Projective Coordinates and Pairing

Distributed Lab

August 8, 2024

[Projective Space and Pairing](#page-37-0) 1 / 38 August 8, 2024 1 / 38

 $A \oplus A \oplus A \oplus A \oplus A$

4 0 8

Plan

[Affine Coordinates Issue: Recap](#page-2-0)

- [Recap](#page-3-0)
- [Addition Complexity](#page-6-0)

[Relations](#page-7-0)

- **o** [Definition](#page-8-0)
- **•** [Equivalence Relation](#page-9-0)

3 [Elliptic Curve in Projective Coordinates](#page-14-0)

- [Projective Space Definition](#page-15-0)
- **[Elliptic Curve Equation in Projective Space](#page-20-0)**
- [Projective Addition](#page-22-0)

[Pairings](#page-27-0)

- **•** [Basic Definition](#page-28-0)
- **[Elliptic Curve-based Pairing](#page-30-0)**
- Application $#1$: BLS Signature
- \bullet Application $\#2$: Quadratic Verifications

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 Ω

[Affine Coordinates Issue: Recap](#page-2-0)

[Projective Space and Pairing](#page-0-0) 3 / 38 August 8, 2024 3 / 38

 \rightarrow

Þ

4 同 ト

4日下

 299

 \blacktriangleright (\blacktriangleleft) \equiv \blacktriangleright

Elliptic Curve Definition

Definition

Suppose that K is a field. An elliptic curve E over K is defined as a set of points $(x, y) \in \mathbb{K}^2$:

$$
y^2 = x^3 + ax + b,
$$

called a **Short Weierstrass equation**, where $a, b \in \mathbb{K}$ and 4a $^3+27b^2\neq 0.$ We denote E/\mathbb{K} to denote the elliptic curve over field $\mathbb{K}.$

Definition

Point $P \in E(\overline{\mathbb{F}}_p)$, represented by coordinates (x_P, y_P) is called the **affine representation** of P and denoted as $P \in \mathbb{A}^2(\overline{\mathbb{F}}_p).$

Definition

 $E(\mathbb{K}) = E/\mathbb{K} \cup \{ \mathcal{O} \}.$ ($E(\mathbb{K}), \oplus$) forms a group, where \oplus is the **point** addition operation.

Addition and Doubling Illustratins

Figure 2.5: Elliptic curve addition.

Figure 2.6: Elliptic curve doubling.

Figure: Illustration of chord-and-tangent points addition.

 \leftarrow \Box

 Ω

 \rightarrow \equiv \rightarrow

So, how do we add $(x_R, y_R) = (x_P, y_P) \oplus (x_Q, y_Q)$ where (x_P, y_P) and (x_Q, y_Q) are affine representation of points $P, Q \in E(\overline{\mathbb{F}}_p)$?

Algorithm 1: Classical adding P and Q for $x_P \neq x_Q$

Calculate the slope
$$
\lambda \leftarrow (y_P - y_Q)/(x_P - x_Q)
$$
.

² Set

$$
x_R \leftarrow \lambda^2 - x_P - x_Q, \ \ y_R \leftarrow \lambda (x_P - x_R) - y_P.
$$

Easy, right? What can go wrong?

目

Why this is bad?

Let

- \bullet M cost of multiplication;
- \circ S cost of squaring;
- \bullet \blacksquare cost of inverse.
- (all in some extension \mathbb{F}_{p^m})

Algorithm 1: Calculating $P \oplus Q$

$$
\lambda \leftarrow (y_P - y_Q) \times (x_P - x_Q)^{-1}
$$

$$
x_R \leftarrow \lambda^2 - x_P - x_Q
$$

$$
y_R \leftarrow \lambda \times (x_P - x_R) - y_P
$$

Then, calculating the aforementioned formula costs:

 $2M + S + I$

Well, just 4 operations... Easy right?

Main Problem!

Typically, $I \approx 80$ M. So, the effective cost is roughly 80 operations. Too bad. We need to fix it!

