Field Extensions and Elliptic Curves

Distributed Lab

August 1, 2024

Distributed Lab [Field Extensions and Elliptic Curves](#page-38-0) 1/39 August 1, 2024 1/39

←何 ▶ イヨ ▶ イヨ ▶ │

 \leftarrow \Box

Plan

- [A bit of intuition](#page-3-0)
- **•** [General Definition](#page-6-0)
- [Polynomial Fraction Rings](#page-9-0)
- **[Finite Field Extensions](#page-16-0)**

2 [Algebraic Closure](#page-20-0)

o [Definition](#page-21-0)

3 [Elliptic Curve](#page-24-0)

- **•** [Definition](#page-25-0)
- **[Group Structure](#page-29-0)**

 \leftarrow \Box

 \rightarrow \equiv \rightarrow

∍

[Field Extensions](#page-2-0)

画

 $\mathbb D$ vs $\mathbb R$

Question $#1$

What is the difference between rational numbers $\mathbb Q$ and real numbers $\mathbb R$?

Definition

Rational numbers Q are defined as the set $\{\frac{n}{n}\}$ $\frac{n}{m}: n \in \mathbb{Z}, m \in \mathbb{N}$.

Question $#2$

Why cannot we say $m \in \mathbb{Z}$, similarly to n?

Theorem

√ 2 is not a rational number. Neither is π and e. But they are reals.

Conclusion

 $\mathbb R$ is sort of "an extended version of $\mathbb Q$ ".

What about \mathbb{R}^7

Rethorical Question

Can we extend \mathbb{R}^7

Yes — just use complex numbers $\mathbb{C}!$

Definition

Complex numbers $\mathbb C$ is defined as the set of $x + iy$ where $i^2 = -1$.

Definition

Complex numbers $\mathbb C$ are defined as the set of pairs $(x, y) \in \mathbb R^2$ where addition is defined as $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$, and the multiplication is:

$$
(x_1,y_1)\cdot (x_2,y_2)=(x_1x_2-y_1y_2,x_1y_2+x_2y_1).
$$

イロト イ押ト イヨト イヨトー

A bit about complex numbers

Theorem

 $(\mathbb{C}, +, \times)$ is a field.

Example

Let us see how arithmetic is performed in C.

- Addition: $(2+3i) + (4+5i) = 6+8i$.
- **Multiplication:** $(1 + i)(2 + i) = 2 + 3i + i^2 = 1 + 3i$.

Division:

$$
\frac{2+i}{1+i} = \frac{(2+i)(1-i)}{(1+i)(1-i)} = \frac{2-i-i^2}{1-i^2} = \frac{3-i}{2} = \frac{3}{2} - \frac{1}{2}i
$$

Question

What is $(1 + i) + (2 + i)$? $i(1 + i)$? $1/i$?

Э×

4 同下

 \overline{C}

Field Extension

$Conclusion + Question$

 $\mathbb C$ is sort of "an extended version of $\mathbb R$ ". Thus, we have

```
\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}, where \mathbb{Q}, \mathbb{R}, \mathbb{C} are fields
```
So we have two questions in mind:

- Is there any mathematical term for this?
- Can we go further?

Definition

Let F be a field. A field K is called an extension of F if $\mathbb{F} \subset \mathbb{K}$ which we denote as K/F .

Example \mathbb{C}/\mathbb{R} is a field extension. So is \mathbb{R}/\mathbb{Q} . Distributed Lab [Field Extensions and Elliptic Curves](#page-0-0) 7 / 39 August 1, 2024 7 / 39

Q(√ $\overline{2})$ and $\mathbb{Q}(i)$

Example

Define $\mathbb{Q}(\sqrt{2})$ 2) $:=\{p+q$ $p + q\sqrt{2} : p, q \in \mathbb{Q}$. This is a field extension of \mathbb{Q} . Arithmetic over $\mathbb{Q}(\sqrt{2})$ looks like:

- Addition: $(1+2\sqrt{2}) + (3+4\sqrt{2}) = 4+6\sqrt{2}$.
- Multiplication: $(1 + 2\sqrt{2})(1 + \sqrt{2}) = 1 + 3\sqrt{2} + 2\sqrt{2}^2 = 5 + 3\sqrt{2}$.

