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Commitments Overview
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Commitment Definition

Definition

A cryptographic commitment scheme allows one party to commit to a
chosen statement without revealing the statement itself. The commitment
can be revealed in full or in part at a later time, ensuring the integrity and
secrecy of the original statement until the moment of disclosure.

Figure: Overview of a commitment scheme
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Commitment Definition

Definition

Commitment Scheme Πcommitment is a tuple of three algorithms:
Πcommitment = (Setup,Commit,Verify).

1 Setup(1λ): returns public parameter pp for both comitter and verifier;

2 Commit(pp,m): returns a commitment c to the message m using
public parameters pp and, optionally, a secret opening hint r ;

3 Open(pp, c ,m, r): verifies the opening of the commitment c to the
message m with an opening hint r .
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Commitment Scheme Properties

Definition
1 Hiding: verifier should not learn any additional information about

the message given only the commitment c .
1 Perfect hiding : adversary with any computation capability tries even

forever cannot understand what you have hidden.
2 Computationally hiding : we assume that the adversary have limited

computational resources and cannot try forever to recover hidden value.

2 Binding: prover could not find another message m1 and open the
commitment c without revealing the commited message m.

1 Perfect binding : adversary with any computation capability tries even
forever cannot find another m1 that would result to the same c .

2 Computationally binding : we assume that the adversary have limited
computational resources and cannot try forever.

Note

Perfect hiding and perfect binding cannot be achived at the same time
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Hash-based Commitments
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Hash-based commitments

As the name implies, we are using a cryptographic hash function H in such
scheme.

Definition
1 Prover selects a message m from a message spaceM which he wants

to commit to: m←M
2 Prover samples random value r (usually called blinding factor) from a

challange space C ⊂ Z: r R←− C
3 Both values will be concatenated and hashed with the hash function

H to produce the commitment: c = H(m ∥ r)
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Vector Commitments
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Merkle Tree commitments

A naive approach for a vector commitment would be hash the whole
vector. More sophisticated scheme uses divide-and-conquer approach by
building a binary tree out of vector elements.

Figure: Merkle Tree structure
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Merkle Tree Proof (MTP)

To prove the inclusion of element into the tree, a corresponding Merkle
Branch is used. It allows to perform selective disclosure of the elements
without revealing all of them at once.

Figure: Merkle Tree inclusion proof branch

Distributed Lab Commitment schemes 11 / 24 August 20, 2024 11 / 24



Pedersen Commitment

Pedersen commitments allow us to represent arbitrarily large vectors with
a single elliptic curve point. Pedersen commitment uses a public group G
of order q and two random public generators G and U: U = [u]G . Secret
parameter u should be unknown to anyone, otherwise the Binding property
of the commitment scheme will be violated.

Note: Transparent random points generation

User can pick the publicly known number (like x coordinate of group
generator G ), calculate xi = H(x ∥ i) and corresponding yi . Check
whether (xi , yi ) is in the elliptic curve group. Repeat the process for
sequential i = 1, 2 . . . until point (xi , yi ) is in the elliptic curve group.
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Pedersen Commitment

Definition

Pedersen commitment scheme algorithm:

1 Prover and Verifier agrees on G and U points in a elliptic curve point
group G, q is the order of the group.

2 Prover selects a value m to commit and a blinder factor r : m← Zq,

r
R←− Zq

3 Prover generates a commitment and sends it to the Verifier:
c ← [m]G + [r ]U

During the opening stage, prover reveals (m, r) to the verifier.
To check the commitment, verifier computes: c1 = [m]G + [r ]U.
If c1 = c , prover has revealed the correct pair (m, r).
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Pedersen Commitment

In case the discrete logarithm of U is leaked, the binding property can be
violated by the Prover :

c = [m]G + [r ]U = [m]G + [r · u]G = [m + r · u]G

For example, (m + u, r − 1) will have the same commitment value:

[m + u + (r − 1) · u]G = [m + u − u + r · u]G = [m + r · u]G
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Pedersen Commitment Aggregation

Pedersen commitment have some advantages compared to hash-based
commitments. Additively homomorphic property allows to accumulate
multiple commitments into one. Consider two pairs: (m1, r1), (m2, r2).

c2 = [m1]G + [r1]U,
c2 = [m2]G + [r2]U,

ca = c1 + c2 = [m1 +m2]G + [r1 + r2]U

This works for any number of commitments, so we can encode as many
points as we like in a single one.
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Pedersen Vector Commitment

Suppose we have a set of random elliptic curve points (G1, . . . ,Gn) of
cyclic group G (that nobody knows the discrete logarithm of), a vector
(m1,m2 . . .mn) and a random value r . We can do the following:

c = m1 · [G1] +m2 · [G2] . . .+mn · [Gn] + r · [Q]

Since the Prover does not know the discrete logarithm of the generators,
so he can only reveal (v1, . . . , vn) to produce [C ] later, they cannot
produce another vector.
Prover can later open the commitment by revealing the vector
(m1,m2 . . .mn) and a blinding term r .
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Polynomial commitment
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Polynomial Commitment

Definition

Polynomial commitment can be used to prove that the commited
polynomial satisfies certain properties (passes through a certain point
(x , y)), without revealing what the polynomial is. The commitment is
generally succint, which means that it is much smaller than the polynomial
it represents.
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KZG Commitment. Simplified example

Given the polynomial: P(x) = x3 − 15x2 + 71x − 103

Prove that P(3) = 2

P(3) = 2→ 3 is a root of polynomial P(x)− 2

Proof: Q(x) =
P(x)− 2

x − 3
=

(x3 − 15x2 + 71x − 103)− 2

x − 3
= x2−12x +35

Verify: Q(x) · (x − 3) = P(x)− 2
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KZG Commitment

The KZG (Kate-Zaverucha-Goldberg) is a polynomial commitment
scheme:
One-time ”Powers-of-tau” trusted setup stage. During trusted setup a set
of elliptic curve points is generated. Let G be a generator point of some
pairing-friendly elliptic curve group G, s some random value in the order of
the G point and d be the maximum degree of the polynomials we want to
commit to.

[τ0]G , [τ1]G , . . . , [τd ]G

Parameter τ should be deleted after the ceremony. If it is revealed, the
commitment scheme can be broken. This parameter is usually called the
toxic waste.
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KZG Commitment

Commit to polynomial. Given the polynomial p(x) =
∑d

i=0 pix
i , compute

the commitment c = [p(τ)]G using the trusted setup. Although the
committer cannot compute [p(τ)]G directly since the value of τ is
unknown, he can compute it using values ([τ0]G , [τ1]G , . . . , [τd ]G ).
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KZGCommitment

Prove an evaluation. Given evaluation p(x0) = y0 compute proof q(τ),

where q(x) = p(x)−y0
x−x0

.
Polynomial q is called “quotient polynomial“ and only exists if and only if
p(x0) = y0. The existance of this quotient polynomial serves as a proof of
the evaluation.
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KZG Commitment

Verify the proof. Given a commitment c = [p(τ)]G , an evaluation
p(x0) = y0 and a proof [q(τ)G ], we need to ensure that
q(τ) · (τ − x0) = p(τ)− y0. This can be done using trusted setup without
knowledge of τ using bilinear mapping:

e(q(τ), [τ ]G2 − [x0]G2) = e(c − [y0]G1,G2)

Polynomial commiment schemes such as KZG are used in zero knowledge
proof system to encode circuit constraints as a polynomial, so that verifier
could check random points to ensure that the constraints are met.
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Thanks for your attention!
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