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Affine Coordinates Issue: Recap
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Elliptic Curve Definition

Definition

Suppose that K is a field. An elliptic curve E over K is defined as a set
of points (x , y) ∈ K2:

y2 = x3 + ax + b,

called a Short Weierstrass equation, where a, b ∈ K and
4a3 + 27b2 ̸= 0. We denote E/K to denote the elliptic curve over field K.

Definition

Point P ∈ E (Fp), represented by coordinates (xP , yP) is called the affine
representation of P and denoted as P ∈ A2(Fp).

Definition

E (K) = E/K ∪ {O}. (E (K),⊕) forms a group, where ⊕ is the point
addition operation.
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Addition and Doubling Illustratins

Figure: Illustration of chord-and-tangent points addition.
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Affine Point Addition

So, how do we add (xR , yR) = (xP , yP)⊕ (xQ , yQ) where (xP , yP) and
(xQ , yQ) are affine representation of points P,Q ∈ E (Fp)?

Algorithm 1: Classical adding P and Q for xP ̸= xQ
1 Calculate the slope λ← (yP − yQ)/(xP − xQ).

2 Set
xR ← λ2 − xP − xQ , yR ← λ(xP − xR)− yP .

Easy, right? What can go wrong?
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Why this is bad?

Let

M — cost of multiplication;

S — cost of squaring;

I — cost of inverse.

(all in some extension Fpm)

Algorithm 1: Calculating P ⊕ Q

λ← (yP − yQ)×(xP − xQ)
−1

xR ← λ2 − xP − xQ

yR ← λ×(xP − xR)− yP

Then, calculating the aforementioned formula costs:

2M+ S+ I

Well, just 4 operations... Easy right?

Main Problem!

Typically, I ≈ 80M. So, the effective cost is roughly 80 operations. Too
bad. We need to fix it!
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Relations
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Relation

Our solution would be projective coordinates, but we need a couple of
ingredients first.

Definition

Let X ,Y be some sets. Then, R is a relation if

R ⊂ X × Y = {(x , y) : x ∈ X , y ∈ Y}

Example

Let X = {Oleksandr,Phat,Anton}, Y = {Backend,Frontend,Research}.
Define the following relation of “person x works in field y”:

R = {(Oleksandr,Research), (Phat,Frontend), (Anton,Backend)}

Obviously, R ⊂ X × Y, so R is a relation.
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Equivalence Relation

Definition

Let X be a set. A relation ∼ on X is called an equivalence relation if it
satisfies the following properties:

1 Reflexivity: x ∼ x for all x ∈ X .
2 Symmetry: If x ∼ y , then y ∼ x for all x , y ∈ X .
3 Transitivity: If x ∼ y and y ∼ z , then x ∼ z for all x , y , z ∈ X .

Example

Let X be the set of all people. Define a relation ∼ on X by x ∼ y if
x , y ∈ X have the same birthday. Then ∼ is an equivalence relation on X .

1 Reflexivity: x ∼ x since x has the same birthday as x .

2 Symmetry: If x ∼ y , then y ∼ x since x has the same birthday as y .

3 Transitivity: If x ∼ y and y ∼ z , then x ∼ z .
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Equivalence Relation: More Examples

Example

Suppose X = Z and n is some fixed integer. Let a ∼ b mean that a ≡ b
(mod n). It is easy to verify that ∼ is an equivalence relation:

1 Reflexivity: a ≡ a (mod n), so a ∼ a.

2 Symmetry: If a ≡ b (mod n), then b ≡ a (mod n), so b ∼ a.

3 Transitivity: If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c
(mod n), so (a ∼ b) ∧ (b ∼ c) =⇒ a ∼ c .

Example

Isomorphism ∼= is an equivalence relation on the set of all groups.

Question

For R define a ∼ b iff a ≥ b. Is it an equivalence relation?
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Equivalence Classes

Notice that for the set of integers Z and relation ∼ defined by a ∼ b iff
a ≡ b (mod n), we can group all integers into equivalence classes. For
example, for n = 2:

Z = {a ∈ Z : a is even} ∪ {a ∈ Z : a is odd}

Can we generalize this observation for general relations?