Division:

$$
\frac{1+2\sqrt{2}}{1+\sqrt{2}} = \frac{(1+2\sqrt{2})(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}
$$

Example

Similarly, $\mathbb{Q}(i) := \{p + qi : p, q \in \mathbb{Q}\}\$ is a field extension of \mathbb{Q} .

Q(√ $(2, i)$

Example

Define $\mathbb{Q}(\sqrt{2})$ 2, i) = $\{\alpha + \beta\}$ $\sqrt{2} : \alpha, \beta \in \mathbb{Q}(i)\}$. Typicall element of $\mathbb{Q}(\sqrt{2})$ 2, i) can be written as:

$$
(a+bi)+(c+di)\sqrt{2}=a+c\sqrt{2}+b\sqrt{2}i+di\sqrt{2}
$$

Notice

Each element of $\mathbb{Q}(\sqrt{2})$ 2, $i)$ is a linear combination of $\{1,$ √ 2, i, √ $2i\}$. This is usually called a **basis**. Moreover, to denote the dimensionality of $\mathbb{Q}(\sqrt{2},i)$ over $\mathbb{Q},$ we write $[\mathbb{Q}(\sqrt{2},i):\mathbb{Q}] = 4.$

Definition "Kinda"

Consider the set P — a set of polynomials $\mathbb{R}[x]$ modulo $p(x) := x^2 + 1$.

Example

For example, 1, $5 + x$, $3x$, $1 + 2x \in \mathcal{P}$.

But what about $x^2 + 2x + 4$? We can divide by $x^2 + 1$!

$$
x^2 + 2x + 4 = (x^2 + 1) \cdot 1 + (2x + 3)
$$

So in \mathcal{P} , we have $x^2 + 2x + 4 = 2x + 3$.

 $\left\{ \left(\left| \mathbf{q} \right| \right) \in \mathbb{R} \right\} \times \left\{ \left| \mathbf{q} \right| \right\} \times \left\{ \left| \mathbf{q} \right| \right\}$

Real Polynomials modulo $x^2 + 1$

Arithmetic

Over this field, we can do arithmetic as usual.

- Addition: $(1 + x) + (2 + 3x) = 3 + 4x$.
- Multiplication: $(1+x)(2+x) = x^2 + 3x + 2 = 3x + 1$.
- **o** Inverse:

$$
\left(\frac{1+x}{2}\right)^{-1} = 1 - x
$$

Indeed,

$$
\frac{1+x}{2} \cdot (1-x) = \frac{1}{2} \cdot (1-x^2) = \frac{1}{2} (-(x^2+1)+2) = 1 \text{ (in } \mathcal{P})
$$

医毛囊 医牙囊 医心包

G.

Hold on a minute. . .

Results

\n- $$
(1 + x) + (2 + 3x) = 3 + 4x
$$
\n- $(1 + x)(2 + x) = 1 + 3x$
\n

$$
\bullet\ \left(\tfrac{1+x}{2}\right)^{-1}=1-x
$$

Same, but over C

Let us do the same, but instead of X , use i.

\n- \n
$$
(1 + i) + (2 + 3i) = 3 + 4i.
$$
\n
\n- \n
$$
(1 + i)(2 + i) = 2 + 3i + i^2 = 1 + 3i.
$$
\n
\n- \n
$$
\frac{1}{2} = \frac{2}{1+i} = \frac{2(1-i)}{(1+i)(1-i)} = 1 - i.
$$
\n
\n

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

4 0 8

÷.

Hold on a minute. . .

So, basically, P and $\mathbb C$ have the same structure! Formally, they are isomorphic: $\mathcal{P} \cong \mathbb{C}$.

Question

Could we have used $x^2 + 3$ instead of $x^2 + 1$? What about $x^2 + x + 1$?

