Lookup Checks. Plookup. Logup

August 14, 2025

Distributed Lab

zkdl-camp.github.io

github.com/ZKDL-Camp

Introduction

Motivation

Suppose you want to implement the AES-128 or SHA-256 using arithmetical circuits (for instance, for national passport verification).

As the part of such algorithm, assume given $a, b, c \in \{0, 1\}^n$, you need to implement XORing:

$$c = a \oplus b$$

Arithmetical Circuit, informally

- Bit-decompose a to $\{a_i\}_{i\in[n]}$ and check $a_i(1-a_i)=0, i\in[n]$.
- Bit-decompose b to $\{b_i\}_{i\in[n]}$ and check $b_i(1-b_i)=0, i\in[n]$.
- Verify $c_i = a_i + b_i 2a_ib_i$ (which is precisely $c_i = a_i \oplus b_i$). In **Total:** 3n constraints for *one XORing operation*. E.g., for 8-bit XORing we would have approximately 24 constraints per operation.

Motivation (cont.)

Suppose you need to compute **10k** 8-bit XOR operations during hashing (that corresponds to \approx four SHA256 512-bit blocks).

Total constraints = $10k \times 24 = 240k$ constraints

Lookup

With lookup, you pay 2^{16} constraints to commit to the lookup table, and then you use only 1 constraint per XOR. Thus in total you would have $2^{16}+10k\approx75k$ constraints. So we get $3.2\times$ boost!

More generally, lookup check allows to reduce complexity from O(mn) (where m is the cost of each operation and n is the number of operations) to O(n+d), where d is the lookup size.

Application to Bionetta

In *Bionetta*, lookup checks allow to reduce the number of constraints O(n) (where n is the circuit size in Groth16) to sublinear $O(n/\log n)$.

More specifically, implementing ReLU(x) = max{0, x} naively requires roughly O(b) constraints where $b = \log_2 |\mathbb{F}|$.

In *UltraGroth*, by splitting the integer into w-bit limbs, one can reduce the complexity per ReLU down to b/w with the lookup commitment cost of 2^w constraints. Thus, in total, one gets $O(2^w + \ell b/w)$ constraints with ℓ being the number of ReLUs.

For optional value of w, this reduces to $O(\ell b / \log(\ell b))$.

Formalizing the problem

Definition

Lookup check consits in proving/verifying that $\{z_i\}_{i\in[n]}\subseteq\{t_j\}_{j\in[d]}$. We will denote multisets as $\vec{z}:=\{z_i\}_{i\in[n]}$ and $\vec{t}=\{t_j\}_{j\in[d]}$ and write inclusion check $\vec{z}\subseteq\vec{t}$ for short.

Example

- $\vec{t} = \{0, 1\}$. $\vec{z} \subseteq \vec{t}$ means "all z_i 's are binary".
- $\vec{z} = \{10, 6, 7, 1, 1, 6, 10, 7, 1\} \subseteq \{1, 6, 7, 10\} = \vec{t}$. On the other hand, we have $\vec{z}^* := \{1, 6, 10, 5\} \nsubseteq \vec{t}$.
- For $\vec{t} = \{t_j\}_{j \in [2^w]}$ with $t_j = j$, condition " $\vec{z} \subseteq \vec{t}$ " means "every element z_i is a w-bit integer".

Working with tuples

In particular, XOR example can also be reduced to this check.

- First initialize all tuples $\vec{t} := \{(a_i, b_i, c_i)\}_{i \in [2^{2n}]}$ such that $a_i \oplus b_i = c_i$ (perceive each a_i, b_i, c_i as a field element from \mathbb{F}).
- We need to check whether $\vec{z} := \{(x_i, y_i, w_i)\}_{i \in [m]} \subseteq \vec{t}$. The verifier samples the challenge $\beta \leftarrow \mathbb{F}$, and lookup table is perceived as $\vec{t}_\beta = \{a_i + \beta b_i + \beta^2 c_i\}_{i \in [2^{2n}]}$, witness as $\vec{z}_\beta := \{x_i + \beta y_i + \beta^2 w_i\}_{i \in [m]}$, and then the check is $\vec{z}_\beta \subseteq \vec{t}_\beta$ as usual.

