
Commitment schemes

Distributed Lab

August 20, 2024

Distributed Lab Commitment schemes 1 / 24 August 20, 2024 1 / 24



Plan

1 Commitments Overview

2 Hash-based Commitments

3 Vector Commitments
Merkle Tree based Vector Commitment
Pedersen commitment

4 Polynomial commitment
Kate-Zaverucha-Goldberg (KZG)

Distributed Lab Commitment schemes 2 / 24 August 20, 2024 2 / 24



Commitments Overview

Distributed Lab Commitment schemes 3 / 24 August 20, 2024 3 / 24



Commitment Definition

Definition

A cryptographic commitment scheme allows one party to commit to a
chosen statement without revealing the statement itself. The commitment
can be revealed in full or in part at a later time, ensuring the integrity and
secrecy of the original statement until the moment of disclosure.

Figure: Overview of a commitment scheme

Distributed Lab Commitment schemes 4 / 24 August 20, 2024 4 / 24



Commitment Definition

Definition

Commitment Scheme Πcommitment is a tuple of three algorithms:
Πcommitment = (Setup,Commit,Verify).

1 Setup(1λ): returns public parameter pp for both comitter and verifier;

2 Commit(pp,m): returns a commitment c to the message m using
public parameters pp and, optionally, a secret opening hint r ;

3 Open(pp, c ,m, r): verifies the opening of the commitment c to the
message m with an opening hint r .

Distributed Lab Commitment schemes 5 / 24 August 20, 2024 5 / 24



Commitment Scheme Properties

Definition
1 Hiding: verifier should not learn any additional information about

the message given only the commitment c .
1 Perfect hiding : adversary with any computation capability tries even

forever cannot understand what you have hidden.
2 Computationally hiding : we assume that the adversary have limited

computational resources and cannot try forever to recover hidden value.

2 Binding: prover could not find another message m1 and open the
commitment c without revealing the commited message m.

1 Perfect binding : adversary with any computation capability tries even
forever cannot find another m1 that would result to the same c .

2 Computationally binding : we assume that the adversary have limited
computational resources and cannot try forever.

Note

Perfect hiding and perfect binding cannot be achived at the same time

Distributed Lab Commitment schemes 6 / 24 August 20, 2024 6 / 24



Hash-based Commitments

Distributed Lab Commitment schemes 7 / 24 August 20, 2024 7 / 24



Hash-based commitments

As the name implies, we are using a cryptographic hash function H in such
scheme.

Definition
1 Prover selects a message m from a message spaceM which he wants

to commit to: m←M
2 Prover samples random value r (usually called blinding factor) from a

challange space C ⊂ Z: r R←− C
3 Both values will be concatenated and hashed with the hash function

H to produce the commitment: c = H(m ∥ r)

Distributed Lab Commitment schemes 8 / 24 August 20, 2024 8 / 24



Vector Commitments

Distributed Lab Commitment schemes 9 / 24 August 20, 2024 9 / 24



Merkle Tree commitments

A naive approach for a vector commitment would be hash the whole
vector. More sophisticated scheme uses divide-and-conquer approach by
building a binary tree out of vector elements.

Figure: Merkle Tree structure

Distributed Lab Commitment schemes 10 / 24 August 20, 2024 10 / 24



Merkle Tree Proof (MTP)

To prove the inclusion of element into the tree, a corresponding Merkle
Branch is used. It allows to perform selective disclosure of the elements
without revealing all of them at once.

Figure: Merkle Tree inclusion proof branch

Distributed Lab Commitment schemes 11 / 24 August 20, 2024 11 / 24



Pedersen Commitment

Pedersen commitments allow us to represent arbitrarily large vectors with
a single elliptic curve point. Pedersen commitment uses a public group G
of order q and two random public generators G and U: U = [u]G . Secret
parameter u should be unknown to anyone, otherwise the Binding property
of the commitment scheme will be violated.

Note: Transparent random points generation

User can pick the publicly known number (like x coordinate of group
generator G ), calculate xi = H(x ∥ i) and corresponding yi . Check
whether (xi , yi ) is in the elliptic curve group. Repeat the process for
sequential i = 1, 2 . . . until point (xi , yi ) is in the elliptic curve group.

Distributed Lab Commitment schemes 12 / 24 August 20, 2024 12 / 24



Pedersen Commitment

Definition

Pedersen commitment scheme algorithm:

1 Prover and Verifier agrees on G and U points in a elliptic curve point
group G, q is the order of the group.

2 Prover selects a value m to commit and a blinder factor r : m← Zq,

r
R←− Zq

3 Prover generates a commitment and sends it to the Verifier:
c ← [m]G + [r ]U

During the opening stage, prover reveals (m, r) to the verifier.
To check the commitment, verifier computes: c1 = [m]G + [r ]U.
If c1 = c , prover has revealed the correct pair (m, r).