Yes, any **irreducible** 2nd-degree polynomial $p(x)$ over $\mathbb R$ can be used. Typically, this is denoted as $\left| \mathbb{R}[x]/(p(x)) \right|$

Isomorphisms

Reminder

For two groups $(\mathbb{G}, +)$ and (\mathbb{H}, \times) we defined homomorphism to be a function $\phi : \mathbb{G} \to \mathbb{H}$ such that

$$
\phi(a+b)=\phi(a)\times\phi(b)
$$

However, we claim that $\mathbb{R}/(x^2+1) \cong \mathbb{C}$, which are fields, not groups.

Definition

A field isomorphism is a function $\phi : (\mathbb{F}, +, \times) \to (\mathbb{K}, \oplus, \otimes)$ such that

- $\phi(a + b) = \phi(a) \oplus \phi(b)$
- $\phi(a \times b) = \phi(a) \otimes \phi(b)$
- $\bullet \phi(1_{\mathbb{F}}) = 1_{\mathbb{K}}$

But for now, "congruence" essentially means "exhibit the same structure".

(□) (包)

 QQ

Theorem

Let $\mathbb F$ be a field and $\mu(x)$ — irreducible polynomial over $\mathbb F$ (**reduction polynomial**). Consider a set of polynomials over $\mathbb{F}[x]$ modulo $\mu(x) \in \mathbb{F}[x]$, formally denoted as $\mathbb{F}[x]/(\mu(x))$. Then, $\mathbb{F}[x]/(\mu(x))$ is a field.

Theorem

Let $\mathbb F$ be a field and $\mu \in \mathbb F[X]$ is an irreducible polynomial of degree n and let $\mathbb{K} := \mathbb{F}[X]/(\mu(X))$. Let $\theta \in \mathbb{K}$ be the root of μ over \mathbb{K} . Then,

$$
\mathbb{K}=\{c_0+c_1\theta+\cdots+c_{n-1}\theta^{n-1}:c_0,\ldots,c_{n-1}\in\mathbb{F}\}
$$

メタメメ きょくきょうき

Coming back to previous examples

Example

Again, consider
$$
\mathbb{Q}(\sqrt{2}) = \{q + p\sqrt{2} : p, q \in \mathbb{Q}\}\.
$$
 Then,

$$
\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x]/(x^2-2)
$$

Example

Similarly, $\mathbb{Q}(i) \cong \mathbb{Q}[x]/(x^2 + 1)$.

Example

 \overline{A} nd $\overline{\mathbb{Q}}(\sqrt{2})$ 2, i) is just a little bit more tricky. Notice that we can take

$$
p(x) := (x^2 - 2)(x^2 + 1) = x^4 - x^2 - 2
$$

So $\mathbb{Q}(\sqrt{2}, i) \cong \mathbb{Q}[x]/(x^4 - x^2 - 2)$.

 \equiv

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

Finite Field Extension

Definition

Recall that \mathbb{F}_p (prime field) is a set $\{0, 1, \ldots, p-1\}$ with arithmetic modulo p.

In many cases, we need to extend \mathbb{F}_p 2, 4, 8, 12, 24 times. For this, we use the so-called finite field extension.

Definition

Suppose p is prime and $m \geq 2$. Let $\mu \in \mathbb{F}_p[X]$ be an irreducible polynomial of degree m. Then, elements of \mathbb{F}_{p^m} are polynomials in $\mathbb{F}_p^{(\leq m)}[X]$ modulo $\mu(x)$. In other words,

$$
\mathbb{F}_{p^m}=\{c_0+c_1X+\cdots+c_{m-1}X^{m-1}:c_0,\ldots,c_{m-1}\in\mathbb{F}_p\},\
$$

where all operations are performed modulo $\mu(X)$.

イロト イ押 トイヨ トイヨト

G.

