Projective Coordinates and Pairing

Distributed Lab

August 8, 2024

Di	buted Lab	
	butcu Lub	

Projective Space and Pairing 1 / 38

< □ > < □ > < □ >
 August 8, 2024

Plan

Affine Coordinates Issue: Recap

- Recap
- Addition Complexity

2 Relations

- Definition
- Equivalence Relation

8 Elliptic Curve in Projective Coordinates

- Projective Space Definition
- Elliptic Curve Equation in Projective Space
- Projective Addition

Pairings

- Basic Definition
- Elliptic Curve-based Pairing
- Application #1: BLS Signature
- Application #2: Quadratic Verifications

★ ∃ ► < ∃ ►</p>

Affine Coordinates Issue: Recap

 10 t K I	butod	1 2 2 2

Projective Space and Pairing 3 / 38

August 8, 2024

< (1) × <

ヨト・イヨト

Elliptic Curve Definition

Definition

Suppose that \mathbb{K} is a field. An **elliptic curve** *E* over \mathbb{K} is defined as a set of points $(x, y) \in \mathbb{K}^2$:

$$y^2 = x^3 + ax + b,$$

called a **Short Weierstrass equation**, where $a, b \in \mathbb{K}$ and $4a^3 + 27b^2 \neq 0$. We denote E/\mathbb{K} to denote the elliptic curve over field \mathbb{K} .

Definition

Point $P \in E(\overline{\mathbb{F}}_p)$, represented by coordinates (x_P, y_P) is called the **affine** representation of P and denoted as $P \in \mathbb{A}^2(\overline{\mathbb{F}}_p)$.

Definition

 $E(\mathbb{K}) = E/\mathbb{K} \cup \{\mathcal{O}\}$. ($E(\mathbb{K}), \oplus$) forms a group, where \oplus is the **point** addition operation.

Addition and Doubling Illustratins

Figure 2.5: Elliptic curve addition.

Figure 2.6: Elliptic curve doubling.

Figure: Illustration of chord-and-tangent points addition.

Di	buted	l Lab
	Dates	

Projective Space and Pairing 5 / 38

August 8, 2024

So, how do we add $(x_R, y_R) = (x_P, y_P) \oplus (x_Q, y_Q)$ where (x_P, y_P) and (x_Q, y_Q) are affine representation of points $P, Q \in E(\overline{\mathbb{F}}_p)$?

Algorithm 1: Classical adding *P* and *Q* for $x_P \neq x_Q$

• Calculate the slope
$$\lambda \leftarrow (y_P - y_Q)/(x_P - x_Q)$$
.
• Set

$$x_R \leftarrow \lambda^2 - x_P - x_Q, \ y_R \leftarrow \lambda(x_P - x_R) - y_P.$$

Easy, right? What can go wrong?

Why this is bad?

Let

- M cost of multiplication;
- S cost of squaring;
- I cost of inverse.
- (all in some extension \mathbb{F}_{p^m})

Algorithm 1: Calculating $P \oplus Q$

$$\lambda \leftarrow (y_P - y_Q) \times (x_P - x_Q)^{-1}$$
$$x_R \leftarrow \lambda^2 - x_P - x_Q$$
$$y_R \leftarrow \lambda \times (x_P - x_R) - y_P$$

Then, calculating the aforementioned formula costs:

2M + S + I

Well, just 4 operations... Easy right?

Main Problem! Typically, $I \approx 80M$. So, the effective cost is roughly **80 operations**. Too bad. We need to fix it!

Relations

	104 21	butoc	h
	15111		
-			 ~

Projective Space and Pairing 8 / 38

August 8, 2024

< □ > < □ > < □ > < □ > < □ >

3

Relation

Our solution would be **projective coordinates**, but we need a couple of ingredients first.