Definition

Let X be a set and ∼ be an equivalence relation on X . For any x ∈ X ,
the equivalence class of x is the set

[x ] = {y ∈ X : x ∼ y}

The set of all equivalence classes is denoted by X/∼ (or, if the relation
R is given explicitly, then X/R), which is read as “X modulo relation ∼”.
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Equivalence Classes Properties

Example

Let X = Z and n be some fixed integer. Define ∼ on X by x ∼ y if x ≡ y
(mod n). Then the equivalence class of x is the set

[x ] = {y ∈ Z : x ≡ y (mod n)}

For example, [0] = {. . . ,−2n,−n, 0, n, 2n, . . .} while
[1] = {. . . ,−2n + 1,−n + 1, 1, n + 1, 2n + 1, . . .}.

Lemma

Let X be a set and ∼ be an equivalence relation on X . Then,
1 For each x ∈ X , x ∈ [x ] (quite obvious, follows from reflexivity).

2 For each x , y ∈ X , x ∼ y if and only if [x ] = [y ].

3 For each x , y ∈ X , either [x ] = [y ] or [x ] ∩ [y ] = ∅.
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Equivalence Classes Partition Example

Example

Let n ∈ N and, again, X = Z with a “modulo n” equivalence relation Rn.
Define the equivalence class of x by [x ]n = {y ∈ Z : x ≡ y (mod n)}.
Then,

Z/Rn = {[0]n, [1]n, [2]n, . . . , [n − 2]n, [n − 1]n}
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Elliptic Curve in Projective Coordinates
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Definition

Definition

Projective coordinate, denoted as P2(K) (or sometimes simply KP2) is a
set of triplets of elements (X : Y : Z ) from A3(K) \ {0} modulo the
equivalence relation:

(X1 : Y1 : Z1) ∼ (X2 : Y2 : Z2) iff

∃λ ∈ K×
: (X1 : Y1 : Z1) = (λX2 : λY2 : λZ2)

Example

Consider the projective space P2(R). Then, two points
(x1, y1, z1), (x2, y2, z2) ∈ R3 are equivalent if there exists λ ∈ R \ {0} such
that (x1, y1, z1) = (λx2, λy2, λz2). For example, (1, 2, 3) ∼ (2, 4, 6) since
(1, 2, 3) = (0.5× 2, 0.5× 4, 0.5× 6), so λ = 0.5.
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Illustration

Example

Now, how to geometrically interpret P2(R)? Consider the Figure below.

Equivalent points lie on the same line through the origin (0, 0, 0).

Distributed Lab Projective Space and Pairing 17 / 38 August 8, 2024 17 / 38



Questions

Question #1

Are points (1, 2, 3) and (3, 6, 9) equivalent in P2(R)?

Question #2

Are points (1, 2, 3) and (2, 3, 1) equivalent in P2(R)?

Question #3

Are points (2, 4, 6) and (3, 6, 9) equivalent in P2(R)?
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Going back to Affine Space

Observation #1

Define the map ϕ : P2(K)→ A2(K) as ϕ(X : Y : Z ) = (X/Z ,Y /Z ) for
(X : Y : Z ) ∈ P2(K). This map will map all equivalent points (lying on
the same line) to the same point in A2(K).

Observation #2

Define the map ψ : A2(K)→ P2(K) as ψ(x , y) = (x : y : 1). This map will
map all points in A2(K) to the corresponding equivalence class in P2(K).

Question

Given point (2 : 4 : 2) ∈ P2(R), what is the corresponding point in A2(R)?
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Going back to Affine Space: Illustration

Example

Again, consider three lines from the previous example. Now, we
additionally draw a plane π : z = 1 in our 3-dimensional space (see
Illustration below).

