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What will we learn today?

How to define the security formally.

How to read. . . This. . .

Figure: This is not that hard as it seems. Figure from “Bulletproofs: Short Proofs
for Confidential Transactions and More”
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Quick Recap
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Quick Recap

1 We know how to read formal statements, like

(∀n ∈ N) (∃k ∈ Z) : {n = 2k + 1 ∨ n = 2k}

2 Group G is a set with a binary operation that satisfies certain rules.
In this lecture, we will use the multiplicative notation: for example,
gα means g multiplied by itself α times.

3 Probability of event E is denoted by Pr[E ] – we will need it further.
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Security Analysis
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Introducing the Cipher: a bit of Formalism

We will consider an example of a cipher to demonstrate the notion of
security.
Let us introduce three sets:

K – a set of all possible keys.

M – a set of all possible messages. For example,M = {0, 1}n – all
binary strings of length n.

C – a set of all possible ciphertexts.

The cipher is defined over a tuple (K,M, C).

Tiny Note

Cryptography is a very formalized field, but everything considered is
well-known to you.

Distributed Lab Mathematics II 7 / 52 July 25, 2024 7 / 52



Introducing the Cipher

Definition

Cipher scheme E = (E ,D) over the space (K,M, C) consists of two
efficiently computable methods:

E : K ×M→ C – encryption method, that based on the provided
message m ∈M and key k ∈ K outputs the cipher c = E (k,m) ∈ C.
D : K × C →M – decryption method, that based on the provided
cipher c ∈ C and key k ∈ K outputs the message m = D(k , c) ∈M.

We require the correctness:

∀k ∈ K, ∀m ∈M : D(k ,E (k ,m)) = m.

Question

What else cipher must have to be practical?
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Defining Security

Typically, the security is defined as a game between the adversary (A) and
the challenger (Ch).

Interaction

Prediction

Figure: Challenger Ch follows a straightforward protocol, while the adversary A
might take any strategy to win the game.
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Semantic Security: Bit Guessing Game

Challenger Ch Adversary A

Send m0,m1 ∈M, |m0| = |m1|

b
R←− {0, 1}
k

R←− K
c ← E (k ,mb)

Send cipher c

Guess bit b̂ ∈ {0, 1}
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Semantic Security: Bit Guessing Game

Question #1

Suppose our cipher is perfect. What is the probability that the adversary
guesses the bit b correctly? (that is, b = b̂)

Definition

Advantage in the Cipher Big Guessing Game of the adversary A given
cipher E is defined as:

SSadv[E ,A] :=
∣∣∣∣Pr[b̂ = b]− 1

2

∣∣∣∣
Definition

The cipher E is called semantically secure if for any adversary A the
advantage SSadv[E ,A] is negligible.
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Advantage

Question #2

If adversary can guess the bit with probability 0.000000001, is the cipher
semantically secure?

Question #3

If adversary has the advantage 0.0001, is the cipher semantically secure?

Note

Advantage is just a measure of how many information is leaked to the
adversary. The smaller the advantage, the better the cryptographic
system. Formally, we want advantage to be negligible.

But what does it mean to be negligible?
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Neglibility

In practice, neglibible means below 2−128 (called 128 bits of security).
In theory, however. . .

Definition

Security parameter, denoted by λ ∈ N, is just a variable that measures
the input size of some computational program.

Example

The security of the group of points on the elliptic curve (say, G) is defined
by the number of bits in the order of the group. So if |G| is 256 bits long,
then we can define λ = 256.
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Neglible Functions

Now, the probability of advesary winning the game depends on λ and we
want this dependence to decrease rapidly.

Definition

A function f : N→ R is called negligible if for all c ∈ R>0 there exists
nc ∈ N such that for any n ≥ nc we have |f (n)| < 1/nc .

The alternative definition, which is problably easier to interpret, is the
following.

Theorem

A function f : N→ R is negligible if and only if for any c ∈ R>0, we have

lim
n→∞

f (n)nc = 0
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Neglible Functions Examples

Example

The function f (λ) = 2−λ is negligible since for any c ∈ R>0 we have
limλ→∞ 2−λλc = 0.
The function g(λ) = 1

λ! is also negligible for similar reasons.

Example

The function h(λ) = 1
λ is not negligible since for c = 1 we have

lim
λ→∞

1

λ
× λ = 1 ̸= 0

Question

Is the function u(λ) = λ−10000 negligible?
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Discrete Logarithm Problem (DL)

Definition

Assume that G is a cyclic group of prime order r generated by g ∈ G.
Define the following game:

1 Both challenger Ch and adversary A take a description G as an input:
order r and generator g ∈ G.

2 Ch computes α
R←− Zr , u ← gα and sends u ∈ G to A.

3 The adversary A outputs α̂ ∈ Zr .

We define A’s advantage in solving the discrete logarithm problem in
G, denoted as DLadv[A,G], as the probability that α̂ = α.