 $\left\{ \left. \left. \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right\}$

 Ω

[Relations](#page-7-0)

[Projective Space and Pairing](#page-0-0) 8 / 38 August 8, 2024 8 / 38

メロトメ 御 トメ 君 トメ 君 ト

 299

Relation

Our solution would be **projective coordinates**, but we need a couple of ingredients first.

Definition

Let \mathcal{X}, \mathcal{Y} be some sets. Then, \mathcal{R} is a **relation** if

$$
\mathcal{R} \subset \mathcal{X} \times \mathcal{Y} = \{ (x, y) : x \in \mathcal{X}, y \in \mathcal{Y} \}
$$

Example

Let $\mathcal{X} = \{O$ leksandr, Phat, Anton $\}$, $\mathcal{Y} = \{B$ ackend, Frontend, Research $\}$. Define the following relation of "person x works in field y ":

 $\mathcal{R} = \{$ (Oleksandr, Research), (Phat, Frontend), (Anton, Backend)}

Obviously, $\mathcal{R} \subset \mathcal{X} \times \mathcal{Y}$, so \mathcal{R} is a relation.

Equivalence Relation

Definition

Let X be a set. A relation \sim on X is called an equivalence relation if it satisfies the following properties:

- **Reflexivity:** $x \sim x$ for all $x \in \mathcal{X}$.
- **2 Symmetry:** If $x \sim y$, then $y \sim x$ for all $x, y \in \mathcal{X}$.
- **3** Transitivity: If $x \sim y$ and $y \sim z$, then $x \sim z$ for all $x, y, z \in \mathcal{X}$.

Example

Let X be the set of all people. Define a relation \sim on X by $x \sim y$ if $x, y \in \mathcal{X}$ have the same birthday. Then \sim is an equivalence relation on \mathcal{X} .

- **1 Reflexivity:** $x \sim x$ since x has the same birthday as x.
- **2 Symmetry:** If $x \sim y$, then $y \sim x$ since x has the same birthday as y.
- **3** Transitivity: If $x \sim y$ and $y \sim z$, then $x \sim z$.

 299

Equivalence Relation: More Examples

Example

Suppose $\mathcal{X} = \mathbb{Z}$ and *n* is some fixed integer. Let $a \sim b$ mean that $a \equiv b$ (mod *n*). It is easy to verify that \sim is an equivalence relation:

- **1 Reflexivity:** $a \equiv a \pmod{n}$, so $a \sim a$.
- **2 Symmetry:** If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$, so $b \sim a$.
- **3** Transitivity: If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c$ (mod *n*), so $(a \sim b) \land (b \sim c) \implies a \sim c$.

Example

Isomorphism \cong is an equivalence relation on the set of all groups.

Question

For R define $a \sim b$ iff $a \ge b$. Is it an equivalence relation?

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

 QQ

Equivalence Classes

Notice that for the set of integers $\mathbb Z$ and relation \sim defined by $a \sim b$ iff $a \equiv b$ (mod *n*), we can group all integers into equivalence classes. For example, for $n = 2$:

$$
\mathbb{Z} = \{a \in \mathbb{Z} : a \text{ is even}\} \cup \{a \in \mathbb{Z} : a \text{ is odd}\}
$$

Can we generalize this observation for general relations?

Definition

Let X be a set and \sim be an equivalence relation on X. For any $x \in \mathcal{X}$, the **equivalence class** of x is the set

$$
[x] = \{y \in \mathcal{X} : x \sim y\}
$$

The set of all equivalence classes is denoted by \mathcal{X}/\sim (or, if the relation $\cal R$ is given explicitly, then X / R), which is read as "X modulo relation \sim ".