Conclusion

Lookup checks are cool, so let us study them!

Plookup

plookup

Definition

Plookup is the Poly-IOP-based lookup check protocol that uses rather *exotic* multiset equality check. Why I call it *exotic* you will see in just a moment.

Reminder. When constructing \mathcal{P} lon \mathcal{K} , we considered the so-called *permutation check*, which checked whether multisets $\{a_i\}_{i\in[n]}$ and $\{b_i\}_{i\in[n]}$ are equal. This was done by running the grand product:

$$\prod_{i \in [n]} (\gamma + a_i) = \prod_{i \in [n]} (\gamma + b_i), \quad \gamma \leftarrow \$ \mathbb{F}$$

Can we use it for checking $\{z_i\}_{i\in[n]}\subseteq\{t_j\}_{j\in[d]}$? No, consider:

$$Z(\gamma) = \prod_{i \in [n]} (\gamma + z_i), \quad T(\gamma) = \prod_{i \in [d]} (\gamma + t_i)$$

We can merely state that roots of $Z(\gamma)$ and $T(\gamma)$ are the same.

plookup: problematic solution

Core problem

How to reduce lookup check to the multiset equality check?

Definition

Given $\vec{s} = \{s_i\}_{i \in [n]}$, denote by $\partial \vec{s}$ the **diference set** $\{s_{i+1} - s_i\}_{i \in [n-1]}$ without zero elements. For example, $\partial \{1, 1, 2, 5, 5\} = \{1, 3\}$.

Attempt #1. Suppose we sort witness \vec{z} and get \vec{s} as a result. We might reasonably expect that $\partial \vec{s} = \partial \vec{t}$.

Example

Suppose $\vec{t} = \{1, 4, 8\}$ and $\vec{s} = \{1, 1, 4, 8, 8, 8\}$. Notice that $\vec{s} \subseteq \vec{t}$ and moreover $\partial \vec{t} = \partial \vec{s} = \{3, 4\}$.

Problem. Converse is false. Consider $\vec{s}^* := \{1, 5, 5, 5, 8, 8\}$.

plookup: solution #1

Attempt #2. Construct \vec{s} — sorted concatenation (\vec{z}, \vec{t}) . First assert permutation check of \vec{s} and (\vec{z}, \vec{t}) . Then, assert that $\partial \vec{s} = \partial \vec{t}$.

Lemma

This is necessary and sufficient condition for $\vec{z} \subseteq \vec{t}$.

Example

Suppose $\vec{t} = \{1, 4, 8\}, \vec{z} = \{1, 1, 4, 8, 8, 8\}, \text{ and } \vec{z}^* = \{1, 5, 5, 5, 8, 8\}.$ For \vec{t} and \vec{z} we see that $\vec{s} = \{1, 1, 1, 4, 4, 8, 8, 8, 8\}$ and clearly $\partial \vec{s} = \{3, 4\} = \partial \vec{t}$. As for \vec{z}^* , the sorted concatenation is $\vec{s}^* = \{1, 1, 4, 5, 5, 5, 8, 8, 8\}$ and so $\partial \vec{s}^* = \{1, 3\} \neq \partial \vec{t}$.

Thus our protocol might simply be running two permutation checks: (a) on \vec{s} and (\vec{z}, \vec{t}) , and (b) on $\partial \vec{s}$ and $\partial \vec{t}$. However, that's still **two** grand products. We can reduce this to a single grand product.

plookup: solution #2

Attempt #3. Why do we need this strage difference set $\partial \vec{s}$? Let us make it more general!

Definition

The **randomized difference set** of $\vec{s} = \{s_i\}_{i \in [n]}$ for randomness β , denoted as $\partial_{\beta}\vec{s}$, is defined as $\{s_i + \beta s_{i+1}\}_{i \in [n-1]}$.

