
Introduction Groth16 Recap UltraGroth

UltraGroth. Lookup Checks Enabled in
Groth16
September 4, 2025

Distributed Lab
� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp

Introduction Groth16 Recap UltraGroth

Introduction

Introduction Groth16 Recap UltraGroth

Motivation
We typically want to check inclusion {zi}i∈[n] ⊆ {tj}j∈[v], where {zi}i∈[n]
is part of the witness while {tj}j∈[v] is the lookup table.

Example usage: effective range-checks (Bionetta, Rarimo circuits,
non-native ZK verifications etc.)

x = x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

16 constraints

x =

x0 x1 x2 x3

4 constraints + one-time 24 commitment

Generally: for n-bit range-check, the circuit’s complexity reduces
from O(n) to O(2w + n

w), which yields O(n/ log n) assymptotic.

Introduction Groth16 Recap UltraGroth

Logup Check

Theorem (Some stuff from ZKDL Camp)
The inclusion check {zi}i∈[n] ⊆ {ti}i∈[v] is satisfied if and only if there
exists the set of multiplicities {µi}i∈[v] where µi = #{j ∈ [n] : zj = ti}
such that for γ ←$ F: ∑

i∈[n]

1
γ + zi

=
∑
i∈[v]

µi

γ + ti

Naive approach: Define signal gamma and implement this check
in-circuit. This costs exactly n + 2v constraints.

Problem: We cannot define random signals in Circom since
Groth16, compared to PlonK or sumcheck-based approaches, is
not compiled from interactive protocol using Fiat-Shamir heuristic.

Introduction Groth16 Recap UltraGroth

Other implications

UltraGroth, though, is not about lookup checks only.

Assume that you need to implement multiplication of two matrices
A, B ∈ Fn×n. Naive way is to compute C = AB by definition:

Ci,j =

n∑
k=1

Ai,kBk,j // Costs n constraints per Ci,j

As we have n2 elements in C, we thus need n3 constraints.

We can instead apply the Freiveld’s protocol. Sample random
γ ←$ Fn, compute C off-circuit and then verify:

ABγ = Cγ // Costs 3n2 constraints

Example: Attention layer implementation in zkML.

Introduction Groth16 Recap UltraGroth

Plan

1. We recap the Groth16 construction.

2. We identify how to make it interactive.

3. We specify how Fiat-Shamir transformation should be applied.

4. We show how it can be practically implemented.

Introduction Groth16 Recap UltraGroth

Groth16 Recap

Introduction Groth16 Recap UltraGroth

R1CS

Recall that we can encode any NP statement in the form of m
equations of form ⟨ℓj, z⟩ · ⟨rj, z⟩ = ⟨oj, z⟩ for j ∈ [m] and z ∈ Fn. Such
way of representing the statement is called R1CS arithmetization.

This equality is rewritten more succinctly in the matrix form:

Lz ⊙ Rz = Oz

✓ As of now, this is one of the most optimal arithmetization systems
available (compared to PlonK and AIR).

✓ All linear operations over elements of z cost 0 constraints,
compared to PlonK.

Introduction Groth16 Recap UltraGroth

Example

Suppose the program computes the expression y = x3
1 + x2

2.

Circuit Diagram

x1 × ×

x2 ×

+

t1

t2

t3

y

Constraints

t1 = x1 · x1

t2 = t1 · x1

t3 = x2 · x2

y = t2 + t3

In this case, the witness looks as z = (1, x1, x2, t1, t2, t3, y), and (for
simplicity, consider only L, R):

L =


0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 1 0

 , R =


0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0



Introduction Groth16 Recap UltraGroth

QAP
We interpolate the columns of each of the matrices, thus getting 3n
polynomials {(ℓi(X), ri(X), oi(X))}i∈[n] ⊆ F

≤m[X]:

ℓi(ωj) = Li,j, ri(ωj) = Ri,j, oi(ωj) = Oi,j, i ∈ [n], j ∈ [m]

Now, the same R1CS check can be encoded over polynomial space:∑
i∈[n]

ziℓi(X) ·
∑
i∈[n]

ziri(X) =
∑
i∈[n]

zioi(X) + tΩ(X)h(X),

where h(X) is computed by a prover and tΩ(X) ≜
∏

h∈Ω(X − h) is the
vanishing polynomial over evaluation domain Ω = {ωj}j∈[m]. The
corresponding relation:

RQAP =

{
x = {zi}i∈IX

w = {zi}i∈IW

∣∣∣∣∣∣ ∑i∈[n] ziℓi(X) ·
∑

i∈[n] ziri(X) =
∑

i∈[n] zioi(X) + tΩ(X)h(X)
for some h(X) ∈ F[X]

}

Introduction Groth16 Recap UltraGroth

Linear non-interactive proofs
Recall that Groth16 is compiled from Linear non-interactive proofs.