Distributed Lab Commitment schemes 13 / 24 August 20, 2024 13 / 24



Pedersen Commitment

In case the discrete logarithm of U is leaked, the binding property can be
violated by the Prover :

c = [m]G + [r ]U = [m]G + [r · u]G = [m + r · u]G

For example, (m + u, r − 1) will have the same commitment value:

[m + u + (r − 1) · u]G = [m + u − u + r · u]G = [m + r · u]G

Distributed Lab Commitment schemes 14 / 24 August 20, 2024 14 / 24



Pedersen Commitment Aggregation

Pedersen commitment have some advantages compared to hash-based
commitments. Additively homomorphic property allows to accumulate
multiple commitments into one. Consider two pairs: (m1, r1), (m2, r2).

c2 = [m1]G + [r1]U,
c2 = [m2]G + [r2]U,

ca = c1 + c2 = [m1 +m2]G + [r1 + r2]U

This works for any number of commitments, so we can encode as many
points as we like in a single one.

Distributed Lab Commitment schemes 15 / 24 August 20, 2024 15 / 24



Pedersen Vector Commitment

Suppose we have a set of random elliptic curve points (G1, . . . ,Gn) of
cyclic group G (that nobody knows the discrete logarithm of), a vector
(m1,m2 . . .mn) and a random value r . We can do the following:

c = m1 · [G1] +m2 · [G2] . . .+mn · [Gn] + r · [Q]

Since the Prover does not know the discrete logarithm of the generators,
so he can only reveal (v1, . . . , vn) to produce [C ] later, they cannot
produce another vector.
Prover can later open the commitment by revealing the vector
(m1,m2 . . .mn) and a blinding term r .

Distributed Lab Commitment schemes 16 / 24 August 20, 2024 16 / 24



Polynomial commitment

Distributed Lab Commitment schemes 17 / 24 August 20, 2024 17 / 24



Polynomial Commitment

Definition

Polynomial commitment can be used to prove that the commited
polynomial satisfies certain properties (passes through a certain point
(x , y)), without revealing what the polynomial is. The commitment is
generally succint, which means that it is much smaller than the polynomial
it represents.

Distributed Lab Commitment schemes 18 / 24 August 20, 2024 18 / 24



KZG Commitment. Simplified example

Given the polynomial: P(x) = x3 − 15x2 + 71x − 103

Prove that P(3) = 2

P(3) = 2→ 3 is a root of polynomial P(x)− 2

Proof: Q(x) =
P(x)− 2

x − 3
=

(x3 − 15x2 + 71x − 103)− 2

x − 3
= x2−12x +35

Verify: Q(x) · (x − 3) = P(x)− 2

Distributed Lab Commitment schemes 19 / 24 August 20, 2024 19 / 24



KZG Commitment

The KZG (Kate-Zaverucha-Goldberg) is a polynomial commitment
scheme:
One-time ”Powers-of-tau” trusted setup stage. During trusted setup a set
of elliptic curve points is generated. Let G be a generator point of some
pairing-friendly elliptic curve group G, s some random value in the order of
the G point and d be the maximum degree of the polynomials we want to
commit to.

[τ0]G , [τ1]G , . . . , [τd ]G

Parameter τ should be deleted after the ceremony. If it is revealed, the
commitment scheme can be broken. This parameter is usually called the
toxic waste.

Distributed Lab Commitment schemes 20 / 24 August 20, 2024 20 / 24



KZG Commitment

Commit to polynomial. Given the polynomial p(x) =
∑d

i=0 pix
i , compute

the commitment c = [p(τ)]G using the trusted setup. Although the
committer cannot compute [p(τ)]G directly since the value of τ is
unknown, he can compute it using values ([τ0]G , [τ1]G , . . . , [τd ]G ).

Distributed Lab Commitment schemes 21 / 24 August 20, 2024 21 / 24



KZGCommitment

Prove an evaluation. Given evaluation p(x0) = y0 compute proof q(τ),

where q(x) = p(x)−y0
x−x0

.
Polynomial q is called “quotient polynomial“ and only exists if and only if
p(x0) = y0. The existance of this quotient polynomial serves as a proof of
the evaluation.

Distributed Lab Commitment schemes 22 / 24 August 20, 2024 22 / 24



KZG Commitment

Verify the proof. Given a commitment c = [p(τ)]G , an evaluation
p(x0) = y0 and a proof [q(τ)G ], we need to ensure that
q(τ) · (τ − x0) = p(τ)− y0. This can be done using trusted setup without
knowledge of τ using bilinear mapping:

e(q(τ), [τ ]G2 − [x0]G2) = e(c − [y0]G1,G2)

Polynomial commiment schemes such as KZG are used in zero knowledge
proof system to encode circuit constraints as a polynomial, so that verifier
could check random points to ensure that the constraints are met.

Distributed Lab Commitment schemes 23 / 24 August 20, 2024 23 / 24



Thanks for your attention!

Distributed Lab Commitment schemes 24 / 24 August 20, 2024 24 / 24


	Commitments Overview
	Hash-based Commitments
	Vector Commitments
	Merkle Tree based Vector Commitment
	Pedersen commitment

	Polynomial commitment
	Kate-Zaverucha-Goldberg (KZG)