Definition

Let \mathcal{X}, \mathcal{Y} be some sets. Then, \mathcal{R} is a **relation** if

$$\mathcal{R} \subset \mathcal{X} \times \mathcal{Y} = \{(x, y) : x \in \mathcal{X}, y \in \mathcal{Y}\}$$

Example

Let $\mathcal{X} = \{\text{Oleksandr}, \text{Phat}, \text{Anton}\}, \mathcal{Y} = \{\text{Backend}, \text{Frontend}, \text{Research}\}.$ Define the following relation of "person x works in field y":

 $\mathcal{R} = \{(\mathsf{Oleksandr}, \mathsf{Research}), (\mathsf{Phat}, \mathsf{Frontend}), (\mathsf{Anton}, \mathsf{Backend})\}$

Obviously, $\mathcal{R} \subset \mathcal{X} \times \mathcal{Y}$, so \mathcal{R} is a relation.

< □ > < □ > < □ > < □ > < □ > < □ >

Equivalence Relation

Definition

Let \mathcal{X} be a set. A relation \sim on \mathcal{X} is called an **equivalence relation** if it satisfies the following properties:

- **1** Reflexivity: $x \sim x$ for all $x \in \mathcal{X}$.
- **2** Symmetry: If $x \sim y$, then $y \sim x$ for all $x, y \in \mathcal{X}$.
- **③ Transitivity:** If $x \sim y$ and $y \sim z$, then $x \sim z$ for all $x, y, z \in \mathcal{X}$.

Example

Let $\mathcal X$ be the set of all people. Define a relation \sim on $\mathcal X$ by $x \sim y$ if

 $x, y \in \mathcal{X}$ have the same birthday. Then \sim is an equivalence relation on \mathcal{X} .

- **Q** Reflexivity: $x \sim x$ since x has the same birthday as x.
- **3** Symmetry: If $x \sim y$, then $y \sim x$ since x has the same birthday as y.
- **3** Transitivity: If $x \sim y$ and $y \sim z$, then $x \sim z$.

3

Equivalence Relation: More Examples

Example

Suppose $\mathcal{X} = \mathbb{Z}$ and *n* is some fixed integer. Let $a \sim b$ mean that $a \equiv b \pmod{n}$. It is easy to verify that \sim is an equivalence relation:

- **Q** Reflexivity: $a \equiv a \pmod{n}$, so $a \sim a$.
- **2** Symmetry: If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$, so $b \sim a$.
- **3** Transitivity: If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$, so $(a \sim b) \land (b \sim c) \implies a \sim c$.

Example

Isomorphism \cong is an equivalence relation on the set of all groups.

Question

For \mathbb{R} define $a \sim b$ iff $a \geq b$. Is it an equivalence relation?

(日)

3

Equivalence Classes

Notice that for the set of integers \mathbb{Z} and relation \sim defined by $a \sim b$ iff $a \equiv b \pmod{n}$, we can group all integers into equivalence classes. For example, for n = 2:

$$\mathbb{Z} = \{a \in \mathbb{Z} : a \text{ is even}\} \cup \{a \in \mathbb{Z} : a \text{ is odd}\}\$$

Can we generalize this observation for general relations?

Definition

Let \mathcal{X} be a set and \sim be an equivalence relation on \mathcal{X} . For any $x \in \mathcal{X}$, the **equivalence class** of x is the set

$$[x] = \{y \in \mathcal{X} : x \sim y\}$$

The set of all equivalence classes is denoted by \mathcal{X}/\sim (or, if the relation \mathcal{R} is given explicitly, then \mathcal{X}/\mathcal{R}), which is read as " \mathcal{X} modulo relation \sim ".

< □ > < □ > < □ > < □ > < □ > < □ >

Equivalence Classes Properties

Example

Let $\mathcal{X} = \mathbb{Z}$ and *n* be some fixed integer. Define \sim on \mathcal{X} by $x \sim y$ if $x \equiv y \pmod{n}$. Then the equivalence class of *x* is the set

$$[x] = \{y \in \mathbb{Z} : x \equiv y \pmod{n}\}$$

For example,
$$[0] = \{\dots, -2n, -n, 0, n, 2n, \dots\}$$
 while $[1] = \{\dots, -2n+1, -n+1, 1, n+1, 2n+1, \dots\}.$

Lemma

Let $\mathcal X$ be a set and \sim be an equivalence relation on $\mathcal X$. Then,

• For each $x \in \mathcal{X}, x \in [x]$ (quite obvious, follows from reflexivity).