イロト イ押 トイヨ トイヨト

э

Equivalence Classes Properties

Example

Let $\mathcal{X} = \mathbb{Z}$ and n be some fixed integer. Define \sim on \mathcal{X} by $x \sim y$ if $x \equiv y$ (mod *n*). Then the equivalence class of x is the set

$$
[x] = \{y \in \mathbb{Z} : x \equiv y \pmod{n}\}
$$

For example,
$$
[0] = \{ \ldots, -2n, -n, 0, n, 2n, \ldots \}
$$
 while $[1] = \{ \ldots, -2n + 1, -n + 1, 1, n + 1, 2n + 1, \ldots \}.$

Lemma

Let X be a set and \sim be an equivalence relation on X. Then,

1 For each $x \in \mathcal{X}, x \in [x]$ (quite obvious, follows from reflexivity).

2 For each $x, y \in \mathcal{X}$, $x \sim y$ if and only if $[x] = [y]$.

3 For each $x, y \in \mathcal{X}$, either $[x] = [y]$ or $[x] \cap [y] = \emptyset$.

 QQQ

Example

Let $n \in \mathbb{N}$ and, again, $\mathcal{X} = \mathbb{Z}$ with a "modulo n" equivalence relation \mathcal{R}_n . Define the equivalence class of x by $[x]_n = \{y \in \mathbb{Z} : x \equiv y \pmod{n}\}.$ Then,

$$
\mathbb{Z}/\mathcal{R}_n = \{ [0]_n, [1]_n, [2]_n, \ldots, [n-2]_n, [n-1]_n \}
$$

ヨメ イヨメ

[Elliptic Curve in Projective Coordinates](#page-14-0)

[Projective Space and Pairing](#page-0-0) 15 / 38 August 8, 2024 15 / 38

Þ \sim

4 0 3

 2990

 $\rightarrow \equiv +$

Definition

Definition

Projective coordinate, denoted as $\mathbb{P}^2(\mathbb{K})$ (or sometimes simply $\mathbb{KP}^2)$ is a set of triplets of elements $(X:Y:Z)$ from $\mathbb{A}^3(\overline{\mathbb{K}})\setminus\{0\}$ modulo the equivalence relation:

$$
(X_1: Y_1: Z_1) \sim (X_2: Y_2: Z_2) \text{ iff}
$$

$$
\exists \lambda \in \overline{\mathbb{K}}^{\times} : (X_1: Y_1: Z_1) = (\lambda X_2: \lambda Y_2: \lambda Z_2)
$$

Example

Consider the projective space $\mathbb{P}^2(\mathbb{R})$. Then, two points $(x_1,y_1,z_1),(x_2,y_2,z_2)\in\mathbb{R}^3$ are equivalent if there exists $\lambda\in\mathbb{R}\setminus\{0\}$ such that $(x_1, y_1, z_1) = (\lambda x_2, \lambda y_2, \lambda z_2)$. For example, $(1, 2, 3) \sim (2, 4, 6)$ since $(1, 2, 3) = (0.5 \times 2, 0.5 \times 4, 0.5 \times 6)$, so $\lambda = 0.5$.

G.

Illustration

Example

Now, how to geometrically interpret $\mathbb{P}^2(\mathbb{R})$? Consider the Figure below.

Equivalent points lie on the same line through the origin (0, 0, 0).

イロト イ押ト イヨト イヨト

 QQ

Question $#1$

Are points $(1,2,3)$ and $(3,6,9)$ equivalent in $\mathbb{P}^2(\mathbb{R})$?

Question $#2$

Are points $(1,2,3)$ and $(2,3,1)$ equivalent in $\mathbb{P}^2(\mathbb{R})$?

Question #3

Are points $(2, 4, 6)$ and $(3, 6, 9)$ equivalent in $\mathbb{P}^2(\mathbb{R})$?

KOD KOD KED KED DAR

Going back to Affine Space

Observation $#1$

Define the map $\phi: \mathbb{P}^2(\mathbb{K}) \to \mathbb{A}^2(\mathbb{K})$ as $\phi(X:Y:Z) = (X/Z, Y/Z)$ for $(X:Y:Z)\in \mathbb{P}^2(\mathbb{K}).$ This map will map all equivalent points (lying on the same line) to the same point in $\mathbb{A}^2(\mathbb{K}).$

Observation $#2$

Define the map $\psi: \mathbb{A}^2(\mathbb{K}) \to \mathbb{P}^2(\mathbb{K})$ as $\psi(x,y) = (x:y:1)$. This map will map all points in $\mathbb{A}^2(\mathbb{K})$ to the corresponding equivalence class in $\mathbb{P}^2(\mathbb{K})$.