Definition

The Discrete Logarithm Assumption holds in the group G if for any
efficient adversary A the advantage DLadv[A,G] ≤ negl(λ).
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Computational Diffie-Hellman Assumption (CDH)

Definition

Let G be a cyclic group of prime order r generated by g ∈ G. Define the
following game:

1 Ch computes α, β
R←− Zr , u ← gα, v ← gβ,w ← gαβ and sends

u, v ∈ G to A.
2 The adversary A outputs ŵ ∈ G.

We define A’s advantage in solving the computational Diffie-Hellman
problem in G, denoted as CDHadv[A,G], as the probability that ŵ = w .

Definition

The Computational Diffie-Hellman Assumption holds in the group G if
for any efficient adversary A the advantage CDHadv[A,G] is negligible.
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Decisional Diffie-Hellman Assumption (DDH)

Definition

Let G be a cyclic group of prime order r generated by g ∈ G. Define the
following game:

1 Ch computes α, β, γ
R←− Zr , u ← gα, v ← gβ,w0 ← gαβ,w1 ← gγ .

Then, Ch flips a coin b
R←− {0, 1} and sends (u, v ,wb) to A.

2 The adversary A outputs the predicted bit b̂ ∈ {0, 1}.
We define A’s advantage in solving the Decisional Diffie-Hellman
problem in G, denoted as DDHadv[A,G], as

DDHadv[A,G] :=

∣∣∣∣Pr[b = b̂]− 1

2

∣∣∣∣
Let us show when DDH does not hold!
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Even-ordered Cyclic Group

Theorem

Suppose that G is a cyclic group of an even order. Then, the Decision
Diffie-Hellman Assumption does not hold in G. In fact, there is an efficient
adversary A with an advantage 1/4.

Idea of proof. We first prove the following statement:

Lemma

Based on u = gα ∈ G, it is possible to determine the parity of α.

Lemma proof. Notice that if α = 2α′, then

un = gαn = g2α′n = (g2n)α
′
= 1α

′
= 1

Therefore, if u = gα, v = gβ,w = gγ , adversary knows the parity of
α, β, γ. He then checks if parity of αβ equals parity of γ.
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Polynomials
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Definition

Definition

A polynomial f (x) is a function of the form

p(x) = c0 + c1x + c2x
2 + · · ·+ cnx

n =
n∑

k=0

ckx
k ,

where c0, c1, . . . , cn are coefficients of the polynomial.

Definition

A set of polynomials depending on x with coefficients in a field F is
denoted as F[x ], that is

F[x ] =

{
p(x) =

n∑
k=0

ckx
k : ck ∈ F, k = 0, . . . , n

}
.
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Examples of Polynomials

Example

Consider the finite field F3. Then, some examples of polynomials from
F3[x ] are listed below:

1 p(x) = 1 + x + 2x2.

2 q(x) = 1 + x2 + x3.

3 r(x) = 2x3.

If we were to evaluate these polynomials at 1 ∈ F3, we would get:

1 p(1) = 1 + 1 + 2 · 1 mod 3 = 1.

2 q(1) = 1 + 1 + 1 mod 3 = 0.

3 r(1) = 2 · 1 = 2.
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More about polynomials

Definition

The degree of a polynomial p(x) = c0 + c1x + c2x
2 + . . . is the largest

k ∈ Z≥0 such that ck ̸= 0. We denote the degree of a polynomial as deg p.
We also denote by F(≤m)[x ] a set of polynomials of degree at most m.

Example

The degree of the polynomial p(x) = 1+2x +3x2 is 2, so p(x) ∈ F(≤2)
3 [x ].

Theorem

For any two polynomials p, q ∈ F[x ] and n = deg p,m = deg q, the
following two statements are true:

1 deg(pq) = n +m.

2 deg(p + q) = max{n,m} if n ̸= m and deg(p + q) ≤ m for m = n.
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Roots of Polynomials

Definition

Let p(x) ∈ F[x ] be a polynomial of degree deg p ≥ 1. A field element
x0 ∈ F is called a root of p(x) if p(x0) = 0.

Example

Consider the polynomial p(x) = 1 + x + x2 ∈ F3[x ]. Then, x0 = 1 is a
root of p(x) since p(x0) = 1 + 1 + 1 mod 3 = 0.

