Commitment schemes

Distributed Lab

Distributed Lab

August 20, 2024

ZIKD
Camﬂp%

Commitment schemes 1/24 August 20, 2024

1/24

Plan

© Commitments Overview
© Hash-based Commitments

e Vector Commitments
@ Merkle Tree based Vector Commitment
@ Pedersen commitment

@ Polynomial commitment
o Kate-Zaverucha-Goldberg (KZG)

Distributed Lab Commitment schemes 2/24 August 20, 2024 2/24

Commitments Overview J

_ Commitment schemes 3/24 August 20, 2024 3/24

Commitment Definition

Definition

A cryptographic commitment scheme allows one party to commit to a
chosen statement without revealing the statement itself. The commitment
can be revealed in full or in part at a later time, ensuring the integrity and
secrecy of the original statement until the moment of disclosure.

Figure: Overview of a commitment scheme

Distributed Lab Commitment schemes 4/24 August 20, 2024 4/24

Commitment Definition

Definition
Commitment Scheme Mcommitment IS a tuple of three algorithms:
Meommitment = (Setup, Commit, Verify).

© Setup(1?): returns public parameter pp for both comitter and verifier;

@ Commit(pp, m): returns a commitment ¢ to the message m using
public parameters pp and, optionally, a secret opening hint r;

@ Open(pp, c, m, r): verifies the opening of the commitment c to the
message m with an opening hint r.

Distributed Lab Commitment schemes 5/24 August 20, 2024 5/24

Commitment Scheme Properties

Definition
© Hiding: verifier should not learn any additional information about
the message given only the commitment c.
@ Perfect hiding: adversary with any computation capability tries even
forever cannot understand what you have hidden.
@ Computationally hiding: we assume that the adversary have limited
computational resources and cannot try forever to recover hidden value.
@ Binding: prover could not find another message m; and open the
commitment ¢ without revealing the commited message m.
@ Perfect binding: adversary with any computation capability tries even
forever cannot find another m; that would result to the same c.
@ Computationally binding: we assume that the adversary have limited
computational resources and cannot try forever.

Note
Perfect hiding and perfect binding cannot be achived at the same time

Distributed Lab Commitment schemes 6/24 August 20, 2024 6/24

Hash-based Commitments J

_ Commitment schemes 7/24 August 20, 2024 7/24

Hash-based commitments

As the name implies, we are using a cryptographic hash function H in such
scheme.

Definition
@ Prover selects a message m from a message space M which he wants
to commit to: m < M
@ Prover samples random value r (usually called blinding factor) from a
challange space C C Z: r Ee

© Both values will be concatenated and hashed with the hash function
H to produce the commitment: ¢ = H(m || r)

Distributed Lab Commitment schemes 8/24 August 20, 2024 8/24

Vector Commitments J

_ Commitment schemes 9/24 August 20, 2024 9/24

Merkle Tree commitments

A naive approach for a vector commitment would be hash the whole

vector. More sophisticated scheme uses divide-and-conquer approach by
building a binary tree out of vector elements.

[”(”("\1 M) I HMS 0 M‘”)) [HCHCMS 1| M6) Il HME I MS/))]

H(Mi I M:l) H(MS Il M4) } (H(MS] MG)J [H(M?] M?)J

ﬁh D EE M

Figure: Merkle Tree structure

Distributed Lab

Commitment schemes 10 /24 August 20, 2024 10 /24

Merkle Tree Proof (MTP)

To prove the inclusion of element into the tree, a corresponding Merkle

Branch is used. It allows to perform selective disclosure of the elements
without revealing all of them at once.

[H(H(N I M2) Il HM3 It M‘I))J

[H(H(ME I M6) Il HMF Il M?))]

[HMT I M2)) [HM3 I M‘l) H(MS I Msﬂ [H(M? [} M?)j
T ﬁ
’[Mi] M3 MY [MG] M?J(M?]

Figure: Merkle Tree inclusion proof branch

Distributed Lab

Commitment schemes 11/24 August 20, 2024 11/24

Pedersen Commitment

Pedersen commitments allow us to represent arbitrarily large vectors with
a single elliptic curve point. Pedersen commitment uses a public group G
of order g and two random public generators G and U: U = [u]G. Secret
parameter u should be unknown to anyone, otherwise the Binding property
of the commitment scheme will be violated.

Note: Transparent random points generation

User can pick the publicly known number (like x coordinate of group
generator G), calculate x; = H(x || /) and corresponding y;. Check

whether (x;, y;) is in the elliptic curve group. Repeat the process for
sequential i = 1,2... until point (x;,y;) is in the elliptic curve group.

Distributed Lab Commitment schemes 12 /24 August 20, 2024 12 /24

Pedersen Commitment

Definition
Pedersen commitment scheme algorithm:

@ Prover and Verifier agrees on G and U points in a elliptic curve point
group G, g is the order of the group.

@ Prover selects a value m to commit and a blinder factor r: m < Zg,
R
r<— Zgq
© Prover generates a commitment and sends it to the Verifier:
¢+ [m]G +[r]U

During the opening stage, prover reveals (m, r) to the verifier.
To check the commitment, verifier computes: ¢; = [m]G + [r]U.
If ¢ = ¢, prover has revealed the correct pair (m,r).