Question

Given point $(2:4:2) \in \mathbb{P}^2(\mathbb{R})$, what is the corresponding point in $\mathbb{A}^2(\mathbb{R})$?

Going back to Affine Space: Illustration

Example

Again, consider three lines from the previous example. Now, we additionally draw a plane π : $z = 1$ in our 3-dimensional space (see Illustration below).

Illustration: Geometric interpretation of converting projective form to the affine form.

4 **E** F

 QQ

Equation over Projective Space

Observation

If $(X: Y: Z)$ lies on the curve, then so does $(X/Z, Y/Z)$. Thus, since $y^2 = x^3 + ax + b$ we have:

$$
\left(\frac{Y}{Z}\right)^2 = \left(\frac{X}{Z}\right)^3 + a\left(\frac{X}{Z}\right) + b
$$

Definition

The **homogeneous projective form** of the elliptic curve is given by the equation:

$$
Y^2Z=X^3+aXZ^2+bZ^3,
$$

where the point at infinity is encoded as $\mathcal{O} = (0:1:0)$.

Remark

Why $\mathcal{O} = (0:1:0)$. Note that all $(0:\lambda:0)$ lie on the Elliptic Curve.

Visualization over Projective Space

Example

Consider the BN254 curve $y^2 = x^3 + 3$ over reals $\mathbb R$. Its projective form is given by the equation $Y^2 Z = X^3 + 3 Z^3$, giving a surface below.

Advantage of Projective Form.

Rhetorical Question

Why having three coordinates instead of two is better?

Consider the addition operation:

$$
X_R = (X_P Z_Q - X_Q Z_P)(Z_P Z_Q (Y_P Z_Q - Y_Q Z_P)^2 - (X_P Z_Q - X_Q Z_P)^2 (X_P Z_Q + X_Q Z_P));
$$
\n
$$
Y_R = Z_P Z_Q (X_Q Y_P - X_P Y_Q)(X_P Z_Q - X_Q Z_P)^2 - (Y_P Z_Q - Y_Q Z_P)((Y_P Z_Q - Y_Q Z_P)^2 Z_P Z_Q - (X_P Z_Q + X_Q Z_P)(X_P Z_Q - X_Q Z_P)^2);
$$
\n
$$
Z_R = Z_P Z_Q (X_P Z_Q - X_Q Z_P)^3.
$$

Although looks much more complicated, it takes only 14M compared to 80M.

Distributed Lab **[Projective Space and Pairing](#page-0-0) 23 / 38** August 8, 2024 23 / 38

イ母 ト イヨ ト イヨ トー

 QQ

Illustration of adding two points

General Strategy

- **O** Convert affine form (X_P, Y_P) to the projective $(X_P : Y_P : 1)$.
- ² Make many additions, doubling, multiplications etc. in projective form, getting $(X_R : Y_R : Z_R)$ at the end.
- **3** Convert back to affine coordinates:

$$
(X_R: Y_R: Z_R) \mapsto (X_R/Z_R, Y_R/Z_R)
$$

Affine Space Projective Space $(X_P:Y_P:1) \longrightarrow \begin{array}{c} \textbf{Complex} \ \textbf{Algorithm} \end{array}$

Figure: General strategy with EC operations.

イロト イ押 トイヨ トイヨ トー

General Projective Coordinates

$$
(X:Y:Z) \sim (X':Y':Z') \text{ iff}
$$

$$
\exists \lambda \in \overline{\mathbb{K}} : (X,Y,Z) = (\lambda^n X', \lambda^m Y', \lambda Z')
$$

In this case, to come back to the affine form, we need to use the map $\phi: (X:Y:Z) \mapsto (X/Z^n, Y/Z^m).$

Example

The case $n = 2$, $m = 3$ is called the **Jacobian Projective Coordinates**. An Elliptic Curve equation might be then rewritten as:

$$
Y^2 = X^3 + aXZ^4 + bZ^6
$$

G.