Definition (Linear Non-Interactive Proof)
The Linear Non-Interactive Proof consists of the following
procedures:
• Setup(1λ,R)→ (σ, τ). The setup returns σ ∈ Fm and τ ∈ Fn.

• Prove(σ,x,w)→ π. P chooses the matrix Π ∈ Fk×m and
computes the proof as π ← Πσ.

• Verify(σ,x, π)→ {0, 1}. The verifier gets the arithmetic circuit
t : Fm+k → Fη of degree d and verifies whether t(σ, π) = 0.

Groth16 is essentially a Linear NIP where d = 2 and σ is given by:

σ =

α, �, γ, δ, {τi}i∈[n],

{
ζi(τ)

γ

}
i∈[m]

,

{
τitΩ(τ)

δ

}
i∈[n]

 ,
with ζi(X) := �ℓi(X) + αri(X) + oi(X) and τ = (α, �, γ, δ, τ).

Introduction Groth16 Recap UltraGroth

Groth16 Construction
Fix bilinear group G = (G1,G2,GT , e) with pairing e : G1 × G2 → GT .

• Setup(1λ,RQAP)→ (pp, vp). See previous slide.

• Prove(pp,x,w)→ π. Sample random r, s←$ F and output
π ← (ga(τ)

1 , gc(τ)
1 , gb(τ)

2) where:

a(X) = α +
∑
i∈[n]

ziℓi(X) + rδ, b(X) = � +
∑
i∈[n]

ziri(X) + sδ,

c(X) = δ−1

∑
i∈IW

ziζi(X) + h(X)tΩ(X)

 + a(X)s + b(X)r − rsδ

• Verify(vp,x, π)→ {0, 1}. Parse π = (πA, πC, πB) and accept the
proof if and only if

e(πA, πB) = e(gα
1 , g�

2) · e(gι(τ)
1 , gγ

2) · e(πC, gδ
2),

where ι(X) := γ−1∑
i∈IX ziζi(X) is the input commitment.

Introduction Groth16 Recap UltraGroth

UltraGroth

Introduction Groth16 Recap UltraGroth

Desired Interactive Protocol

We would like to have the following interactive protocol (IP) between
the prover P and verifierV.

Input: Relation RQAP and public statement x0.

Round 0: P runs the circuit without imposing lookup check and
gets witness w0. V sends the random challenge x1 ←$ F.

Round 1: P computes the second part of the witness w1, cor-
responding to the lookup check

∑
i∈[n]

1
x1+zi

=
∑

i∈[v]
µi

x1+ti
. The

verifierV sends w1 and h(X) to prover.

Check:V checks ℓ(X)r(X) = o(X) + tΩ(X)h(X).

Compiling IP into NIZK. Apply Fiat-Shamir transformation: sample
challenge as x1 = H(σ,x0,w0).

Problem. We cannot practically “hash” the witness part w0.

Introduction Groth16 Recap UltraGroth

2-round UltraGroth Construction
Split public indexing set IX into two parts: I⟨0⟩X and I⟨1⟩X . Similarly,
split the witness indexing set IW into I⟨0⟩W and I⟨1⟩W .

Input: Relation RQAP and public statement x0.

Round 0: P runs circuit without lookup check and gets witness w0.
She samples r0 ←$ F, and computes π⟨0⟩C ← gc0(τ)

1 as:

c0(X) = δ−1
0

∑
j∈I⟨0⟩W

zjζj(X) + r0δ

Round 1: P samples the challenge x1 ← H(σ, π⟨0⟩C), samples
r, s←$ F and computes π⟨1⟩C ← gc1(τ)

1 as:

c1(X) = δ−1

∑
j∈I⟨1⟩W

zjζj(X) + h(X)tΩ(X)

 + a(X)s + b(X)r − r0δ0 − rsδ

Introduction Groth16 Recap UltraGroth

2-round UltraGroth Construction: The rest

Then, parts πA ← ga(τ)
1 and πB ← gb(τ)

1 are computed as usual via:

a(X) = α +
∑
i∈[n]

ziℓi(X) + rδ, b(X) = � +
∑
i∈[n]

ziri(X) + sδ.

