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Motivation
We typically want to check inclusion {zi}i∈[n] ⊆ {tj}j∈[v], where {zi}i∈[n]
is part of the witness while {tj}j∈[v] is the lookup table.

Example usage: effective range-checks (Bionetta, Rarimo circuits,
non-native ZK verifications etc.)

x = x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

16 constraints

x =

x0 x1 x2 x3

4 constraints + one-time 24 commitment

Generally: for n-bit range-check, the circuit’s complexity reduces
from O(n) to O(2w + n

w ), which yields O(n/ log n) assymptotic.
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Logup Check

Theorem (Some stuff from ZKDL Camp)
The inclusion check {zi}i∈[n] ⊆ {ti}i∈[v] is satisfied if and only if there
exists the set of multiplicities {µi}i∈[v] where µi = #{j ∈ [n] : zj = ti}
such that for γ ←$ F: ∑

i∈[n]

1
γ + zi

=
∑
i∈[v]

µi

γ + ti

Naive approach: Define signal gamma and implement this check
in-circuit. This costs exactly n + 2v constraints.

Problem: We cannot define random signals in Circom since
Groth16, compared to PlonK or sumcheck-based approaches, is
not compiled from interactive protocol using Fiat-Shamir heuristic.
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Other implications

UltraGroth, though, is not about lookup checks only.

Assume that you need to implement multiplication of two matrices
A, B ∈ Fn×n. Naive way is to compute C = AB by definition:

Ci,j =

n∑
k=1

Ai,kBk,j // Costs n constraints per Ci,j

As we have n2 elements in C, we thus need n3 constraints.

We can instead apply the Freiveld’s protocol. Sample random
γ ←$ Fn, compute C off-circuit and then verify:

ABγ = Cγ // Costs 3n2 constraints

Example: Attention layer implementation in zkML.
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Plan

1. We recap the Groth16 construction.

2. We identify how to make it interactive.

3. We specify how Fiat-Shamir transformation should be applied.

4. We show how it can be practically implemented.
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Groth16 Recap
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R1CS

Recall that we can encode any NP statement in the form of m
equations of form ⟨ℓj, z⟩ · ⟨rj, z⟩ = ⟨oj, z⟩ for j ∈ [m] and z ∈ Fn. Such
way of representing the statement is called R1CS arithmetization.

This equality is rewritten more succinctly in the matrix form:

Lz ⊙ Rz = Oz

✓ As of now, this is one of the most optimal arithmetization systems
available (compared to PlonK and AIR).

✓ All linear operations over elements of z cost 0 constraints,
compared to PlonK.
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Example

Suppose the program computes the expression y = x3
1 + x2

2.

Circuit Diagram

x1 × ×

x2 ×

+

t1

t2

t3

y

Constraints

t1 = x1 · x1

t2 = t1 · x1

t3 = x2 · x2

y = t2 + t3

In this case, the witness looks as z = (1, x1, x2, t1, t2, t3, y), and (for
simplicity, consider only L, R):

L =


0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 1 0

 , R =


0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0


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QAP
We interpolate the columns of each of the matrices, thus getting 3n
polynomials {(ℓi(X), ri(X), oi(X))}i∈[n] ⊆ F

≤m[X]:

ℓi(ωj) = Li,j, ri(ωj) = Ri,j, oi(ωj) = Oi,j, i ∈ [n], j ∈ [m]

Now, the same R1CS check can be encoded over polynomial space:∑
i∈[n]

ziℓi(X) ·
∑
i∈[n]

ziri(X) =
∑
i∈[n]

zioi(X) + tΩ(X)h(X),

where h(X) is computed by a prover and tΩ(X) ≜
∏

h∈Ω(X − h) is the
vanishing polynomial over evaluation domain Ω = {ωj}j∈[m]. The
corresponding relation:

RQAP =

{
x = {zi}i∈IX

w = {zi}i∈IW

∣∣∣∣∣∣ ∑i∈[n] ziℓi(X) ·
∑

i∈[n] ziri(X) =
∑

i∈[n] zioi(X) + tΩ(X)h(X)
for some h(X) ∈ F[X]

}
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Linear non-interactive proofs
Recall that Groth16 is compiled from Linear non-interactive proofs.