Illustration of General Projective Coordinates

Example

Consider the BN254 curve $y^2 = x^3 + 3$ over reals $\mathbb R$, again. Its Jacobian *projective form* is given by $Y^2 = X^3 + 3Z^6$.

[Pairings](#page-27-0)

[Projective Space and Pairing](#page-0-0) 28 / 38 August 8, 2024 28 / 38

メロメメ 倒 メメ きょくきょ

 2990

Definition

Definition

Pairing is a bilinear, non-degenerate, efficiently computable map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_7$, where $\mathbb{G}_1, \mathbb{G}_2$ are two groups (typically, elliptic curve groups) and \mathbb{G}_T is a target group (typically, a set of scalars). Let us decipher the definition:

• Bilinearity means essentially the following:

 $e([a]P,[b]Q) = e([ab]P,Q) = e(P,[ab]Q) = e(P,Q)^{ab}.$

- Non-degeneracy means that $e(G_1, G_2) \neq 1$ (where G_1, G_2 are generators of $\mathbb{G}_1, \mathbb{G}_2$, respectively). This property basically says that the pairing is not trivial.
- **Efficient computability** means that the pairing can be computed in a reasonable time.

 QQQ

Primitive Example

Example

Suppose $\mathbb{G}_1 = \mathbb{G}_2 = \mathbb{G}_7 = \mathbb{Z}_r$ are scalars. Then, the following map $e: \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T$ is a pairing:

$$
e(x,y)=2^{xy}
$$

• Bilinearity:

$$
e(ax, by) = 2^{abxy} = (2^{xy})^{ab} = e(x, y)^{ab}
$$

$$
e(ax, by) = 2^{abxy} = 2^{(x)(aby)} = e(x, aby)
$$

- Non-degeneracy: $e(1, 1) = 2 \neq 1$.
- **Efficient computability:** Obvious.

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

 QQQ

G.

Elliptic Curve-based Pairing

Example

Pairing for BN254. For BN254 (with equation $y^2 = x^3 + 3$), the pairing function $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_7$ is defined over the following groups:

- \bullet \mathbb{G}_1 points on the regular curve $E(\mathbb{F}_p)$.
- \mathbb{G}_2 r -torsion points on the twisted curve $E'(\mathbb{F}_{p^2})$ over the field extension \mathbb{F}_{ρ^2} (with equation $y^2 = x^3 + \frac{3}{\xi}$ $\frac{3}{\xi}$ for $\xi = 9 + u \in \mathbb{F}_{p^2}$).

•
$$
\mathbb{G}_T
$$
 — *r*th roots of unity $\Omega_r \subset \mathbb{F}_{p^{12}}^{\times}$.

Some clarifications:

- *r*-torsion subgroup: $E(\mathbb{F}_{p^m})[r] = \{P \in E(\mathbb{F}_{p^m}) : [r]P = \mathcal{O}\}.$
- *rth roots of unity:* $\Omega_r = \{ z \in \mathbb{F}_{p^2}^{\times} \}$ $_{p^{12}}^{\times}$: $z^{r} = 1$ }.

Question If $E(\mathbb{F}_p)$ is cyclic, $r = |E(\mathbb{F}_p)|$, what is $E(\mathbb{F}_p)[r]$? Distributed Lab **[Projective Space and Pairing](#page-0-0) 31 / 38** August 8, 2024 31 / 38

EC Pairing Illustration

Figure: Pairing illustration. It does not matter what we do first: (a) compute $[a]P$ and $[b]Q$ and then compute $e([a]P, [b]Q)$ or (b) first calculate $e(P, Q)$ and then transform it to $e(P,Q)^{ab}$.

 $\left\{ \left. \left. \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right\}$

 \leftarrow \Box

 Ω

Pairing-friendliness

Remark

One might have a reasonable question: where does this 12 come from? The answer is following: the so-called embedding degree of BN254 curve is $k = 12$.