Examples

It would be convenient to build \mathbb{F}_{ρ^2} as $\mathbb{F}_\rho[i]/(i^2+1)$, but is it always possible? In other words, when $\dot{X^2}=-1$ has a solution in $\mathbb{F}_p?$

Theorem

Let p be an odd prime. Then X^2+1 is irreducible in $\mathbb{F}_p[X]$ if and only if $p \equiv 3 \pmod{4}$.

Example

Pick $p = 19$. Then $\mathbb{F}_{361} := \mathbb{F}_{19}[i]/(i^2 + 1)$. So typical elements are: $1 + 3i$, $10 + 15i$, $18 + 18i$, 5, 7i, ...

• Addition: $(1 + 10i) + (18 + 15i) = 19 + 25i = 6i$.

• Multiplication:

 $(5+6i)(6+7i) = 30 + 71i + 42i^2 = -12 + 71i = 7 + 14i.$

More Examples: Binary Extension Fields

Example

Consider the \mathbb{F}_{2^4} . Then, there are 16 elements in this set:

$$
0, 1, X, X + 1,
$$

\n
$$
X2, X2 + 1, X2 + X, X2 + X + 1,
$$

\n
$$
X3, X3 + 1, X3 + X, X3 + X + 1,
$$

\n
$$
X3 + X2, X3 + X2 + 1, X3 + X2 + X, X3 + X2 + X + 1.
$$

Set $\mu(X) := X^4 + X + 1$. Then, operations are performed in the following manner:

- Addition: $(X^3 + X^2 + 1) + (X^2 + X + 1) = X^3 + X$.
- **Multiplication:** $(X^3 + X^2 + 1) \cdot (X^2 + X + 1) = X^2 + 1$ since:
- **Inversion:** $(X^3 + X^2 + 1)^{-1} = X^2$ since $(X^3 + X^2 + 1) \cdot X^2$ mod $(X^4 + X + 1) = 1$.

More Examples: BN254

Example

Consider the BN254 scalar field, used in SNARKs:

 $p = 0$ x30644e72e131a029 \cdots a8d3c208c16d87cfd47

- Then, $\mathbb{F}_{p^2} := \mathbb{F}_p[u]/(u^2 + 1)$ since $p \equiv 3 \pmod{4}$.
- Define $\xi := 9 + u \in \mathbb{F}_{p^2}$. Then, set $\mathbb{F}_{p^6} := \mathbb{F}_{p^2}[v]/(v^3 \xi)$.
- Finally, set $\mathbb{F}_{p^{12}} := \mathbb{F}_{p^6}[w]/(w^2 v)$.

Equivalently, we can write:

$$
\mathbb{F}_{p^{12}} := \mathbb{F}_p[w]/(w^{12} - 18w^6 + 82)
$$

K個→ K ミト K ミト → ミー の Q Q →

[Algebraic Closure](#page-20-0)

イロト イ部 トイヨ トイヨト

重

Definition

Definition

A field $\mathbb F$ is called **algebraically closed** if every non-constant polynomial $p(x) \in \mathbb{F}[X]$ has a root in \mathbb{F} .

Example

 $\mathbb R$ is not algebraically closed since X^2+1 has no roots in $\mathbb R.$ However, $\mathbb C$ is algebraically closed, which follows from the fundamental theorem of algebra. Since $\mathbb C$ is a field extension of $\mathbb R$, it is also an algebraic closure of $\mathbb R$. This is commonly denoted as $\overline{\mathbb R} = \mathbb C$.

Definition

A field K is called an **algebraic closure** of F if K/F is algebraically closed. This is denoted as $\overline{\mathbb{F}} = \mathbb{K}$.

イロト イ押 トイヨ トイヨ トー

Algebraic Closure for Finite Fields

Recall that we are cryptographers, not mathematicials. So we are interested in $\overline{\mathbb{F}}_p$. So I have two news to you:

- Good news: $\overline{\mathbb{F}}_p$ exists.
- Bad news: $\overline{\mathbb{F}}_p$ is infinite.

Theorem

No finite field $\mathbb F$ is algebraically closed.