Lemma

Necessary and sufficient condition for lookup check is $\partial_{\beta} \vec{s} = ((1 + \beta)\vec{z}, \partial_{\beta}\vec{t})$ for randomly chosen $\beta \leftarrow \mathbb{F}$.

Intuition. Note that for two same consecutive integers s_i , s_{i+1} , instead of zero, one gets $(1 + \beta)s_i$. Other than that, we also have elements of form $t_i + \beta t_{i+1}$, which obviously form $\partial_{\beta}\vec{t}$. Thus, concatenating all elements of form $(1 + \beta)s_i$ and $\partial_{\beta}\vec{t}$ gives $\partial_{\beta}\vec{s}$.

Illustration

Suppose we, again, have the following witness and table:

$$\vec{t} = \{1, 4, 8\}, \quad \vec{z} = \{1, 1, 4, 8, 8, 8\}$$

The sorted array is $\vec{s} = \{1, 1, 1, 4, 4, 8, 8, 8, 8\}$. Now sample random $\beta \leftarrow \$ F$. Then we have:

$$\partial_{\beta}\vec{s} = \{1+\beta, 1+\beta, 1+4\beta, (1+\beta)4, 4+8\beta, (1+\beta)8, (1+\beta)8, (1+\beta)8, (1+\beta)8\}$$

On the other hand, we also have:

$$(1+\beta)\vec{z} = \{1+\beta, 1+\beta, (1+\beta)4, (1+\beta)8, (1+\beta)8, (1+\beta)8\}$$
$$\partial_{\beta}\vec{t} = \{1+4\beta, 4+8\beta\}$$

Clearly, $\partial_{\beta}\vec{s} = ((1 + \beta)\vec{z}, \partial_{\beta}\vec{t}).$

Protocol Specifics

Now, given $t \in \mathbb{F}^d$, $z \in \mathbb{F}^n$, and $s \in \mathbb{F}^{n+d}$, define bi-variate polynomials Z and T as follows:

$$Z(\beta, \gamma) \triangleq (1 + \beta)^n \prod_{i \in [n]} (\gamma + z_i) \prod_{i \in [d-1]} (\gamma(1 + \beta) + t_i + \beta t_{i+1})$$
$$T(\beta, \gamma) \triangleq \prod_{i \in [n+d-1]} (\gamma(1 + \beta) + s_i + \beta s_{i+1})$$

Theorem

 $Z \equiv T$ if and only if $z \subseteq t$ and s is (z, t) sorted by t.

Similarly to permutation check equation $\prod_j (\gamma + a_j) = \prod_j (\gamma + b_j)$, the rest of the protocol is done to ensure that Z = T in the \mathcal{P} lon \mathcal{K} ish manner. See lecture notes for concrete details.

Logup

Derivatives

Similarly to calculus, we can define derivative operations over polynomials and rational function over arbitrary fields.

Definition

Given a polynomial $q(X) := \sum_{j=0}^d q_j X^j$ over $\mathbb{F}[X]$, the **formal derivative**, denoted by q'(X), is given by $\sum_{j=1}^d jq_j X^{j-1}$.

Definition

For a function q(X)/r(X) from rational function field $\mathbb{F}(X)$, the **formal derivative** is given by

$$\left(\frac{q(X)}{r(X)}\right)' = \frac{q'(X)r(X) - q(X)r'(X)}{r(X)^2}$$

Logarithmic Derivative

Definition

The **logarithmic derivative** of $q(X) \in \mathbb{F}[X]$ is given by the rational function LogD[q] = q'(X)/q(X).

Motivation

What is the derivative for $\log f(x)$ given $f: \mathbb{R} \to \mathbb{R}$? By the chain rule, f'(x)/f(x), which is given by the definition above.