Illustration: Geometric interpretation of converting projective form to the affine form.
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Equation over Projective Space

Observation

If (X : Y : Z ) lies on the curve, then so does (X/Z ,Y /Z ). Thus, since
y2 = x3 + ax + b we have:(

Y

Z

)2

=

(
X

Z

)3

+ a

(
X

Z

)
+ b

Definition

The homogeneous projective form of the elliptic curve is given by the
equation:

Y 2Z = X 3 + aXZ 2 + bZ 3,

where the point at infinity is encoded as O = (0 : 1 : 0).

Remark

Why O = (0 : 1 : 0). Note that all (0 : λ : 0) lie on the Elliptic Curve.

Distributed Lab Projective Space and Pairing 21 / 38 August 8, 2024 21 / 38



Visualization over Projective Space

Example

Consider the BN254 curve y2 = x3 + 3 over reals R. Its projective form is
given by the equation Y 2Z = X 3 + 3Z 3, giving a surface below.
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Advantage of Projective Form.

Rhetorical Question

Why having three coordinates instead of two is better?

Consider the addition operation:

XR = (XPZQ − XQZP)(ZPZQ(YPZQ − YQZP)
2

−(XPZQ − XQZP)
2(XPZQ + XQZP));

YR = ZPZQ(XQYP − XPYQ)(XPZQ − XQZP)
2

−(YPZQ − YQZP)((YPZQ − YQZP)
2ZPZQ

−(XPZQ + XQZP)(XPZQ − XQZP)
2);

ZR = ZPZQ(XPZQ − XQZP)
3.

Although looks much more complicated, it takes only 14M compared to
80M.
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Illustration of adding two points
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General Strategy

1 Convert affine form (XP ,YP) to the projective (XP : YP : 1).

2 Make many additions, doubling, multiplications etc. in projective
form, getting (XR : YR : ZR) at the end.

3 Convert back to affine coordinates:

(XR : YR : ZR) 7→ (XR/ZR ,YR/ZR)

Affine Space

Projective Space
Complex 

Algorithm

Figure: General strategy with EC operations.
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General Projective Coordinates

(X : Y : Z ) ∼ (X ′ : Y ′ : Z ′) iff

∃λ ∈ K : (X ,Y ,Z ) = (λnX ′, λmY ′, λZ ′)

In this case, to come back to the affine form, we need to use the map
ϕ : (X : Y : Z ) 7→ (X/Zn,Y /Zm).

Example

The case n = 2,m = 3 is called the Jacobian Projective Coordinates.
An Elliptic Curve equation might be then rewritten as:

Y 2 = X 3 + aXZ 4 + bZ 6
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Illustration of General Projective Coordinates

Example

Consider the BN254 curve y2 = x3 + 3 over reals R, again. Its Jacobian
projective form is given by Y 2 = X 3 + 3Z 6.
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Pairings
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Definition

Definition

Pairing is a bilinear, non-degenerate, efficiently computable map
e : G1 ×G2 → GT , where G1,G2 are two groups (typically, elliptic curve
groups) and GT is a target group (typically, a set of scalars). Let us
decipher the definition:

Bilinearity means essentially the following:

e([a]P, [b]Q) = e([ab]P,Q) = e(P, [ab]Q) = e(P,Q)ab.

Non-degeneracy means that e(G1,G2) ̸= 1 (where G1,G2 are
generators of G1,G2, respectively). This property basically says that
the pairing is not trivial.

Efficient computability means that the pairing can be computed in
a reasonable time.
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Primitive Example

Example

Suppose G1 = G2 = GT = Zr are scalars. Then, the following map
e : G1 ×G2 → GT is a pairing:

e(x , y) = 2xy

Bilinearity:

e(ax , by) = 2abxy = (2xy )ab = e(x , y)ab

e(ax , by) = 2abxy = 2(x)(aby) = e(x , aby)

Non-degeneracy: e(1, 1) = 2 ̸= 1.

Efficient computability: Obvious.
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Elliptic Curve-based Pairing

Example

Pairing for BN254. For BN254 (with equation y2 = x3 + 3), the pairing
function e : G1 ×G2 → GT is defined over the following groups:

G1 — points on the regular curve E (Fp).