2 For each $x, y \in \mathcal{X}$, $x \sim y$ if and only if [x] = [y].

So For each $x, y \in \mathcal{X}$, either [x] = [y] or $[x] \cap [y] = \emptyset$.

Example

Let $n \in \mathbb{N}$ and, again, $\mathcal{X} = \mathbb{Z}$ with a "modulo n" equivalence relation \mathcal{R}_n . Define the equivalence class of x by $[x]_n = \{y \in \mathbb{Z} : x \equiv y \pmod{n}\}$. Then,

$$\mathbb{Z}/\mathcal{R}_n = \{[0]_n, [1]_n, [2]_n, \dots, [n-2]_n, [n-1]_n\}$$

Elliptic Curve in Projective Coordinates

 CTRI	huted	1 2 2 2

Projective Space and Pairing 15 / 38

August 8, 2024

< ∃⇒

Definition

Definition

Projective coordinate, denoted as $\mathbb{P}^2(\mathbb{K})$ (or sometimes simply \mathbb{KP}^2) is a set of triplets of elements (X : Y : Z) from $\mathbb{A}^3(\overline{\mathbb{K}}) \setminus \{0\}$ modulo the equivalence relation:

$$(X_1:Y_1:Z_1) \sim (X_2:Y_2:Z_2)$$
 iff
 $\exists \lambda \in \overline{\mathbb{K}}^{\times} : (X_1:Y_1:Z_1) = (\lambda X_2:\lambda Y_2:\lambda Z_2)$

Example

Consider the projective space $\mathbb{P}^2(\mathbb{R})$. Then, two points $(x_1, y_1, z_1), (x_2, y_2, z_2) \in \mathbb{R}^3$ are equivalent if there exists $\lambda \in \mathbb{R} \setminus \{0\}$ such that $(x_1, y_1, z_1) = (\lambda x_2, \lambda y_2, \lambda z_2)$. For example, $(1, 2, 3) \sim (2, 4, 6)$ since $(1, 2, 3) = (0.5 \times 2, 0.5 \times 4, 0.5 \times 6)$, so $\lambda = 0.5$.

イロト イヨト イヨト ・

Illustration

Example

Now, how to geometrically interpret $\mathbb{P}^2(\mathbb{R})$? Consider the Figure below.

Equivalent points lie on the same line through the origin (0, 0, 0).

1)	ıstri	hutec	i i ai	٦
		Dates		-

Projective Space and Pairing 17 / 38

▲ □ ▶ ▲ ⓓ ▶ ▲ ≧ ▶ August 8

- ∢ ⊒ →

Question #1

Are points (1,2,3) and (3,6,9) equivalent in $\mathbb{P}^2(\mathbb{R})$?

Question #2

Are points (1,2,3) and (2,3,1) equivalent in $\mathbb{P}^2(\mathbb{R})$?

Question #3

Are points (2,4,6) and (3,6,9) equivalent in $\mathbb{P}^2(\mathbb{R})$?

Going back to Affine Space

Observation #1

Define the map $\phi : \mathbb{P}^2(\mathbb{K}) \to \mathbb{A}^2(\mathbb{K})$ as $\phi(X : Y : Z) = (X/Z, Y/Z)$ for $(X : Y : Z) \in \mathbb{P}^2(\mathbb{K})$. This map will map all equivalent points (lying on the same line) to the same point in $\mathbb{A}^2(\mathbb{K})$.

Observation #2

Define the map $\psi : \mathbb{A}^2(\mathbb{K}) \to \mathbb{P}^2(\mathbb{K})$ as $\psi(x, y) = (x : y : 1)$. This map will map all points in $\mathbb{A}^2(\mathbb{K})$ to the corresponding equivalence class in $\mathbb{P}^2(\mathbb{K})$.

