
Why we should care? UltraGroth Explained

UltraGroth: Interactive Groth16
August 29, 2025

Dmytro Zakharov
Distributed Lab
� distributedlab.com/
§ github.com/rarimo/ultragroth

https://distributedlab.com/
https://github.com/rarimo/ultragroth


Why we should care? UltraGroth Explained

Why we should care?



Why we should care? UltraGroth Explained

Range Checks

Problem
Write a circuit that checks whether x is a 128-bit integer.

Current R1CS (and, consequently, Circom’s) approach is to conduct
the following steps:

• Find bit decomposition of x off-circuit: say, x =
∑127

i=0 xi2
i .

• Check that xi ∈ {0, 1}: impose 128 constraints xi (1− xi ) = 0.

Result: 128 constraints per 128-bit range check.

Question
Suppose one needs to conduct 10000 such range checks. How many
constraints does one need to implement this?

Using quite unsophisticated math, 128× 10000 = 1.28mln.



Why we should care? UltraGroth Explained

Better range checks

Using lookup checks, we can implement the same logic in just
≈ 100k constraints! Here is how.

Assumption. Assume we can check whether the given signal s is
the w -bit integer in a single constraint. But this requires a one-time
cost of 2w constraints. How does it help us?

Suppose we use w := 16. Then, our algorithm proceeds as follows:

• We pay 216 ≈ 65.5k for a one-time commitment.

• We find w -width decomposition of x : say, x =
∑7

i=0 xi2
wi .

• We check whether xi is a 16-bit integer. Since we have 8 chunks,
this costs 8 constraints.

Result: We pay 65.5k constraints once and then every 128-bit range
checks costs only 8 constraints instead of 128!



Why we should care? UltraGroth Explained

Illustration

Let us illustrate this visually for a 16-bit range check over x!

x = x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

16 constraints

x =

x0 x1 x2 x3

4 constraints + one-time 24 commitment

Example: 10000 such range checks would cost 16× 10000 = 160k
constraints for a regular R1CS while 24 + 4× 10000 ≈ 40k
constraints over ZK system with lookups.



Why we should care? UltraGroth Explained

Applications
• Wrappings of non-native ZKP verifications: e.g., zk-STARKs,

sumcheck-based approaches.

• Non-native field arithmetic: e.g., optimized ECDSA verification for
Rarimo passport verification.

• And surely, zero-knowledge Machine Learning — Bionetta.



Why we should care? UltraGroth Explained

How to actually implement?
Surprising result: if the circuit consists of L range-checks, each
costing b constraints, using lookup protocol, you can reduce O(n)
constraints (n = Lb) down to O(n/ log n).

Key question: how do we implement it in Groth16? Since PlonK
and SumCheck already have them! (see plookup+logup).

Theorem (Some stuff from ZKDL Camp)

The inclusion check {zi}i∈[n] ⊆ {ti}i∈[v ] is satisfied if and only if
there exists the set of multiplicities {µi}i∈[v ] where
µi = #{j ∈ [n] : zj = ti} such that for γ ←$ F:∑

i∈[n]

1
γ + zi

=
∑
i∈[v ]

µi

γ + ti

High-level idea: We can: (1) compute {µi}i∈[v ] off-circuit, (2) write
circuit in n + 2v constraints, given γ signal is passed randomly.



Why we should care? UltraGroth Explained

Circom-like Implementation

1 signal input t[M]; // The lookup table
2 signal random input gamma; // Random challenge value
3 signal input z[N]; // The array of values to check
4

5 var sum_z, sum_t = 0;
6 for (var i = 0; i < N; i++) {
7 inv_z[i] <== 1 / (z[i] + gamma);
8 sum_z += inv_z[i]; // Compute the left-hand side
9 }

10

11 for (var j = 0; j < M; j++) {
12 mu[j] <-- 0; // Compute the multiplicities off-circuit
13 for (var k = 0; k < N; k++) {
14 mu[j] += (t[j] == z[k]);
15 }
16 inv_t[i] <== mu[j] / (t[j] + gamma);
17 sum_t += int_v[i]; // Compute the right-hand side
18 }
19

20 sum_z === sum_t; // Check both sides are equal



Why we should care? UltraGroth Explained

Problem

1 signal input t[M]; // The lookup table
2 signal random input gamma; // Random challenge value
3 signal input z[N]; // The array of values to check
4

5 var sum_z, sum_t = 0;
6 for (var i = 0; i < N; i++) {
7 inv_z[i] <== 1 / (z[i] + gamma);
8 sum_z += inv_z[i]; // Compute the left-hand side
9 }

10

11 for (var j = 0; j < M; j++) {
12 mu[j] <-- 0; // Compute the multiplicities off-circuit
13 for (var k = 0; k < N; k++) {
14 mu[j] += (t[j] == z[k]);
15 }
16 inv_t[i] <== mu[j] / (t[j] + gamma);
17 sum_t += int_t[i]; // Compute the right-hand side
18 }
19

20 sum_z === sum_t; // Check both sides are equal



Why we should care? UltraGroth Explained

UltraGroth Explained



Why we should care? UltraGroth Explained

Some Historical Notes

• First paper on this problem is “MIRAGE: Succinct Arguments for
Randomized Algorithms with Applications to Universal
zk-SNARKs”, published in 2020.

