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Commitment Definition

Definition

A cryptographic commitment scheme allows one party to commit to a
chosen statement without revealing the statement itself. The commitment
can be revealed in full or in part at a later time, ensuring the integrity and
secrecy of the original statement until the moment of disclosure.

Figure: Overview of a commitment scheme
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Commitment Definition

Definition
Commitment Scheme Mcommitment IS a tuple of three algorithms:
Meommitment = (Setup, Commit, Verify).

© Setup(1?): returns public parameter pp for both comitter and verifier;

@ Commit(pp, m): returns a commitment ¢ to the message m using
public parameters pp and, optionally, a secret opening hint r;

@ Open(pp, c, m, r): verifies the opening of the commitment c to the
message m with an opening hint r.
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Commitment Scheme Properties

Definition
© Hiding: verifier should not learn any additional information about
the message given only the commitment c.
@ Perfect hiding: adversary with any computation capability tries even
forever cannot understand what you have hidden.
@ Computationally hiding: we assume that the adversary have limited
computational resources and cannot try forever to recover hidden value.
@ Binding: prover could not find another message m; and open the
commitment ¢ without revealing the commited message m.
@ Perfect binding: adversary with any computation capability tries even
forever cannot find another m; that would result to the same c.
@ Computationally binding: we assume that the adversary have limited
computational resources and cannot try forever.

Note
Perfect hiding and perfect binding cannot be achived at the same time
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Hash-based commitments

As the name implies, we are using a cryptographic hash function H in such
scheme.

Definition
@ Prover selects a message m from a message space M which he wants
to commit to: m < M
@ Prover samples random value r (usually called blinding factor) from a
challange space C C Z: r Ee

© Both values will be concatenated and hashed with the hash function
H to produce the commitment: ¢ = H(m || r)
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Vector Commitments J
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Merkle Tree commitments

A naive approach for a vector commitment would be hash the whole

vector. More sophisticated scheme uses divide-and-conquer approach by
building a binary tree out of vector elements.
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Figure: Merkle Tree structure
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Merkle Tree Proof (MTP)

To prove the inclusion of element into the tree, a corresponding Merkle

Branch is used. It allows to perform selective disclosure of the elements
without revealing all of them at once.
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Figure: Merkle Tree inclusion proof branch
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Pedersen Commitment

Pedersen commitments allow us to represent arbitrarily large vectors with
a single elliptic curve point. Pedersen commitment uses a public group G
of order g and two random public generators G and U: U = [u]G. Secret
parameter u should be unknown to anyone, otherwise the Binding property
of the commitment scheme will be violated.

Note: Transparent random points generation

User can pick the publicly known number (like x coordinate of group
generator G), calculate x; = H(x || /) and corresponding y;. Check

whether (x;, y;) is in the elliptic curve group. Repeat the process for
sequential i = 1,2... until point (x;,y;) is in the elliptic curve group.

Distributed Lab Commitment schemes 12 /24 August 20, 2024 12 /24



Pedersen Commitment

Definition
Pedersen commitment scheme algorithm:

@ Prover and Verifier agrees on G and U points in a elliptic curve point
group G, g is the order of the group.

@ Prover selects a value m to commit and a blinder factor r: m < Zg,
R
r<— Zgq
© Prover generates a commitment and sends it to the Verifier:
¢+ [m]G +[r]U

During the opening stage, prover reveals (m, r) to the verifier.
To check the commitment, verifier computes: ¢; = [m]G + [r]U.
If ¢ = ¢, prover has revealed the correct pair (m,r).
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Pedersen Commitment

In case the discrete logarithm of U is leaked, the binding property can be
violated by the Prover:

c=[m|G+[r]U =[m]G+[r -u]G=[m+r-u]G
For example, (m + u, r — 1) will have the same commitment value:

m+u+(r—1)-ulG=[m+u—u+r-ulG=[m+r-ulG

Distributed Lab Commitment schemes 14 /24 August 20, 2024 14 /24



Pedersen Commitment Aggregation

Pedersen commitment have some advantages compared to hash-based
commitments. Additively homomorphic property allows to accumulate
multiple commitments into one. Consider two pairs: (my, 1), (mz, r2).

C = [ml]G + [r1]U,
& = [m]G + [n]U,
GG=a+c=[m+m]G+[n+n|U

This works for any number of commitments, so we can encode as many
points as we like in a single one.

Balance 1 R 1 | ¢ 1
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Balance 2 R 2 ¢ 2
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Pedersen Vector Commitment

Suppose we have a set of random elliptic curve points (Gy, ..., G,) of
cyclic group G (that nobody knows the discrete logarithm of), a vector
(m1,my...m,) and a random value r. We can do the following:

c=my-[G]+m-[G)]...+ my-[Gp] +r-[Q]

Since the Prover does not know the discrete logarithm of the generators,
so he can only reveal (vi,...,v,) to produce [C] later, they cannot
produce another vector.

Prover can later open the commitment by revealing the vector
(m1,my...my,) and a blinding term r.
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Polynomial Commitment

Definition

Polynomial commitment can be used to prove that the commited
polynomial satisfies certain properties (passes through a certain point
(x,y)), without revealing what the polynomial is. The commitment is
generally succint, which means that it is much smaller than the polynomial
it represents.
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KZG Commitment. Simplified example

Given the polynomial: P(x) = x> — 15x% + 71x — 103
Prove that P(3) =2

P(3) =2 — 3 is a root of polynomial P(x) — 2

- 3 15x2 +71x —103) — 2
Proof: Q(x) = PE(X)_32 = (" = 15x —:_; 03) = x? —12x+35

Verify: Q(x)-(x—3)=P(x)—2
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KZG Commitment

The KZG (Kate-Zaverucha-Goldberg) is a polynomial commitment
scheme:

One-time " Powers-of-tau” trusted setup stage. During trusted setup a set
of elliptic curve points is generated. Let G be a generator point of some
pairing-friendly elliptic curve group G, s some random value in the order of
the G point and d be the maximum degree of the polynomials we want to
commit to.

[79G,[YG,...,[r9]G

Parameter 7 should be deleted after the ceremony. If it is revealed, the
commitment scheme can be broken. This parameter is usually called the
toxic waste.
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KZG Commitment

Commit to polynomial. Given the polynomial p(x) = Z;j:o pix', compute
the commitment ¢ = [p(7)]G using the trusted setup. Although the
committer cannot compute [p(7)]G directly since the value of 7 is
unknown, he can compute it using values ([7°]G, [T1]G, ..., [79]G).
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KZGCommitment

Prove an evaluation. Given evaluation p(xp) = yo compute proof q(7),

where g(x) = 7PE<X2;5’°.
Polynomial q is called “"quotient polynomial” and only exists if and only if

p(x0) = yo. The existance of this quotient polynomial serves as a proof of
the evaluation.
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KZG Commitment

Verify the proof. Given a commitment ¢ = [p(7)]G, an evaluation
p(x0) = o and a proof [g(7)G], we need to ensure that
q(7) - (r — x0) = p(7) — yo. This can be done using trusted setup without

knowledge of 7 using bilinear mapping:
e(q(7),[7]G2 — [x0] G2) = e(c — [y0] G1, G2)

Polynomial commiment schemes such as KZG are used in zero knowledge
proof system to encode circuit constraints as a polynomial, so that verifier
could check random points to ensure that the constraints are met.
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Thanks for your attention!
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