Question

Given point $(2:4:2) \in \mathbb{P}^2(\mathbb{R})$, what is the corresponding point in $\mathbb{A}^2(\mathbb{R})$?

Going back to Affine Space: Illustration

Example

Again, consider three lines from the previous example. Now, we additionally draw a plane π : z = 1 in our 3-dimensional space (see Illustration below).

Illustration: Geometric interpretation of converting projective form to the affine form.

→ ¶ → → ⊂ ↓

Equation over Projective Space

Observation

If (X : Y : Z) lies on the curve, then so does (X/Z, Y/Z). Thus, since $y^2 = x^3 + ax + b$ we have:

$$\left(\frac{Y}{Z}\right)^2 = \left(\frac{X}{Z}\right)^3 + a\left(\frac{X}{Z}\right) + b$$

Definition

The **homogeneous projective form** of the elliptic curve is given by the equation:

$$Y^2 Z = X^3 + a X Z^2 + b Z^3,$$

where the point at infinity is encoded as $\mathcal{O} = (0:1:0)$.

Remark

Why $\mathcal{O} = (0:1:0)$. Note that all $(0:\lambda:0)$ lie on the Elliptic Curve.

Visualization over Projective Space

Example

Consider the BN254 curve $y^2 = x^3 + 3$ over reals \mathbb{R} . Its projective form is given by the equation $Y^2Z = X^3 + 3Z^3$, giving a surface below.

Advantage of Projective Form.

Rhetorical Question

Why having three coordinates instead of two is better?

Consider the **addition** operation:

$$\begin{split} X_{R} &= (X_{P}Z_{Q} - X_{Q}Z_{P})(Z_{P}Z_{Q}(Y_{P}Z_{Q} - Y_{Q}Z_{P})^{2} \\ &- (X_{P}Z_{Q} - X_{Q}Z_{P})^{2}(X_{P}Z_{Q} + X_{Q}Z_{P})); \\ Y_{R} &= Z_{P}Z_{Q}(X_{Q}Y_{P} - X_{P}Y_{Q})(X_{P}Z_{Q} - X_{Q}Z_{P})^{2} \\ &- (Y_{P}Z_{Q} - Y_{Q}Z_{P})((Y_{P}Z_{Q} - Y_{Q}Z_{P})^{2}Z_{P}Z_{Q} \\ &- (X_{P}Z_{Q} + X_{Q}Z_{P})(X_{P}Z_{Q} - X_{Q}Z_{P})^{2}); \\ Z_{R} &= Z_{P}Z_{Q}(X_{P}Z_{Q} - X_{Q}Z_{P})^{3}. \end{split}$$

Although looks much more complicated, it takes only 14M compared to 80M.

<日

<</p>

Illustration of adding two points

August 8, 2024

24 / 38

General Strategy

- **O** Convert affine form (X_P, Y_P) to the projective $(X_P : Y_P : 1)$.
- 2 Make many additions, doubling, multiplications etc. in projective form, getting $(X_R : Y_R : Z_R)$ at the end.
- Onvert back to affine coordinates:

$$(X_R:Y_R:Z_R)\mapsto (X_R/Z_R,Y_R/Z_R)$$

Affine Space (X_P, Y_P) $(X_R/Z_R, Y_R/Z_R)$ Projective Space $(X_P: Y_P: 1) \rightarrow$ Complex
Algorithm $(X_R: Y_R: Z_R)$

Figure: General strategy with EC operations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 August 8, 2024

General Projective Coordinates

$$(X : Y : Z) \sim (X' : Y' : Z')$$
 iff
 $\exists \lambda \in \overline{\mathbb{K}} : (X, Y, Z) = (\lambda^n X', \lambda^m Y', \lambda Z')$

In this case, to come back to the affine form, we need to use the map $\phi: (X : Y : Z) \mapsto (X/Z^n, Y/Z^m).$

Example

The case n = 2, m = 3 is called the **Jacobian Projective Coordinates**. An Elliptic Curve equation might be then rewritten as:

$$Y^2 = X^3 + aXZ^4 + bZ^6$$

Illustration of General Projective Coordinates

Example

Consider the BN254 curve $y^2 = x^3 + 3$ over reals \mathbb{R} , again. Its Jacobian projective form is given by $Y^2 = X^3 + 3Z^6$.