Distributed Lab Commitment schemes 13 /24 August 20, 2024 13 /24

Pedersen Commitment

In case the discrete logarithm of U is leaked, the binding property can be
violated by the Prover:

c=[m|G+[r]U =[m]G+[r -u]G=[m+r-u]G
For example, (m + u, r — 1) will have the same commitment value:

m+u+(r—1)-ulG=[m+u—u+r-ulG=[m+r-ulG

Distributed Lab Commitment schemes 14 /24 August 20, 2024 14 /24

Pedersen Commitment Aggregation

Pedersen commitment have some advantages compared to hash-based
commitments. Additively homomorphic property allows to accumulate
multiple commitments into one. Consider two pairs: (my, 1), (mz, r2).

C = [ml]G + [r1]U,
& = [m]G + [n]U,
GG=a+c=[m+m]G+[n+n|U

This works for any number of commitments, so we can encode as many
points as we like in a single one.

Balance 1 R 1 | ¢ 1
+ + +

Balance 2 R 2 ¢ 2
+ +

Balomce 3 R3 c3

\

Balance SUM R SUM —»

Distributed Lab Commitment schemes 15 /24 August 20, 2024 15 /24

Pedersen Vector Commitment

Suppose we have a set of random elliptic curve points (Gy, ..., G,) of
cyclic group G (that nobody knows the discrete logarithm of), a vector
(m1,my...m,) and a random value r. We can do the following:

c=my-[G]+m-[G)]...+ my-[Gp] +r-[Q]

Since the Prover does not know the discrete logarithm of the generators,
so he can only reveal (vi,...,v,) to produce [C] later, they cannot
produce another vector.

Prover can later open the commitment by revealing the vector
(m1,my...my,) and a blinding term r.

Distributed Lab Commitment schemes 16 /24 August 20, 2024 16 /24

Polynomial commitment }

_ Commitment schemes 17 /24 August 20, 2024 17 /24

Polynomial Commitment

Definition

Polynomial commitment can be used to prove that the commited
polynomial satisfies certain properties (passes through a certain point
(x,y)), without revealing what the polynomial is. The commitment is
generally succint, which means that it is much smaller than the polynomial
it represents.

Distributed Lab Commitment schemes 18 /24 August 20, 2024 18 /24

KZG Commitment. Simplified example

Given the polynomial: P(x) = x> — 15x% + 71x — 103
Prove that P(3) =2

P(3) =2 — 3 is a root of polynomial P(x) — 2

- 3 15x2 +71x —103) — 2
Proof: Q(x) = PE(X)_32 = (" = 15x —:_; 03) = x? —12x+35

Verify: Q(x)-(x—3)=P(x)—2

Distributed Lab Commitment schemes 19 /24

August 20, 2024 19 /24

KZG Commitment

The KZG (Kate-Zaverucha-Goldberg) is a polynomial commitment
scheme:

One-time " Powers-of-tau” trusted setup stage. During trusted setup a set
of elliptic curve points is generated. Let G be a generator point of some
pairing-friendly elliptic curve group G, s some random value in the order of
the G point and d be the maximum degree of the polynomials we want to
commit to.

[79G,[YG,...,[r9]G

Parameter 7 should be deleted after the ceremony. If it is revealed, the
commitment scheme can be broken. This parameter is usually called the
toxic waste.

Distributed Lab Commitment schemes 20/24 August 20, 2024 20/24

KZG Commitment

Commit to polynomial. Given the polynomial p(x) = Z;j:o pix', compute
the commitment ¢ = [p(7)]G using the trusted setup. Although the
committer cannot compute [p(7)]G directly since the value of 7 is
unknown, he can compute it using values ([7°]G, [T1]G, ..., [79]G).

August 20, 2024 21/24

Distributed Lab Commitment schemes 21/24

KZGCommitment

Prove an evaluation. Given evaluation p(xp) = yo compute proof q(7),

where g(x) = 7PE<X2;5’°.
Polynomial q is called “"quotient polynomial” and only exists if and only if

p(x0) = yo. The existance of this quotient polynomial serves as a proof of
the evaluation.

Distributed Lab Commitment schemes 22 /24 August 20, 2024 22/24

KZG Commitment

Verify the proof. Given a commitment ¢ = [p(7)]G, an evaluation
p(x0) = o and a proof [g(7)G], we need to ensure that
q(7) - (r — x0) = p(7) — yo. This can be done using trusted setup without

knowledge of 7 using bilinear mapping:
e(q(7),[7]G2 — [x0] G2) = e(c — [y0] G1, G2)

Polynomial commiment schemes such as KZG are used in zero knowledge
proof system to encode circuit constraints as a polynomial, so that verifier
could check random points to ensure that the constraints are met.

Distributed Lab Commitment schemes 23 /24 August 20, 2024 23 /24

Thanks for your attention!

Distributed Lab Commitment schemes 24 /24 August 20, 2024 24 /24

	Commitments Overview
	Hash-based Commitments
	Vector Commitments
	Merkle Tree based Vector Commitment
	Pedersen commitment

	Polynomial commitment
	Kate-Zaverucha-Goldberg (KZG)