Proof. Suppose $f_1, f_2, \ldots, f_n \in \mathbb{F}$ are all elements of \mathbb{F} . Consider the following polynomial:

$$
p(x) = \prod_{i=1}^{n} (x - f_i) + 1 = (x - f_1)(x - f_2) \cdots (x - f_n) + 1.
$$

Clearly, $p(x)$ is a non-constant polynomial and has no roots in $\mathbb F$, since for any $f \in \mathbb{F}$, one has $p(f) = 1$. Ω

So what?

But what form does the $\overline{\mathbb{F}}_\rho$ have? Well, it is a union of all \mathbb{F}_{ρ^k} for $k\geq 1.$ This is formally written as:

$$
\boxed{\overline{\mathbb{F}}_{\bm\rho}=\bigcup_{\bm k\in\mathbb N}\mathbb F_{\bm\rho^{\bm k}}}
$$

Remark

But this definition is super counter-intuitive! So here how we usually interpret it. Suppose I tell you that polynomial $q(x)$ has a root in \mathbb{F}_{p} . What that means is that there exists some extension \mathbb{F}_{p^m} such that for some $\alpha \in \mathbb{F}_{p^m}$, $q(\alpha) = 0$. We do not know how large this *m* is, but we know that it exists. For that reason, $\overline{\mathbb{F}}_p$ is defined as an infinite union of all possible field extensions.

イ母 ト イヨ ト イヨ トー

[Elliptic Curve](#page-24-0)

Distributed Lab [Field Extensions and Elliptic Curves](#page-0-0) 25 / 39 August 1, 2024 25 / 39

イロト イ部 トイヨ トイヨト

 299

重

Definition

Definition

Suppose that $\mathbb K$ is a field. An **elliptic curve** E over $\mathbb K$ is defined as a set of points $(x, y) \in \mathbb{K}^2$:

$$
y^2 = x^3 + ax + b,
$$

called a **Short Weierstrass equation**, where $a, b \in \mathbb{K}$ and 4a $^3+27b^2\neq 0.$ We denote E/\mathbb{K} to denote the elliptic curve over field $\mathbb{K}.$

Definition

We say that $P=(\mathsf{x}_P,\mathsf{y}_P)\in\mathbb{A}^{2}(\mathbb{K})$ is the **affine representation** of the point on the elliptic curve E/K if it satisfies the equation $y_P^2 = x_P^3 + ax_P + b.$

メタト メミトメミト 一毛

Examples

Example

Consider $E/\mathbb{Q}: y^2 = x^3 - x + 9$. Valid affine points on E/\mathbb{Q} are, for example, $P=(0,3),$ $Q=(-1,-3)\in \mathbb{A}^{2}(\mathbb{Q}).$

More Examples

Some more examples 1 :

Real Elliptic Curves

But real elliptic curves are not that simple. Here how they look like 2 :

Figure: Curve E/\mathbb{F}_{9973} : $y^2 = x^3 - 2x + 1$ over the finite field

Defining a Group Structure: A Few Words

Definition

The set of points on the curve, denoted as $E_{a,b}(\mathbb{K})$, is defined as:

$$
E_{a,b}(\mathbb{K}) = \{ (x,y) \in \mathbb{A}^2(\mathbb{K}) : y^2 = x^3 + ax + b \} \cup \{ \mathcal{O} \},
$$

where $\mathcal O$ is the so-called **point at infinity**.

Remark $#1$

If
$$
(x_P, y_P) \in E(\mathbb{K})
$$
 then $(x_P, -y_P) \in E(\mathbb{K})$.

Remark #2

Typically, $\mathbb{K} = \overline{\mathbb{F}}_{p}$: we do not conretize over which finite field we define the elliptic curve.