Projective Space and Pairing 27 / 38

August 8, 2024

27 / 38

Pairings

 CTRI	huter	1 2 2 2
	UTTER C	Lau

Projective Space and Pairing 28 / 38

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 August 8, 2024

Definition

Definition

Pairing is a bilinear, non-degenerate, efficiently computable map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$, where $\mathbb{G}_1, \mathbb{G}_2$ are two groups (typically, elliptic curve groups) and \mathbb{G}_T is a target group (typically, a set of scalars). Let us decipher the definition:

• Bilinearity means essentially the following:

 $e([a]P,[b]Q)=e([ab]P,Q)=e(P,[ab]Q)=e(P,Q)^{ab}.$

- Non-degeneracy means that e(G₁, G₂) ≠ 1 (where G₁, G₂ are generators of G₁, G₂, respectively). This property basically says that the pairing is not trivial.
- Efficient computability means that the pairing can be computed in a reasonable time.

Primitive Example

Example

Suppose $\mathbb{G}_1 = \mathbb{G}_2 = \mathbb{G}_T = \mathbb{Z}_r$ are scalars. Then, the following map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a pairing:

$$e(x,y)=2^{xy}$$

• Bilinearity:

$$e(ax, by) = 2^{abxy} = (2^{xy})^{ab} = e(x, y)^{ab}$$

 $e(ax, by) = 2^{abxy} = 2^{(x)(aby)} = e(x, aby)$

- **Non-degeneracy:** $e(1,1) = 2 \neq 1$.
- Efficient computability: Obvious.

August 8, 2024

< ロ > < 同 > < 回 > < 回 > < 回 > <

30 / 38

э

Elliptic Curve-based Pairing

Example

Pairing for BN254. For BN254 (with equation $y^2 = x^3 + 3$), the pairing function $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is defined over the following groups:

- \mathbb{G}_1 points on the regular curve $E(\mathbb{F}_p)$.
- \mathbb{G}_2 *r*-torsion points on the twisted curve $E'(\mathbb{F}_{p^2})$ over the field extension \mathbb{F}_{p^2} (with equation $y^2 = x^3 + \frac{3}{\xi}$ for $\xi = 9 + u \in \mathbb{F}_{p^2}$).

•
$$\mathbb{G}_{\mathcal{T}}$$
 — *r*th roots of unity $\Omega_r \subset \mathbb{F}_{p^{12}}^{\times}$.

Some clarifications:

- *r*-torsion subgroup: $E(\mathbb{F}_{p^m})[r] = \{P \in E(\mathbb{F}_{p^m}) : [r]P = \mathcal{O}\}.$
- *r*th roots of unity: $\Omega_r = \{z \in \mathbb{F}_{p^{12}}^{\times} : z^r = 1\}.$

Question If $E(\mathbb{F}_p)$ is cyclic, $r = |E(\mathbb{F}_p)|$, what is $E(\mathbb{F}_p)[r]$?

31 / 38

EC Pairing Illustration

Figure: Pairing illustration. It does not matter what we do first: (a) compute [a]P and [b]Q and then compute e([a]P, [b]Q) or (b) first calculate e(P, Q) and then transform it to $e(P, Q)^{ab}$.

✓ □ ► < ≥ ► < ≥ ►</p>
August 8, 2024

Pairing-friendliness

Remark

One might have a reasonable question: where does this 12 come from? The answer is following: the so-called **embedding degree** of BN254 curve is k = 12.