Note: δ0c0(X) + δc1(X) is exactly δc(X) is the original Groth16.
Thus,V checks:

e(πA, πB) = e(gα
1 , g�

2) · e(gι(τ)
1 , gγ

2) · e(π⟨0⟩C , gδ0
2) · e(π⟨1⟩C , gδ

2),

where ι(X) = γ−1∑
i∈IX zifi(X) as before and x1 = H(σ, π⟨0⟩C).

Conclusion
UltraGroth protocol’s verifier is only 4 pairings, 1 hashing
operation, and O(|x|) exponentiations over G1.

Introduction Groth16 Recap UltraGroth

Multi-round UltraGroth

Definition (dQAP)
We define the (d + 1)-round quadratic arithmetic program (or
dQAP, for short), as follows:

RdQAP =


xi = {zj}j∈I⟨i⟩X

wi = {zj}j∈I⟨i⟩W

for i ∈ [d + 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣
ℓ(X) · r(X) = o(X) + tΩ(X)h(X)

ℓ(X) =
∑

i∈[n] ziℓi(X),
r(X) =

∑
i∈[n] ziri(X),

o(X) =
∑

i∈[n] zioi(X),
for some h(X) ∈ F[X]

 ,

where {I⟨i⟩X }i∈[d+1] and {I⟨i⟩W }i∈[d+1] partition [n].

Introduction Groth16 Recap UltraGroth

Strategy

Definition (Strategy)

Define strategy for RdQAP as the collection of functions S = {Si}i∈[d]
each of which computes the witness for the given round given
previous witnesses and challenges and the current challenge,
sampled by the verifier. In other words,

wi = Si(x0, . . . ,xi,w0, . . . ,wi−1)

Example
0QAP represents the regular QAP with the strategy S = {S0} that
consists of the witness generator: w = S0(x). In turn, 1QAP
represents the lookup Groth16 version where w0 = S0(x0)
computes the witness without lookups while w1 = S1(x0,x1,w0)
computes lookup constraints.

Introduction Groth16 Recap UltraGroth

d-round UltraGroth

Initialize accumulator a0 := H(σ).

On each round i ∈ [d]:

• Sample ri ←$ F.

• Compute witness wi ← Si(x0, . . . ,xi,w0, . . . ,wi−1).

• Compute π⟨i⟩C with ci(X) := δ−1
i
∑

j∈I⟨i⟩W
zjζj(X) + riδd.

• Update accumulator ai+1 ← H(ai, π⟨i⟩C).

• If i < d, for each j ∈ I⟨i+1⟩
X , set zj ← H(ai+1, gj

1).

Introduction Groth16 Recap UltraGroth

d-round UltraGroth: Last Round

During the last round:

• Compute h(X) similar to Groth16.

• Sample r, s←$ F and compute πA ← ga(τ)
1 , πB ← gb(τ)

2 , and the
last proof piece π⟨d⟩C ← gcd(τ)

1 where:

a(X) = α +
∑
i∈[n]

ziℓi(X) + rδd, b(X) = � +
∑
i∈[n]

ziri(X) + sδd,

cd(X) = δ−1
d

∑
i∈I⟨d⟩W

zifi(X) + h(X)tΩ(X)

 + a(X)s + b(X)r −
∑
i∈[d]

riδi − rsδd

• Output proof π = (πA, πB, {π⟨i⟩C }i∈[d+1]) ∈ G1 × G2 × G
d+1
1 .

Verification: e(πA, πB) = e(gα
1 , g�

2) · e(gi(τ)
1 , gγ

2) ·
∏

i∈[d+1] e(π⟨i⟩C , gδi
2).

Introduction Groth16 Recap UltraGroth

UltraGroth Efficiency

Groth16 performance over the circuit of size n and statement size ℓ.

• Prover work: MSM of size O(n) over G1 and G2.

• Proof size: 2G1 + G2.

• Verifier work: 3 pairings + O(ℓ) G1 exps.

UltraGroth performance over RdQAP in turn:

• Prover work: MSM of size O(n/ log n) over G1 and G2.

• Proof size: (d + 2)G1 + G2.

• Verifier work: (d + 3) pairings + O(ℓ) G1 exps +
∑

i∈[d+1]\{0} |xi|

hashing operations.

• Allowed interactiveness for potentially more complex protocols.

Any Questions?

♥

� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	Introduction
	Groth16 Recap
	UltraGroth