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

Defining a Group Structure: Chord Method

Figure: Chord method for adding two points

э

 \leftarrow \Box

 $\mathbb{E}[\mathcal{A}]\subseteq\mathbb{E}[\mathcal{A}]\subseteq\mathbb{E}$

 299

Defining a Group Structure: Tangent Method

Figure: Tangent method for the point doubling

Distributed Lab [Field Extensions and Elliptic Curves](#page-0-0) 32 / 39 August 1, 2024 32 / 39

Þ

IN

∢母→

 \leftarrow \Box

 298

→ 重 トー

Idea of Derivation

Line equation through $P = (x_P, y_P), Q = (x_Q, y_Q)$:

$$
\ell: y = \lambda(x - xp) + yp, \ \lambda = \frac{y_Q - yp}{x_Q - xp}
$$

So all we need is to solve the system of equations:

$$
\begin{cases}\ny^2 = x^3 + ax + b \\
y = \lambda(x - xp) + yp\n\end{cases}
$$

Substituting γ from the second equation to the first one, we get a cubic equation. Using Vieta's formula, one can derive

$$
x_P + x_Q + x_R = \lambda^2
$$

The rest is easy to finish.

Group Law

Definition

- \bullet Point at infinity $\mathcal O$ is an identity element.
- **2** If $x_P \neq x_Q$, use the **chord method**. Define $\lambda := \frac{y_P y_Q}{x_P x_Q}$ the slope between P and Q . Set the resultant coordinates as:

$$
x_R := \lambda^2 - x_P - x_Q, \quad y_R := \lambda(x_P - x_R) - y_P.
$$

3 If $x_P = x_Q$ and $y_P = y_Q$ (that is, $P = Q$), use the **tangent method**. Define the slope of the tangent at P as $\lambda := \frac{3x_{P}^{2} + a}{2x_{P}}$ $\frac{\lambda_{P}+d}{2y_{P}}$ and set

$$
x_R := \lambda^2 - 2x_P, \quad y_R := \lambda(x_P - x_R) - y_P.
$$

4 Otherwise, define $P \oplus Q := Q$.

 $\left\{ \left. \left. \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right\}$

One more Illustration

Figure 2.5: Elliptic curve addition.

Figure 2.6: Elliptic curve doubling.

 \leftarrow \Box

 \Rightarrow э

Example

Example

Consider $E/\mathbb{R}: y^2 = x^3 - 2x$.

- Addition: $(-1, 1) \oplus (0, 0) = (2, -2), (2, 2) \oplus (-1, -1) = (0, 0).$
- Doubling: $[2](-1,-1) = (\frac{9}{4})$ $\frac{9}{4}, -\frac{21}{8}$ $\frac{21}{8}$.

Hasse's Theorem

Theorem

 $(E(\mathbb{F}), \oplus)$ forms an abelian group.

Now, let us consider the group order $r := |E(\mathbb{F}_{p^m})|$.

Theorem

Hasse's Theorem on Elliptic Curves. $r = p^m + 1 - t$ for some integer These sumediation converting the number of points on $|t| \le 2\sqrt{p^m}$. A bit more intuitive explanation: the number of points on the curve is close to $p^m + 1$. The value t is called the trace of Frobenius.

Remark

In fact, $r = |E(\mathbb{F}_{p^m})|$ can be computed in $O(log(p^m))$, so the number of points can be computed efficiently even for fairly large primes p.

 Ω

CONVERTED A BY A DI

Discrete Logarithm

Definition

Let $P\in E(\overline{\mathbb{F}}_p)$ and $\alpha\in \mathbb{Z}_r.$ Define the scalar multiplication $[\alpha]P$ as adding P to itself $\alpha - 1$ times (also set $[0]P := \mathcal{O}$).

Definition

Suppose E is cyclic, meaning, $\langle G \rangle = E$ for some $G \in E$. The **discrete logarithm problem** on E consists in the following: suppose $P = [\alpha]G$ for some $\alpha \in \mathbb{Z}_r$. Find α based on P.

Remark

If r is a product of primes p_1, p_2, \ldots, p_k such that $p_1 < p_2 < \cdots < p_k$, then the best-known algorithm to solve the discrete logarithm problem is and the best known algorithm to so

KONKAPRA BRADE

 Ω

Thank you for your attention!

 \sim

EXISTENT

Kロト K同下

 299