Theorem

Let p(x) ∈ F[x ], deg p ≥ 1. Then, x0 ∈ F is a root of p(x) if and only if
there exists a polynomial q(x) (with deg q = n − 1) such that

p(x) = (x − x0)q(x)
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Polynomial Division

Theorem

Given f , g ∈ F[x ] with g ̸= 0, there are unique polynomials p, q ∈ F[x ]
such that

f = q · g + r , 0 ≤ deg r < deg g

Example

Consider f (x) = x3 + 2 and g(x) = x + 1 over R. Then, we can write
f (x) = (x2 − x + 1)g(x) + 1, so the remainder of the division is r ≡ 1.
Typically, we denote this as:

f div g = x2 − x + 1, f mod g = 1.

The notation is pretty similar to one used in integer division.
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Polynomial Divisibility

Definition

A polynomial f (x) ∈ F[x ] is called divisible by g(x) ∈ F[x ] (or, g divides
f , written as g | f ) if there exists a polynomial h(x) ∈ F[x ] such that
f = gh.

Theorem

If x0 ∈ F is a root of p(x) ∈ F[x ], then (x − x0) | p(x).

Definition

A polynomial f (x) ∈ F[x ] is said to be irreducible in F if there are no
polynomials g , h ∈ F[x ] both of degree more than 1 such that f = gh.
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Polynomial Divisibility

Example

A polynomial f (x) = x2 + 16 is irreducible in R. Also f (x) = x2 − 2 is
irreducible over Q, yet it is reducible over R: f (x) = (x −

√
2)(x +

√
2).

Example

There are no polynomials over complex numbers C with degree more than
2 that are irreducible. This follows from the fundamental theorem of
algebra. For example, x2 + 16 = (x − 4i)(x + 4i).
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Interpolation

Question

How can we define the polynomial?

The most obvious way is to specify coefficients (c0, c1, . . . , cn). Can we do
it in a different way?

Theorem

Given n + 1 distinct points (x0, y0), . . . , (xn, yn), there exists a unique
polynomial p(x) of degree at most n such that p(xi ) = yi for all
i = 0, . . . , n.
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Illustration with two points

Figure: 2 points on the plane uniquely define the polynomial of degree 1 (linear
function).
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Illustration with five points

Figure: 5 points on the plane uniquely define the polynomial of degree 4.
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Illustration with three points

C

A

B

Figure: 2 points are not enough to define the quadratic polynomial
(c2x

2 + c1x + c0).

Distributed Lab Mathematics II 31 / 52 July 25, 2024 31 / 52



Lagrange Interpolation

One of the ways to interpolate the polynomial is to use the Lagrange
interpolation.

Theorem

Given n + 1 distinct points (x0, y0), . . . , (xn, yn), the polynomial p(x) that
passes through these points is given by

p(x) =
n∑

i=0

yiℓi (x), ℓi (x) =
n∏

i=0,j ̸=i

x − xj
xi − xj

.
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Application: Shamir Secret Sharing

Motivation

How to share a secret α among n people in such a way that any t of them
can reconstruct the secret, but any t − 1 cannot?

Definition

Secret Sharing scheme is a pair of efficient algorithms (Gen,Comb)
which work as follows:

Gen(α, t, n): probabilistic sharing algorithm that yields n shards
(α1, . . . , αt) for which t shards are needed to reconstruct the secret α.

Comb(I, {αi}i∈I): deterministic reconstruction algorithm that
reconstructs the secret α from the shards I ⊂ {1, . . . , n} of size t.
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Shamir’s Protocol

Note

Here, we require the correctness: for every α ∈ F , for every possible
output (α1, . . . , αn)← Gen(α, t, n), and any t-size subset I of {1, . . . , n}
we have

Comb(I, {αi}i∈I) = α. (1)

Definition

Now, Shamir’s protocol works as follows: F = Fq and

Gen(α, k, n): choose random k1, . . . , kt−1
R←− Fq and define the

polynomial

ω(x) := α+ k1x + k2x
2 + · · ·+ kt−1x

t−1 ∈ F≤(t−1)
q [x ], (2)

and then compute αi ← ω(i) ∈ Fq, i = 1, . . . , n.
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Shamir’s Protocol

Definition

Comb(I, {αi}i∈I): interpolate the polynomial ω(x) using the
Lagrange interpolation and output ω(0) = α.

C

A

B

Figure: There are infinitely many quadratic polynomials passing through two blue
points (gray dashed lines). However, knowing the red point allows us to uniquely
determine the polynomial and thus get its value at 0.
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Reed-Solomon Codes

Definition

Reed-Solomon codes is an error-correcting algorithm based on
polynomials. It allows to restore lost or corrupted data, implement
threshold secret sharing and it is used in some ZK protocols.

Figure: Polynomial with degree n can be uniquely defined using (n + 1) unique
points. Defining more points on the same polynomial adds a redundancy, which
can be used to restore the polynomial even if some points are missing.
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Reed-Solomon Codes

The error-correcting ability of a Reed-Solomon code is n − k , the measure
of redundancy in the block. If the locations of the error symbols are not
known in advance, then a Reed-Solomon code can correct up to n − k/2
erroneous symbols.