Definition (Linear Non-Interactive Proof)
The Linear Non-Interactive Proof consists of the following
procedures:
• Setup(1λ,R)→ (σ, τ). The setup returns σ ∈ Fm and τ ∈ Fn.

• Prove(σ,x,w)→ π. P chooses the matrix Π ∈ Fk×m and
computes the proof as π ← Πσ.

• Verify(σ,x, π)→ {0, 1}. The verifier gets the arithmetic circuit
t : Fm+k → Fη of degree d and verifies whether t(σ, π) = 0.

Groth16 is essentially a Linear NIP where d = 2 and σ is given by:

σ =

α, �, γ, δ, {τi}i∈[n],

{
ζi(τ)

γ

}
i∈[m]

,

{
τitΩ(τ)

δ

}
i∈[n]

 ,
with ζi(X) := �ℓi(X) + αri(X) + oi(X) and τ = (α, �, γ, δ, τ).
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Groth16 Construction
Fix bilinear group G = (G1,G2,GT , e) with pairing e : G1 × G2 → GT .

• Setup(1λ,RQAP)→ (pp, vp). See previous slide.

• Prove(pp,x,w)→ π. Sample random r, s←$ F and output
π ← (ga(τ)

1 , gc(τ)
1 , gb(τ)

2 ) where:

a(X) = α +
∑
i∈[n]

ziℓi(X) + rδ, b(X) = � +
∑
i∈[n]

ziri(X) + sδ,

c(X) = δ−1

∑
i∈IW

ziζi(X) + h(X)tΩ(X)

 + a(X)s + b(X)r − rsδ

• Verify(vp,x, π)→ {0, 1}. Parse π = (πA, πC, πB) and accept the
proof if and only if

e(πA, πB) = e(gα
1 , g�

2) · e(gι(τ)
1 , gγ

2) · e(πC, gδ
2),

where ι(X) := γ−1∑
i∈IX ziζi(X) is the input commitment.
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UltraGroth
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Desired Interactive Protocol

We would like to have the following interactive protocol (IP) between
the prover P and verifierV.

Input: Relation RQAP and public statement x0.

Round 0: P runs the circuit without imposing lookup check and
gets witness w0. V sends the random challenge x1 ←$ F.

Round 1: P computes the second part of the witness w1, cor-
responding to the lookup check

∑
i∈[n]

1
x1+zi

=
∑

i∈[v]
µi

x1+ti
. The

verifierV sends w1 and h(X) to prover.

Check:V checks ℓ(X)r(X) = o(X) + tΩ(X)h(X).

Compiling IP into NIZK. Apply Fiat-Shamir transformation: sample
challenge as x1 = H(σ,x0,w0).

Problem. We cannot practically “hash” the witness part w0.
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2-round UltraGroth Construction
Split public indexing set IX into two parts: I⟨0⟩X and I⟨1⟩X . Similarly,
split the witness indexing set IW into I⟨0⟩W and I⟨1⟩W .

Input: Relation RQAP and public statement x0.

Round 0: P runs circuit without lookup check and gets witness w0.
She samples r0 ←$ F, and computes π⟨0⟩C ← gc0(τ)

1 as:

c0(X) = δ−1
0

∑
j∈I⟨0⟩W

zjζj(X) + r0δ

Round 1: P samples the challenge x1 ← H(σ, π⟨0⟩C ), samples
r, s←$ F and computes π⟨1⟩C ← gc1(τ)

1 as:

c1(X) = δ−1

∑
j∈I⟨1⟩W

zjζj(X) + h(X)tΩ(X)

 + a(X)s + b(X)r − r0δ0 − rsδ
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2-round UltraGroth Construction: The rest

Then, parts πA ← ga(τ)
1 and πB ← gb(τ)

1 are computed as usual via:

a(X) = α +
∑
i∈[n]

ziℓi(X) + rδ, b(X) = � +
∑
i∈[n]

ziri(X) + sδ.

