UltraGroth: Interactive Groth16
August 29, 2025

Dmytro Zakharov
Distributed Lab

& distributedlab.com/

w’

) github.com/rarimo/ultragroth

https://distributedlab.com/
https://github.com/rarimo/ultragroth

Why we should care?
©0000000

Why we should care?

Why we should care?
00000000

Range Checks

Problem
Write a circuit that checks whether x is a 128-bit integer.

Current R1CS (and, consequently, Circom's) approach is to conduct
the following steps:

e Find bit decomposition of x off-circuit: say, x = leig xi2!.

o Check that x; € {0,1}: impose 128 constraints x;(1 — x;) = 0.

Result: 128 constraints per 128-bit range check.

Question

Suppose one needs to conduct 10000 such range checks. How many
constraints does one need to implement this?

Using quite unsophisticated math, 128 x 10000 = 1.28 min.

Why we should care?
00®00000

Better range checks

Using lookup checks, we can implement the same logic in just
~ 100k constraints! Here is how.

Assumption. Assume we can check whether the given signal s is
the w-bit integer in a single constraint. But this requires a one-time
cost of 2% constraints. How does it help us?

Suppose we use w := 16. Then, our algorithm proceeds as follows:
o We pay 216 ~ 65.5k for a one-time commitment.
e We find w-width decomposition of x: say, x = Z,T:o xi2"

e We check whether x; is a 16-bit integer. Since we have 8 chunks,
this costs 8 constraints.

Result: We pay 65.5k constraints once and then every 128-bit range
checks costs only 8 constraints instead of 128!

Why we should care?
000@0000

IHlustration

Let us illustrate this visually for a 16-bit range check over x!

X = |X0|X1|X2|X3]|Xa|X5]|X6|X7]|X8|X0 |X10|X11|X12|X13|X14|X15

16 constraints

X0 X1 X2 X3

4 constraints 4+ one-time 2* commitment

Example: 10000 such range checks would cost 16 x 10000 = 160k
constraints for a regular R1CS while 2% + 4 x 10000 = 40k
constraints over ZK system with lookups.

Why we should care?
00000000

Applications

e Wrappings of non-native ZKP verifications: e.g., zk-STARKSs,
sumcheck-based approaches.

e Non-native field arithmetic: e.g., optimized ECDSA verification for
Rarimo passport verification.

e And surely, zero-knowledge Machine Learning — Bionetta.

Framework Metric Model 1 Model2 Model 3 Model4 Model 5 Model 6 | ResNet MobileNet
Constraints # 68.4K 66.7K 106.8K 126.8K 108.4K 187.7K | 1.03M 2.50M
Bionetta Proof Size (KB) 1.20 1.20 1.20 1.20 1.20 1.20 1.20 120
(UltraGroth) PK (MB) 48.40 50.60 80.60 106.30 81.90 156.20 | 0.95GB 1.90GB
VK (KB) 3.78 3.79 3.78 3.78 3.78 3.78 4.05 4.20
Prove (s) 0.57 0.73 0.74 1.08 0.89 1.79 6.27 1522
Verify (s) 0.006 0.005 0.005 0.006 0.006 0.005 0.006 0.006
Constraints # 29.0K 59K 5224K 7794K 5430K 1.56M | 12.01M 31.78M
Bionetta Proof Size (KB) 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
(Groth16) PK (MB) 21.30 1020 39620 560.20 409.30 1.2GB |~9.0GB ~23.8GB
VK (KB) 3.65 3.65 3.65 3.65 3.65 3.65 ~4.0 ~4.0
Prove (s) 0.12 0.27 2.19 220 222 472 ~180 ~480
Verify (s) 0.006 0.006 0.006 0.006 0.006 0.005 | ~0.005 ~0.006

/'

Up to x12.7 boost in # of constraints!

Why we should care?
00000000

How to actually implement?

Surprising result: if the circuit consists of L range-checks, each
costing b constraints, using lookup protocol, you can reduce O(n)
constraints (n = Lb) down to O(n/ log n).

Key question: how do we implement it in Groth16? Since PlonK
and SumCheck already have them! (see plookup-+logup).

Theorem (Some stuff from ZKDL Camp)

The inclusion check {z;}icn € {ti}icy) is satisfied if and only if
there exists the set of multiplicities {j;}cy,) where
wi = #{j € [n] : zi = t;} such that for v s F:

3 N K
i€[n] Y2 i€[v] g

High-level idea: We can: (1) compute {1 }c[, off-circuit, (2) write
circuit in n + 2v constraints, given 7y signal is passed randomly.