Lemma

 $\log \mathsf{D}[qr] = \log \mathsf{D}[q] + \log \mathsf{D}[r].$

Consequently, we can infer:

$$\log \left[\prod_{j=1}^{n} (X + a_j) \right] = \sum_{j=1}^{n} \log \left[\left[X + a_j \right] \right] = \sum_{j=1}^{n} \frac{1}{X + a_j}$$

Finally something useful

Theorem (On fractional permutation check)

Let $\vec{a} = \{a_i\}_{i \in [n]}$ and $\vec{b} = \{b_i\}_{i \in [n]}$ be two sequences of elements from \mathbb{F} . To verify with overwhelming probability whether two multisets are equal, it suffices to check

$$\sum_{j=1}^{n} \frac{1}{\gamma + a_j} = \sum_{j=1}^{n} \frac{1}{\gamma + b_j}$$

for randomly chosen $\gamma \leftarrow \mathbb{F}$.

Intuition. Take logarithmic derivative from both sides of a permutation check equation $\prod_{j=1}^n (\gamma + a_j) = \prod_{j=1}^n (\gamma + b_j)$ and you are done (see prev. slide). Other direction is a bit trickier to prove, but still trivial enough.

Central Equation

Theorem (On fractional lookup check)

Given two sequences of elements $\{t_i\}_{i\in[d]}$ and $\{z_i\}_{i\in[n]}$, the inclusion check $\{z_i\}_{i\in[n]}\subseteq\{t_i\}_{i\in[d]}$ is satisfied if and only if there exist the set of multiplicities $\{\mu_i\}_{i\in[d]}$ where $\mu_i=\#\{j\in[n]:z_j=t_i\}$ such that:

$$\sum_{i \in [n]} \frac{1}{X + z_i} = \sum_{i \in [d]} \frac{\mu_i}{X + t_i}$$

In particular, checking such equality at random point from \mathbb{F} results in the soundness error of up to $(n+d)/|\mathbb{F}|$, which becomes negligible for fairly large $|\mathbb{F}|$.

Note

This is the central equation used in a large number of studies on its own. What follows is just one variation of how to apply SumCheck using this equation.

Bringing Sum-Check

Suppose the lookup table size is $d = 2^{\nu}$ for some ν . Then, the table $\vec{t} = \{t_i\}_{i \in [d]}$ can be viewed as a function $t : \{0, 1\}^{\nu} \to \mathbb{F}$.

Problem: attempting to define $\vec{z} = \{z_i\}_{i \in [n]}$ in a similar manner fails since in practice n > d, so the function $\{0, 1\}^v \to \mathbb{F}$ has a too-small domain. Instead, split \vec{z} into $m = \lceil n/d \rceil$ f-ns $z_1, \ldots, z_m : \{0, 1\}^v \to \mathbb{F}$.

Note

In other words, we reduced the problem of $\{z_i\}_{i\in[n]}\subseteq\{t_j\}_{j\in[d]}$ to $\bigcup_{i\in[m]}\{z_i(\mathbf{x})\}_{\mathbf{x}\in\{0,1\}^v}\subseteq\{t(\mathbf{x})\}_{\mathbf{x}\in\{0,1\}^v}$.

Sum-Check equation is as follows:

$$\sum_{\mathbf{x}\in\{0,1\}^{\nu}}\sum_{i\in[m]}\frac{1}{\gamma+z_i(\mathbf{x})}=\sum_{\mathbf{x}\in\{0,1\}^{\nu}}\frac{\mu(\mathbf{x})}{\gamma+t(\mathbf{x})},$$

where
$$\mu(\mathbf{x}) = \sum_{i \in [m]} \# \{ \mathbf{y} \in \{0, 1\}^{v} : z_{i}(\mathbf{y}) = t(\mathbf{x}) \}.$$

Running Sum-Check. Or Not?