Definition

The following conditions are equivalent **definitions** of an embedding degree k of an elliptic curve $E(\overline{\mathbb{F}}_p)$:

- k is the smallest positive integer such that $r \mid (p^k-1)$.
- k is the smallest positive integer such that \mathbb{F}_{p^k} contains all of the r-th roots of unity in $\overline{\mathbb{F}}_p$, that is $\Omega_r\subset \mathbb{F}_{p^k}.$

 k is the smallest positive integer such that $E(\overline{\mathbb{F}}_p)[r]\subset E(\mathbb{F}_{p^k})$ An elliptic curve is called **pairing-friendly** if it has a relatively small embedding degree k (typically, $k \le 16$).

Application $#1$: BLS Signature

Suppose we have pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ (with generators G_1, G_2 , respectively), and a hash function H, mapping message space $\mathcal M$ to $\mathbb G_1$.

Definition

BLS Signature consists of the following algorithms:

- Gen (\cdot) : Key generation. sk $\stackrel{R}{\leftarrow} \mathbb{Z}_q,$ pk \leftarrow [sk] $G_2 \in \mathbb{G}_2.$
- Sign(sk, m). Signature is $\sigma \leftarrow [sk]H(m) \in \mathbb{G}_1$.
- Verify(pk, m, σ). Check whether $e(H(m), pk) = e(\sigma, G_2)$.

Let us check the correctness:

$$
e(\sigma, G_2) = e([sk]H(m), G_2) = e(H(m), [sk]G_2) = e(H(m), pk)
$$

Remark: \mathbb{G}_1 and \mathbb{G}_2 might be switched: public keys might live instead in \mathbb{G}_1 while signatures in \mathbb{G}_2 .

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

Task

Alice wants to convince Bob that she knows such α, β such that $\alpha + \beta = 2$, but she does not want to reveal α, β . How to do that?

Example

- **■** Alice computes $P \leftarrow [\alpha]G, Q \leftarrow [\beta]G$ points on the curve.
- \bullet Alice sends (P, Q) to Bob.
- **3** Bob verifies whether $P \oplus Q = [2]G$.

Let us verify the correctness:

$$
P \oplus Q = [\alpha]G \oplus [\beta]G = [\alpha + \beta]G = [2]G
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

Application #2: Quadratic Verifications

Task

Alice wants to convince that she knows α, β such that $\alpha\beta = 2$ without revealing α, β .

Example

- **4** Alice computes $P \leftarrow [\alpha] G_1 \in \mathbb{G}_1, Q \leftarrow [\beta] G_2 \in \mathbb{G}_2$ points on two curves.
- Alice sends $(P,Q) \in \mathbb{G}_1 \times \mathbb{G}_2$ to Bob.
- **3** Bob checks whether: $e(P,Q) = e(G_1, G_2)^2$.

Again let us verify the **correctness:**

$$
e(P,Q) = e([\alpha]G_1, [\beta]G_2) = e(G_1, G_2)^{\alpha\beta} = e(G_1, G_2)^2
$$

イロト イ押 トイヨ トイヨ トー ヨー

Application #2: Quadratic Verifications

Task

Alice wants to convince that she knows x_1, x_2 such that $x_1^2 + x_1x_2 = x_2$ without revealing x_1, x_2 .

Example

Alice calculates $P_1 \leftarrow [x_1]G_1 \in \mathbb{G}_1$, $P_2 \leftarrow [x_1]G_2 \in \mathbb{G}_2$, $Q \leftarrow [x_2]G_2 \in \mathbb{G}_2$. Then, the condition can be verified by checking whether

$$
e(P_1,P_2 \oplus Q)e(G_1,\ominus Q)=1
$$

Let us see the correctness of this equation:

$$
\begin{aligned} e(P_1,P_2\oplus Q)e(G_1,\ominus Q)&=e([x_1]G_1,[x_1+x_2]G_2)e(G_1,[x_2]G_2)^{-1}\\&=e(G_1,G_2)^{x_1(x_1+x_2)}e(G_1,G_2)^{-x_2}=e(G_1,G_2)^{x_1^2+x_1x_2-x_2}\end{aligned}
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

G.

Thanks for your attention!

 -4

 $\exists x \in A \exists y$

Kロト K同下

 299