Figure: Polynomial with degree n can be uniquely defined using (n + 1) unique
points. Defining more points on the same polynomial adds a redundancy, which
can be used to restore the polynomial even if some points are missing.
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Schwartz-Zippel Lemma

Definition

Let F be a field. Let f (x1, x2, ..., xn) be a polynomial of total degree d .
Suppose that f is not the zero polynomial. Let S be a finite subset of F.
Let r1, r2, ...rn be chosen at random uniformly and independently from S .
Then the probability that f (r1, r2, ..., rn) = 0 is ≤ d

|S | .

Figure: Schwartz-Zippel Lemma. Polynomial
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Schwartz-Zippel Lemma

Definition

Let F = F3, f (x) = x2 − 5x + 6, S = F , r
R←− F3. Schwartz-Zippel lemma

says that the probability that f (r) = 0 is ≤ 2
3 .

Figure: Schwartz-Zippel Lemma. Polynomial
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Schwartz-Zippel Lemma

Given two polynomials P,Q with degree d in a field Fp, for r
R←− F3:

Pr[P(r) == Q(r)] ≤ d
p . For large fields, where d

p is negligible, this
property allows to succinctly check the equality of polynomials.

Proof.

Let H(x) := P(x)− Q(x). Than for each P(x) = Q(x)→ H(x) = 0.

Applying Schwartz-Zippel lemma, the probability of H(x) = 0 for x
R←− F

is ≤ d
|S | .
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Basic Number Theory
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Primes

Primes are often used when doing almost any cryptographic computation.
A prime number is a natural number (N) that is not a product of two
smaller natural number. In other words, the prime number is divisible only
by itself and 1. The first primes are: 2, 3, 5, 7, 11...
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Deterministic prime tests

A primality test is deterministic if it outputs True when the number is a
prime and False when the input is composite with probability 1. Here is
an example implementation in Rust:
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Probabilistic prime tests

A primality test is probabilistic if it outputs True when the number is a
prime and False when the input is composite with probability less than 1.
Fermat Primality and Miller-Rabin Primality Tests are examples of
probabilistic primality test.

Theorem

Let p be a prime number and a be an integer not divisible by p. Then
ap−1 − 1 is always divisible by p: ap−1 ≡ 1 (mod p)

Distributed Lab Mathematics II 44 / 52 July 25, 2024 44 / 52



Probabilistic prime tests

The key idea behind the Fermat Primality Test is that if for some a not
divisible by n we have an−1 ̸≡ 1 (mod n) then n is definitely NOT prime.
Athough, false positives are possible.

For example, consider n = 15 and a = 4.
415−1 ≡ 1 (mod 15), but n = 15 = 3 · 5 is composite.

Solution: a is picked many times. The probability that a composite

number is mistakenly called prime for k iterations is 2−k =
1

2k
.
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Probabilistic prime tests

There exists a problem with such an algorithm in the form of Carmichael
numbers, which are numbers that are Fermat pseudoprime to all bases.
Asymptotic complexity O(log3 n).
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Greatest Common Divisor

Greatest common divisor (GCD) of two or more integers, which are not all
zero, is the largest positive integer that divides each of the integers.

Example

gcd(8, 12) = 4, gcd(3, 15) = 3, gcd(15, 10) = 5.
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Computing GCD using Euclid’s algorithm.

The is based on the fact that, given two positive integers a and b such
that a > b, the common divisors of a and b are the same as the common
divisors of a− b and b.
It can be observed, that it can be further optimized, by using a (mod b),
instead of a− b.
For example, gcd(26, 8) = gcd(18, 8) = gcd(10, 8) = gcd(2, 8) can be
optimized to gcd(26, 8) = gcd(26 (mod 8), 8) => gcd(2, 8)
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Computing GCD using Euclid’s algorithm.

Algorithm can be implemented using recursion. Base of the recursion is
gcd(a, 0) = a. Provided algorithm work with O(log(N)) asymptotic
complexity.
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Least Common Multiple

Least common multiple (LCM) of two integers a and b, is the smallest
positive integer that is divisible by both a and b.
The least common multiple can be computed from the greatest common
divisor with the formula:
lcm(a, b) = |ab|

gcd(a,b)
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Modular inverse

Modular multiplicative inverse of an integer a is an integer b such that
a · b ≡ 1 (mod m).

One of the ways to compute the modular inverse is by using Euler‘s
theorem:
aϕ(m) ≡ 1 (mod m), where ϕ is Euler’s totient function.

For prime numbers, where ϕ(m) = m − 1:
am−2 ≡ a−1 (mod m).
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Thanks for your attention!
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