Note: δ0c0(X) + δc1(X) is exactly δc(X) is the original Groth16.
Thus,V checks:

e(πA, πB) = e(gα
1 , g�

2) · e(gι(τ)
1 , gγ

2) · e(π⟨0⟩C , gδ0
2 ) · e(π⟨1⟩C , gδ

2),

where ι(X) = γ−1∑
i∈IX zifi(X) as before and x1 = H(σ, π⟨0⟩C ).

Conclusion
UltraGroth protocol’s verifier is only 4 pairings, 1 hashing
operation, and O(|x|) exponentiations over G1.
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Multi-round UltraGroth

Definition (dQAP)
We define the (d + 1)-round quadratic arithmetic program (or
dQAP, for short), as follows:

RdQAP =


xi = {zj}j∈I⟨i⟩X

wi = {zj}j∈I⟨i⟩W

for i ∈ [d + 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣
ℓ(X) · r(X) = o(X) + tΩ(X)h(X)

ℓ(X) =
∑

i∈[n] ziℓi(X),
r(X) =

∑
i∈[n] ziri(X),

o(X) =
∑

i∈[n] zioi(X),
for some h(X) ∈ F[X]

 ,

where {I⟨i⟩X }i∈[d+1] and {I⟨i⟩W }i∈[d+1] partition [n].
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Strategy

Definition (Strategy)

Define strategy for RdQAP as the collection of functions S = {Si}i∈[d]
each of which computes the witness for the given round given
previous witnesses and challenges and the current challenge,
sampled by the verifier. In other words,

wi = Si(x0, . . . ,xi,w0, . . . ,wi−1)

Example
0QAP represents the regular QAP with the strategy S = {S0} that
consists of the witness generator: w = S0(x). In turn, 1QAP
represents the lookup Groth16 version where w0 = S0(x0)
computes the witness without lookups while w1 = S1(x0,x1,w0)
computes lookup constraints.
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d-round UltraGroth

Initialize accumulator a0 := H(σ).

On each round i ∈ [d]:

• Sample ri ←$ F.

• Compute witness wi ← Si(x0, . . . ,xi,w0, . . . ,wi−1).

• Compute π⟨i⟩C with ci(X) := δ−1
i
∑

j∈I⟨i⟩W
zjζj(X) + riδd.

• Update accumulator ai+1 ← H(ai, π⟨i⟩C ).

• If i < d, for each j ∈ I⟨i+1⟩
X , set zj ← H(ai+1, gj

1).



Introduction Groth16 Recap UltraGroth

d-round UltraGroth: Last Round

During the last round:

• Compute h(X) similar to Groth16.

• Sample r, s←$ F and compute πA ← ga(τ)
1 , πB ← gb(τ)

2 , and the
last proof piece π⟨d⟩C ← gcd(τ)

1 where:

a(X) = α +
∑
i∈[n]

ziℓi(X) + rδd, b(X) = � +
∑
i∈[n]

ziri(X) + sδd,

cd(X) = δ−1
d

∑
i∈I⟨d⟩W

zifi(X) + h(X)tΩ(X)

 + a(X)s + b(X)r −
∑
i∈[d]

riδi − rsδd

• Output proof π = (πA, πB, {π⟨i⟩C }i∈[d+1]) ∈ G1 × G2 × G
d+1
1 .

Verification: e(πA, πB) = e(gα
1 , g�

2) · e(gi(τ)
1 , gγ

2) ·
∏

i∈[d+1] e(π⟨i⟩C , gδi
2 ).
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UltraGroth Efficiency

Groth16 performance over the circuit of size n and statement size ℓ.

• Prover work: MSM of size O(n) over G1 and G2.

• Proof size: 2G1 + G2.

• Verifier work: 3 pairings + O(ℓ) G1 exps.

UltraGroth performance over RdQAP in turn:

• Prover work: MSM of size O(n/ log n) over G1 and G2.

• Proof size: (d + 2)G1 + G2.

• Verifier work: (d + 3) pairings + O(ℓ) G1 exps +
∑

i∈[d+1]\{0} |xi|

hashing operations.

• Allowed interactiveness for potentially more complex protocols.
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