Definition

The following conditions are equivalent **definitions** of an embedding degree k of an elliptic curve $E(\overline{\mathbb{F}}_p)$:

- k is the smallest positive integer such that $r \mid (p^k 1)$.
- k is the smallest positive integer such that
 [¬]_{p^k} contains all of the r-th roots of unity in
 [¬]_p, that is Ω_r ⊂
 [¬]_{p^k}.

• k is the smallest positive integer such that $E(\overline{\mathbb{F}}_p)[r] \subset E(\mathbb{F}_{p^k})$ An elliptic curve is called **pairing-friendly** if it has a relatively small embedding degree k (typically, $k \leq 16$).

Application #1: BLS Signature

Suppose we have pairing $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ (with generators G_1, G_2 , respectively), and a hash function H, mapping message space \mathcal{M} to \mathbb{G}_1 .

Definition

BLS Signature consists of the following algorithms:

- Gen(·): Key generation. sk $\stackrel{R}{\leftarrow} \mathbb{Z}_q$, pk \leftarrow [sk] $G_2 \in \mathbb{G}_2$.
- Sign(sk, m). Signature is $\sigma \leftarrow [sk]H(m) \in \mathbb{G}_1$.
- Verify(pk, m, σ). Check whether $e(H(m), pk) = e(\sigma, G_2)$.

Let us check the correctness:

$$e(\sigma, G_2) = e([\mathsf{sk}]\mathsf{H}(m), G_2) = e(\mathsf{H}(m), [\mathsf{sk}]G_2) = e(\mathsf{H}(m), \mathsf{pk})$$

Remark: \mathbb{G}_1 and \mathbb{G}_2 might be switched: public keys might live instead in \mathbb{G}_1 while signatures in \mathbb{G}_2 .

Task

Alice wants to convince Bob that she knows such α, β such that $\alpha + \beta = 2$, but she does not want to reveal α, β . How to do that?

Example

- Alice computes $P \leftarrow [\alpha]G, Q \leftarrow [\beta]G$ points on the curve.
- 2 Alice sends (P, Q) to Bob.
- Solution Bob verifies whether $P \oplus Q = [2]G$.

Let us verify the correctness:

$$P \oplus Q = [\alpha]G \oplus [\beta]G = [\alpha + \beta]G = [2]G$$

Application #2: Quadratic Verifications

Task

Alice wants to convince that she knows α, β such that $\alpha\beta = 2$ without revealing α, β .

Example

- Alice computes P ← [α]G₁ ∈ G₁, Q ← [β]G₂ ∈ G₂ points on two curves.
- 2 Alice sends $(P, Q) \in \mathbb{G}_1 \times \mathbb{G}_2$ to Bob.
- Solution Bob checks whether: $e(P, Q) = e(G_1, G_2)^2$.

Again let us verify the correctness:

$$e(P,Q) = e([\alpha]G_1, [\beta]G_2) = e(G_1, G_2)^{\alpha\beta} = e(G_1, G_2)^2$$

Application #2: Quadratic Verifications

Task

Alice wants to convince that she knows x_1, x_2 such that $x_1^2 + x_1x_2 = x_2$ without revealing x_1, x_2 .

Example

Alice calculates $P_1 \leftarrow [x_1]G_1 \in \mathbb{G}_1$, $P_2 \leftarrow [x_1]G_2 \in \mathbb{G}_2$, $Q \leftarrow [x_2]G_2 \in \mathbb{G}_2$. Then, the condition can be verified by checking whether

$$e(P_1, P_2 \oplus Q)e(G_1, \ominus Q) = 1$$

Let us see the correctness of this equation:

$$e(P_1, P_2 \oplus Q)e(G_1, \ominus Q) = e([x_1]G_1, [x_1 + x_2]G_2)e(G_1, [x_2]G_2)^{-1}$$

= $e(G_1, G_2)^{x_1(x_1 + x_2)}e(G_1, G_2)^{-x_2} = e(G_1, G_2)^{x_1^2 + x_1x_2 - x_2}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Thanks for your attention!

_			
	ICTEL	huter	1 2 2 2
	13111	υιιεί	

Image: A matrix

ヨト・イヨト