Idea #1: Run Sum-Check on the sum:

$$\zeta(\mathbf{x}) = \sum_{i \in [m]} \frac{1}{\gamma + z_i(\mathbf{x})} - \frac{\mu(\mathbf{x})}{\gamma + t(\mathbf{x})}$$

Problem. $\zeta(\mathbf{x})$ is a fraction, so we can't quite run the Sum-Check yet. Idea of logup is to split the sum into ℓ terms:

$$\zeta(\mathbf{x}) = \underbrace{\frac{\mu(\mathbf{x})}{\gamma + t(\mathbf{x})} - \frac{1}{\gamma + z_0(\mathbf{x})} - \cdots - \frac{1}{\gamma + z_{\ell-2}(\mathbf{x})}}_{\zeta_0(\mathbf{x}), \ell \text{ terms}} - \underbrace{\frac{1}{\gamma + z_{\ell-1}(\mathbf{x})} - \cdots - \frac{1}{\gamma + z_{2\ell-2}(\mathbf{x})}}_{\zeta_1(\mathbf{x}), \ell \text{ terms}} - \cdots$$

We form $k \approx m/\ell$ helper columns $\{h_i(\mathbf{x})\}_{i \in [k]}$ that satisfy: (a) $h_i(\mathbf{x})$ agrees with $\zeta_i(\mathbf{x})$ over $\{0,1\}^{\nu}$, (b) $\sum_{\mathbf{x} \in \{0,1\}^{\nu}} \sum_{i=1}^k h_i(\mathbf{x}) = 0$.

Enforcing correct helper columns

Idea #2: Combine k zero-checks using random scalars $\{\beta_i\}_{i \in [k]} \leftarrow \mathbb{F}$ and merge into a single Sum-Check protocol.

For simplicity, assume each $\zeta_i(\mathbf{x}) = \sum_{j \in I_i} \frac{q_j(\mathbf{x})}{r_i(\mathbf{x})}$. Note that:

$$\zeta(\mathbf{x}) = \sum_{j \in I_i} \frac{q_j(\mathbf{x})}{r_j(\mathbf{x})} = \frac{\sum_{j \in I_i} q_j \prod_{k \in I_i \setminus \{j\}} r_k(\mathbf{x})}{\prod_{j \in I_i} r_j(\mathbf{x})} = h_i(\mathbf{x})$$

$$\implies h_i(\mathbf{x}) \prod_{j \in I_i} r_j(\mathbf{x}) = \sum_{j \in I_i} q_j \prod_{k \in I_i \setminus \{j\}} r_k(\mathbf{x})$$

Example

For $\ell=2$, $h_0(\mathbf{x})=\frac{\mu(\mathbf{x})}{\gamma+t(\mathbf{x})}-\frac{1}{\gamma+z_0(\mathbf{x})}=\frac{\mu(\mathbf{x})(\gamma+z_0(\mathbf{x}))-\gamma-t(\mathbf{x})}{(\gamma+t(\mathbf{x}))(\gamma+z_0(\mathbf{x}))}$. Thus, we enforce the following equality:

$$h_0(\mathbf{x})(y + t(\mathbf{x}))(y + z_0(\mathbf{x})) = \mu(\mathbf{x})(y + z_0(\mathbf{x})) - y - t(\mathbf{x})$$

Final Sum-Check

This way, one runs the Sum-Check on the following function for randomly sampled $a \leftarrow \mathbb{F}^n$:

$$\sum_{r \in [k]} h_r(\mathbf{x}) + \mathsf{eq}(\mathbf{x}; \boldsymbol{a}) \beta_r \left(h_r(\mathbf{x}) \prod_{i \in \mathcal{I}_r} r_i(\mathbf{x}) - \sum_{i \in \mathcal{I}_r} q_i(\mathbf{x}) \prod_{j \in \mathcal{I}_r \setminus \{i\}} r_j(\mathbf{x}) \right) = 0$$

- The first term enforces that $\sum_{\mathbf{x} \in \{0,1\}^{\nu}} \sum_{r \in [k]} h_r(\mathbf{x}) = 0$.
- The second term checks whether the helper columns are consistent with each ζ_i(x) (see prev. slide). For this, we check the equality h_i(x) ∏_{j∈Ii} r_j(x) = ∑_{j∈Ii} q_j ∏_{k∈Ii\{j\}} r_k(x) at a random point a by multiplying by eq(x; a) and taking a linear combination of these equations.

Lemma

The larger ℓ is (size of each chunk), the more complex computations are involved but smaller commitment sizes are required.

Thank you for your attention