Why we should care?
00000000

Circom-like Implementation

© 0 N Uk W N

T S e R i i
© © W N U W N RO

signal input t[M]; // The lookup table
signal random input gamma; // Random challenge value
signal input z[N]; // The array of values to check

var sum_z, sum_t = 0;
for (var i = 0; i < N; i++) {
inv_z[i] <== 1 / (z[i] + gamma);
sum_z += inv_z[il; // Compute the left-hand side

for (var j = 0; j < M; j++) {
mul[j] <-- 0; // Compute the multiplicities off-circuit
for (var k = 0; k < N; k++) {
mul[j] += (t[j] == z[kl);
}
inv_t[i] <== mu[j] / (¢[j] + gamma);
sum_t += int_v[il; // Compute the right-hand side

sum_z === sum_t; // Check both sides are equal

Why we should care?
0000000@

Problem

1 signal input t[M]; // The lookup table

2 signal random input gamma; // Random challenge value
3 signal input z[N]; // The array of values to check
4

5 var sum_z, sum_t = 0;

6 for (var i = 0; i < N; i++) {

7 inv_z[i] <== 1 / (z[i] + gamma);

8 sum_z += inv_z[il; // Compute the left-hand side
9 }

10

11 for (var j = 0; j < M; j++) {

12 mul[j] <-- 0; // Compute the multiplicities off-circuit
13 for (var k = 0; k < N; k++) {

14 mu[j] += (t[j] == z[k]);

15 }

16 inv_t[i] <== mul[j] / (t[j] + gamma);

17 sum_t += int_t[il; // Compute the right-hand side
18 }

19

20 sum_z === sum_t; // Check both sides are equal

UltraGroth Explained
©000000

UltraGroth Explained

UltraGroth Explained
0®00000

Some Historical Notes

e First paper on this problem is “MIRAGE: Succinct Arguments for
Randomized Algorithms with Applications to Universal
zk-SNARKS", published in 2020.

e Unaware of this protocol, in 2023 Lev Soukhanov published the
post on UltraGroth, where he invented multi-round MIRAGE.

e Likely, unaware of Lev Soukhanov's blog, Alex Ozdemir, Evan
Laufer, Dan Boneh published “Volatile and persistent memory for
zkSNARKSs via algebraic interactive proofs” paper in 2025.

e Well... Their construction, called MIRAGE+, is exactly an
UltraGroth, published back in 2023.

One important consequence

The protocol is safe. It is sound and zero-knowledge! And it is now
proven in three different independent papers.

UltraGroth Explained
fleY Yololete)

UltraGroth Performance

Now, let us recap the Groth16 performance over the circuit of size
n and statement size £.

e Prover work: MSM of size O(n) over G; and Go.

e Proof size: 2G1 + Go.

e Verifier work: 3 pairings + O(¢) Gy exps.

UltraGroth performance in turn:

e Prover work: MSM of size O(n/log n) over G1 and Go.
e Proof size: 3G; + G2 (additional 64 bytes).

e Verifier work: 4 pairings + O(¢) Gy exps + 1 hashing.

UltraGroth Overall Idea

Problem: Compared to PlonK or SumCheck, Grothl6 itself is not
derived from the interactive protocol (via Fiat-Shamir).

Recap: Proof in Grothl6 consists of three points gla(T), glc(T), gf(T):

a(X)=a+ > zli(X)+rs, bX)=p+ > zr(X)+sd,
i€[n] i€[n]

i€y

c(X) =671 (Z zi¢i(X) + h(X)t(X)) + a(X)s 4+ b(X)r — rsd.

The verification equation is:

e(ma,m8) = e(gl, &) - e(el ™, &]) - e(mc,).

for ma = gf(T), e = glc(T), g = g2b(T), i(X) is a polynomial
derived from the public statement.

UltraGroth Explained
000000

UltraGroth Overall Idea
e Do not touch a(X) and b(X).

e Split R1CS into two rounds: round 0 computes the circuit without
lookup check, round 1 imposes lookup check.

e Split ¢(X) into ¢p(X) and c1(X).
e ¢p(X) is derived from round 0's witness.

e Form point 7r§_9> — ng(T)

and sample randomness v < ’}-[(77<CO>).
e Compute witness for round I using -y, form ¢;(X) and thus
(1 c1(7)
compute 7" < g7 .

e Output proof as m (7rA,7r<Co>, 7T<Cl>, TB).

The verification equation is:

(1) (

[0 1
e(ramg) = e(gl',gr) - e(gl ™. g0) - e(w), g2) - e(w, &)

Note: This construction can be easily generalized for d > 1 rounds.

UltraGroth Explained
0000080

Our Contribution

e Implemented a single-round UltraGroth (essentially, a Mirage
protocol). Credits to Artem Sdobnov, Vitalii Volovyk, Yevhenii
Sekhin, and lllia Dovgopoly.

o Forked rapidsnark.

o Forked snarkjs for witness export/verify functions and
smart-contract autogeneration.

o Thanks to Ivan Lele, we even have a Swift SDK for that!

e Proved completeness, soundness, and zero-knowledge for general
d-round UltraGroth. Formalized everything properly.

e Applied UltraGroth to Bionetta and obtained incredible results.

Any Questions?

v

/\N

& distributedlab.com
Q) github.com/rarimo/ultragroth

https://distributedlab.com/
https://github.com/rarimo/ultragroth

	Why we should care?
	UltraGroth Explained