G2 — r -torsion points on the twisted curve E ′(Fp2) over the field
extension Fp2 (with equation y2 = x3 + 3

ξ for ξ = 9 + u ∈ Fp2).

GT — rth roots of unity Ωr ⊂ F×
p12

.

Some clarifications:

r-torsion subgroup: E (Fpm)[r ] = {P ∈ E (Fpm) : [r ]P = O}.
rth roots of unity: Ωr = {z ∈ F×

p12
: z r = 1}.

Question

If E (Fp) is cyclic, r = |E (Fp)|, what is E (Fp)[r ]?
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EC Pairing Illustration

Figure: Pairing illustration. It does not matter what we do first: (a) compute [a]P
and [b]Q and then compute e([a]P, [b]Q) or (b) first calculate e(P,Q) and then
transform it to e(P,Q)ab.
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Pairing-friendliness

Remark

One might have a reasonable question: where does this 12 come from?
The answer is following: the so-called embedding degree of BN254 curve
is k = 12.

Definition

The following conditions are equivalent definitions of an embedding
degree k of an elliptic curve E (Fp):

k is the smallest positive integer such that r | (pk − 1).

k is the smallest positive integer such that Fpk contains all of the r -th

roots of unity in Fp, that is Ωr ⊂ Fpk .

k is the smallest positive integer such that E (Fp)[r ] ⊂ E (Fpk )

An elliptic curve is called pairing-friendly if it has a relatively small
embedding degree k (typically, k ≤ 16).
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Application #1: BLS Signature

Suppose we have pairing e : G1 ×G2 → GT (with generators G1,G2,
respectively), and a hash function H, mapping message spaceM to G1.

Definition

BLS Signature consists of the following algorithms:

Gen(·): Key generation. sk
R←− Zq, pk← [sk]G2 ∈ G2.

Sign(sk,m). Signature is σ ← [sk]H(m) ∈ G1.

Verify(pk,m, σ). Check whether e(H(m), pk) = e(σ,G2).

Let us check the correctness:

e(σ,G2) = e([sk]H(m),G2) = e(H(m), [sk]G2) = e(H(m), pk)

Remark: G1 and G2 might be switched: public keys might live instead in
G1 while signatures in G2.
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Application #2: Quadratic Verifications

Task

Alice wants to convince Bob that she knows such α, β such that
α+ β = 2, but she does not want to reveal α, β. How to do that?

Example

1 Alice computes P ← [α]G ,Q ← [β]G — points on the curve.

2 Alice sends (P,Q) to Bob.

3 Bob verifies whether P ⊕ Q = [2]G .

Let us verify the correctness:

P ⊕ Q = [α]G ⊕ [β]G = [α+ β]G = [2]G
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Application #2: Quadratic Verifications

Task

Alice wants to convince that she knows α, β such that αβ = 2 without
revealing α, β.

Example

1 Alice computes P ← [α]G1 ∈ G1,Q ← [β]G2 ∈ G2 — points on two
curves.

2 Alice sends (P,Q) ∈ G1 ×G2 to Bob.

3 Bob checks whether: e(P,Q) = e(G1,G2)
2.

Again let us verify the correctness:

e(P,Q) = e([α]G1, [β]G2) = e(G1,G2)
αβ = e(G1,G2)

2
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Application #2: Quadratic Verifications

Task

Alice wants to convince that she knows x1, x2 such that x21 + x1x2 = x2
without revealing x1, x2.

Example

Alice calculates P1 ← [x1]G1 ∈ G1, P2 ← [x1]G2 ∈ G2, Q ← [x2]G2 ∈ G2.
Then, the condition can be verified by checking whether

e(P1,P2 ⊕ Q)e(G1,⊖Q) = 1

Let us see the correctness of this equation:

e(P1,P2 ⊕ Q)e(G1,⊖Q) = e([x1]G1, [x1 + x2]G2)e(G1, [x2]G2)
−1

= e(G1,G2)
x1(x1+x2)e(G1,G2)

−x2 = e(G1,G2)
x21+x1x2−x2
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Thanks for your attention!
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