Commitment schemes

Distributed Lab

August 20, 2024

ν	stri	buteo	1 La	ab

Commitment schemes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 August 20, 2024

Commitments Overview

2 Hash-based Commitments

3 Vector Commitments

- Merkle Tree based Vector Commitment
- Pedersen commitment

Polynomial commitment

• Kate-Zaverucha-Goldberg (KZG)

Commitments Overview

Distributed Lab	Commitment schemes	3 / 24	August 20, 2024	3 / 24

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Commitment Definition

Definition

A cryptographic commitment scheme allows one party to commit to a chosen statement without revealing the statement itself. The commitment can be revealed in full or in part at a later time, ensuring the integrity and secrecy of the original statement until the moment of disclosure.

Figure: Overview of a commitment scheme

- 13	ictri	hutod	1 1 2 1	
- 1 2	ISUU	unteu	டவ	1

Definition

Commitment Scheme $\Pi_{\text{commitment}}$ is a tuple of three algorithms: $\Pi_{\text{commitment}} = (\text{Setup}, \text{Commit}, \text{Verify}).$

- Setup (1^{λ}) : returns public parameter pp for both comitter and verifier;
- Commit(pp, m): returns a commitment c to the message m using public parameters pp and, optionally, a secret opening hint r;
- Open(pp, c, m, r): verifies the opening of the commitment c to the message m with an opening hint r.

Commitment Scheme Properties

Definition

- *Hiding:* verifier should not learn any additional information about the message given only the commitment *c*.
 - *Perfect hiding*: adversary with any computation capability tries even forever cannot understand what you have hidden.
 - Ocmputationally hiding: we assume that the adversary have limited computational resources and cannot try forever to recover hidden value.
- **2** Binding: prover could not find another message m_1 and open the commitment c without revealing the committed message m.
 - Perfect binding: adversary with any computation capability tries even forever cannot find another m_1 that would result to the same c.
 - Ocomputationally binding: we assume that the adversary have limited computational resources and cannot try forever.

Note

Perfect hiding and perfect binding cannot be achived at the same time

ν	stri	butec	i Lai

Hash-based Commitments

			・ロ・・ 日本・ 小田・ 小田・	æ	୬ବଙ
Distributed Lab	Commitment schemes	7 / 24	August 20, 2024		7 / 24

As the name implies, we are using a cryptographic hash function H in such scheme.

Definition

- Prover selects a message *m* from a message space *M* which he wants to commit to: *m* ← *M*
- Prover samples random value r (usually called blinding factor) from a challange space C ⊂ Z: r C
- Both values will be concatenated and hashed with the hash function H to produce the commitment: c = H(m || r)

Die	+rih	uted	h
		uteu	aD

A B A A B A

Vector Commitments

				= 1) (()
Distributed Lab	Commitment schemes	9 / 24	August 20, 2024	9 / 24

Merkle Tree commitments

A naive approach for a vector commitment would be hash the whole vector. More sophisticated scheme uses divide-and-conquer approach by building a binary tree out of vector elements.

Figure: Merkle Tree structure

D	ıstrı	bu	ted	La	h

Commitment schemes

s 10/24

✓ △ ▷ < ≥ > < ≥ >
August 20, 2024

Merkle Tree Proof (MTP)

To prove the inclusion of element into the tree, a corresponding Merkle Branch is used. It allows to perform selective disclosure of the elements without revealing all of them at once.

Figure: Merkle Tree inclusion proof branch

Die	+rih	uted	h
		uteu	aD

Pedersen commitments allow us to represent arbitrarily large vectors with a single elliptic curve point. Pedersen commitment uses a public group \mathbb{G} of order q and two random public generators G and U: U = [u]G. Secret parameter u should be unknown to anyone, otherwise the *Binding* property of the commitment scheme will be violated.

Note: Transparent random points generation

User can pick the publicly known number (like x coordinate of group generator G), calculate $x_i = H(x \parallel i)$ and corresponding y_i . Check whether (x_i, y_i) is in the elliptic curve group. Repeat the process for sequential i = 1, 2... until point (x_i, y_i) is in the elliptic curve group.

Pedersen Commitment

Definition

Pedersen commitment scheme algorithm:

- Prover and Verifier agrees on G and U points in a elliptic curve point group G, q is the order of the group.
- Prover selects a value *m* to commit and a blinder factor *r*: *m* $\leftarrow \mathbb{Z}_q$, *r* $\leftarrow \mathbb{Z}_q$
- Prover generates a commitment and sends it to the Verifier: $c \leftarrow [m]G + [r]U$

During the opening stage, prover reveals (m, r) to the verifier. To check the commitment, verifier computes: $c_1 = [m]G + [r]U$. If $c_1 = c$, prover has revealed the correct pair (m, r).