• Unaware of this protocol, in 2023 Lev Soukhanov published the
post on UltraGroth, where he invented multi-round MIRAGE.

• Likely, unaware of Lev Soukhanov’s blog, Alex Ozdemir, Evan
Laufer, Dan Boneh published “Volatile and persistent memory for
zkSNARKs via algebraic interactive proofs” paper in 2025.

• Well... Their construction, called MIRAGE+, is exactly an
UltraGroth, published back in 2023.

One important consequence
The protocol is safe. It is sound and zero-knowledge! And it is now
proven in three different independent papers.



Why we should care? UltraGroth Explained

UltraGroth Performance

Now, let us recap the Groth16 performance over the circuit of size
n and statement size ℓ.

• Prover work: MSM of size O(n) over G1 and G2.

• Proof size: 2G1 +G2.

• Verifier work: 3 pairings + O(ℓ) G1 exps.

UltraGroth performance in turn:

• Prover work: MSM of size O(n/ log n) over G1 and G2.

• Proof size: 3G1 +G2 (additional 64 bytes).

• Verifier work: 4 pairings + O(ℓ) G1 exps + 1 hashing.



Why we should care? UltraGroth Explained

UltraGroth Overall Idea
Problem: Compared to PlonK or SumCheck, Groth16 itself is not
derived from the interactive protocol (via Fiat-Shamir).

Recap: Proof in Groth16 consists of three points ga(τ)
1 , g c(τ)

1 , gb(τ)
2 :

a(X ) = α+
∑
i∈[n]

ziℓi (X ) + rδ, b(X ) = β +
∑
i∈[n]

zi ri (X ) + sδ,

c(X ) = δ−1

∑
i∈IW

ziζi (X ) + h(X )t(X )

+ a(X )s + b(X )r − rsδ.

The verification equation is:

e(πA, πB) = e(gα
1 , g

β
2 ) · e(g

i(τ)
1 , gγ

2 ) · e(πC , g
δ
2 ).

for πA = g
a(τ)
1 , πC = g

c(τ)
1 , πB = g

b(τ)
2 , i(X ) is a polynomial

derived from the public statement.



Why we should care? UltraGroth Explained

UltraGroth Overall Idea
• Do not touch a(X ) and b(X ).

• Split R1CS into two rounds: round 0 computes the circuit without
lookup check, round 1 imposes lookup check.

• Split c(X ) into c0(X ) and c1(X ).

• c0(X ) is derived from round 0 ’s witness.

• Form point π⟨0⟩
C ← g

c0(τ)
1 and sample randomness γ ← H(π⟨0⟩

C ).

• Compute witness for round 1 using γ, form c1(X ) and thus
compute π

⟨1⟩
C ← g

c1(τ)
1 .

• Output proof as π ← (πA, π
⟨0⟩
C , π

⟨1⟩
C , πB).

The verification equation is:

e(πA, πB) = e(gα
1 , g

β
2 ) · e(g

i(τ)
1 , gγ

2 ) · e(π
⟨0⟩
C , g δ0

2 ) · e(π⟨1⟩
C , g δ

2 ).

Note: This construction can be easily generalized for d > 1 rounds.



Why we should care? UltraGroth Explained

Our Contribution

• Implemented a single-round UltraGroth (essentially, a Mirage
protocol). Credits to Artem Sdobnov, Vitalii Volovyk, Yevhenii
Sekhin, and Illia Dovgopoly.
◦ Forked rapidsnark.
◦ Forked snarkjs for witness export/verify functions and

smart-contract autogeneration.
◦ Thanks to Ivan Lele, we even have a Swift SDK for that!

• Proved completeness, soundness, and zero-knowledge for general
d-round UltraGroth. Formalized everything properly.

• Applied UltraGroth to Bionetta and obtained incredible results.



Any Questions?

♥

� distributedlab.com
§ github.com/rarimo/ultragroth

https://distributedlab.com/
https://github.com/rarimo/ultragroth

	Why we should care?
	UltraGroth Explained

