �)8, (1 + �)8, (1 + �)8}

∂�⃗t = {1 + 4�, 4 + 8�}

Clearly, ∂�s⃗ = ((1 + �)⃗z, ∂�⃗t).

Introduction Plookup Logup

Protocol Specifics

Now, given t ∈ Fd, z ∈ Fn, and s ∈ Fn+d, define bi-variate polynomials
Z and T as follows:

Z(�, γ) ≜ (1 + �)n
∏
i∈[n]

(γ + zi)
∏

i∈[d−1]

(γ(1 + �) + ti + �ti+1)

T(�, γ) ≜
∏

i∈[n+d−1]

(γ(1 + �) + si + �si+1)

Theorem
Z ≡ T if and only if z ⊆ t and s is (z, t) sorted by t.

Similarly to permutation check equation
∏

j(γ + aj) =
∏

j(γ + bj), the
rest of the protocol is done to ensure that Z = T in the PlonK ish
manner. See lecture notes for concrete details.

Introduction Plookup Logup

Logup

Introduction Plookup Logup

Derivatives

Similarly to calculus, we can define derivative operations over
polynomials and rational function over arbitrary fields.

Definition

Given a polynomial q(X) :=
∑d

j=0 qjXj over F[X], the formal
derivative, denoted by q′(X) ,is given by

∑d
j=1 jqjXj−1.

Definition
For a function q(X)/r(X) from rational function field F(X), the formal
derivative is given by(

q(X)
r(X)

)′
=

q′(X)r(X) − q(X)r′(X)
r(X)2

Introduction Plookup Logup

Logarithmic Derivative
Definition
The logarithmic derivative of q(X) ∈ F[X] is given by the rational
function LogD[q] = q′(X)/q(X).

Motivation
What is the derivative for log f (x) given f : R→ R? By the chain
rule, f ′(x)/f (x), which is given by the definition above.

Lemma
logD[qr] = logD[q] + logD[r].

Consequently, we can infer:

logD

 n∏
j=1

(X + aj)

 = n∑
j=1

logD
[
X + aj

]
=

n∑
j=1

1
X + aj

Introduction Plookup Logup

Finally something useful

Theorem (On fractional permutation check)

Let a⃗ = {ai}i∈[n] and b⃗ = {bi}i∈[n] be two sequences of elements from
F. To verify with overwhelming probability whether two multisets are
equal, it suffices to check

n∑
j=1

1
γ + aj

=

n∑
j=1

1
γ + bj

for randomly chosen γ ←$ F.

Intuition. Take logarithmic derivative from both sides of a
permutation check equation

∏n
j=1(γ + aj) =

∏n
j=1(γ + bj) and you are

done (see prev. slide). Other direction is a bit trickier to prove, but
still trivial enough.

Introduction Plookup Logup

Central Equation
Theorem (On fractional lookup check)
Given two sequences of elements {ti}i∈[d] and {zi}i∈[n], the inclusion
check {zi}i∈[n] ⊆ {ti}i∈[d] is satisfied if and only if there exist the set of
multiplicities {µi}i∈[d] where µi = #{j ∈ [n] : zj = ti} such that:∑

i∈[n]

1
X + zi

=
∑
i∈[d]

µi

X + ti

In particular, checking such equality at random point from F results
in the soundness error of up to (n + d)/|F|, which becomes
negligible for fairly large |F|.

Note
This is the central equation used in a large number of studies on its
own. What follows is just one variation of how to apply SumCheck
using this equation.

Introduction Plookup Logup

Bringing Sum-Check
Suppose the lookup table size is d = 2v for some v. Then, the table
t⃗ = {tj}j∈[d] can be viewed as a function t : {0, 1}v → F.

Problem: attempting to define z⃗ = {zi}i∈[n] in a similar manner fails
since in practice n > d, so the function {0, 1}v → F has a too-small
domain. Instead, split z⃗ into m = ⌈n/d⌉ f-ns z1, . . . , zm : {0, 1}v → F.

Note
In other words, we reduced the problem of {zi}i∈[n] ⊆ {tj}j∈[d] to⋃

i∈[m]{zi(x)}x∈{0,1}v ⊆ {t(x)}x∈{0,1}v .

Sum-Check equation is as follows:

∑
x∈{0,1}v

∑
i∈[m]

1
γ + zi(x)

=
∑

x∈{0,1}v

µ(x)
γ + t(x)

,

where µ(x) =
∑

i∈[m] #{y ∈ {0, 1}v : zi(y) = t(x)}.

Introduction Plookup Logup

Running Sum-Check. Or Not?

Idea #1: Run Sum-Check on the sum:

ζ (x) =
∑
i∈[m]

1
γ + zi(x)

−
µ(x)

γ + t(x)

Problem. ζ (x) is a fraction, so we can’t quite run the Sum-Check
yet. Idea of logup is to split the sum into ℓ terms:

ζ (x) =
µ(x)

γ + t(x)
−

1
γ + z0(x)

− · · · −
1

γ + zℓ−2(x)︸ ︷︷ ︸
ζ0(x),ℓ terms

−
1

γ + zℓ−1(x)
− · · · −

1
γ + z2ℓ−2(x)︸ ︷︷ ︸

ζ1(x),ℓ terms

− . . .

We form k ≈ m/ℓ helper columns {hi(x)}i∈[k] that satisfy: (a) hi(x)
agrees with ζi(x) over {0, 1}v, (b)

∑
x∈{0,1}v

∑k
i=1 hi(x) = 0.

Introduction Plookup Logup

Enforcing correct helper columns

Idea #2: Combine k zero-checks using random scalars {λi}i∈[k] ←$ F

and merge into a single Sum-Check protocol.

For simplicity, assume each ζi(x) =
∑

j∈Ii

qj(x)
rj(x) . Note that:

ζi(x) =
∑
j∈Ii

qj(x)
rj(x)

=

∑
j∈Ii qj

∏
k∈Ii\{j} rk(x)∏

j∈Ii rj(x)
= hi(x)

=⇒ hi(x)
∏
j∈Ii

rj(x) =
∑
j∈Ii

qj

∏
k∈Ii\{j}

rk(x)

Example

For ℓ = 2, h0(x) = µ(x)
γ+t(x) −

1
γ+z0(x) =

µ(x)(γ+z0(x))−γ−t(x)
(γ+t(x))(γ+z0(x)) . Thus, we

enforce the following equality:

h0(x)(γ + t(x))(γ + z0(x)) = µ(x)(γ + z0(x)) − γ − t(x)

Introduction Plookup Logup

Final Sum-Check
This way, one runs the Sum-Check on the following function for
randomly sampled a←$ Fn:

∑
r∈[k]

hr(x) + eq(x; a)λr

hr(x)
∏
i∈Ir

ri(x) −
∑
i∈Ir

qi(x)
∏

j∈Ir\{i}

rj(x)

 = 0

• The first term enforces that
∑

x∈{0,1}v
∑

r∈[k] hr(x) = 0.

• The second term checks whether the helper columns are
consistent with each ζi(x) (see prev. slide). For this, we check the
equality hi(x)

∏
j∈Ii rj(x) =

∑
j∈Ii qj

∏
k∈Ii\{j} rk(x) at a random point

a by multiplying by eq(x; a) and taking a linear combination of
these equations.

Lemma
The larger ℓ is (size of each chunk), the more complex computations
are involved but smaller commitment sizes are required.

Thank you for your attention

♥

� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	Introduction
	Plookup
	Logup