August 20, 2024

In case the discrete logarithm of U is leaked, the *binding* property can be violated by the *Prover*:

$$c = [m]G + [r]U = [m]G + [r \cdot u]G = [m + r \cdot u]G$$

For example, (m + u, r - 1) will have the same commitment value:

$$[m+u+(r-1)\cdot u]G = [m+u-u+r\cdot u]G = [m+r\cdot u]G$$

Pedersen Commitment Aggregation

Pedersen commitment have some advantages compared to hash-based commitments. Additively homomorphic property allows to accumulate multiple commitments into one. Consider two pairs: $(m_1, r_1), (m_2, r_2)$.

$$c_{2} = [m_{1}]G + [r_{1}]U,$$

$$c_{2} = [m_{2}]G + [r_{2}]U,$$

$$c_{a} = c_{1} + c_{2} = [m_{1} + m_{2}]G + [r_{1} + r_{2}]U$$

This works for any number of commitments, so we can encode as many points as we like in a single one.

Suppose we have a set of random elliptic curve points (G_1, \ldots, G_n) of cyclic group \mathbb{G} (that nobody knows the discrete logarithm of), a vector $(m_1, m_2 \ldots m_n)$ and a random value r. We can do the following:

$$c = m_1 \cdot [G_1] + m_2 \cdot [G_2] \ldots + m_n \cdot [G_n] + r \cdot [Q]$$

Since the *Prover* does not know the discrete logarithm of the generators, so he can only reveal (v_1, \ldots, v_n) to produce [C] later, they cannot produce another vector.

Prover can later open the commitment by revealing the vector $(m_1, m_2 \dots m_n)$ and a blinding term r.

Polynomial commitment

		4	日本《國本《日本《日本	≣ ୬९୯
Distributed Lab	Commitment schemes	17 / 24	August 20, 2024	17 / 24

Definition

Polynomial commitment can be used to prove that the commited polynomial satisfies certain properties (passes through a certain point (x, y)), without revealing what the polynomial is. The commitment is generally succint, which means that it is much smaller than the polynomial it represents.

D				
1)	ictri	huter	113	h
		Dutte		

KZG Commitment. Simplified example

Given the polynomial: $P(x) = x^3 - 15x^2 + 71x - 103$

Prove that P(3) = 2

 $P(3) = 2 \rightarrow 3$ is a root of polynomial P(x) - 2

Proof:
$$Q(x) = \frac{P(x) - 2}{x - 3} = \frac{(x^3 - 15x^2 + 71x - 103) - 2}{x - 3} = x^2 - 12x + 35$$

Verify: $Q(x) \cdot (x - 3) = P(x) - 2$

August 20, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The KZG (Kate-Zaverucha-Goldberg) is a polynomial commitment scheme:

One-time "Powers-of-tau" trusted setup stage. During trusted setup a set of elliptic curve points is generated. Let G be a generator point of some pairing-friendly elliptic curve group \mathbb{G} , s some random value in the order of the G point and d be the maximum degree of the polynomials we want to commit to.

 $[\tau^0]G, [\tau^1]G, \dots, [\tau^d]G$

Parameter τ should be deleted after the ceremony. If it is revealed, the commitment scheme can be broken. This parameter is usually called the *toxic waste*.

D	buted	l Lab

Commit to polynomial. Given the polynomial $p(x) = \sum_{i=0}^{d} p_i x^i$, compute the commitment $c = [p(\tau)]G$ using the trusted setup. Although the committer cannot compute $[p(\tau)]G$ directly since the value of τ is unknown, he can compute it using values $([\tau^0]G, [\tau^1]G, \dots, [\tau^d]G)$.

Prove an evaluation. Given evaluation $p(x_0) = y_0$ compute proof $q(\tau)$, where $q(x) = \frac{p(x)-y_0}{x-x_0}$. Polynomial q is called "quotient polynomial" and only exists if and only if $p(x_0) = y_0$. The existance of this quotient polynomial serves as a proof of the evaluation. Verify the proof. Given a commitment $c = [p(\tau)]G$, an evaluation $p(x_0) = y_0$ and a proof $[q(\tau)G]$, we need to ensure that $q(\tau) \cdot (\tau - x_0) = p(\tau) - y_0$. This can be done using trusted setup without knowledge of τ using bilinear mapping:

$$e(q(\tau), [\tau]G_2 - [x_0]G_2) = e(c - [y_0]G_1, G_2)$$

Polynomial commiment schemes such as KZG are used in zero knowledge proof system to encode circuit constraints as a polynomial, so that verifier could check random points to ensure that the constraints are met.

D:	-++-	hui	Fod	1 -1	
				La	

Thanks for your attention!

|--|

Image: A matrix

э