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Introduction
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Classical Proofs

First proofs you have probably
encountered were geometry proofs.

You were given axioms and you can
prove certain statements x using them.

The proof π is a sequence of logical
steps that lead from axioms to the
statement. Essentially, you have a
witness w that proves the statement.

Your teacher is the verifier V who
checks your proof, while you are the
prover P.
This is a classical proof and in a sense,
it is a non-interactive proof.

Figure: Geometry proof.
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Motivation

Note

However, we cannot use such proofs in the digital world.

Proofs must be verified by computers. Therefore, we need to develop
mathematic framework to be able to program them.

This leads to the question: what is statement? What is proof?
What is witness? How to formally define them?

We need to formalize these concepts.

Figure: Hmm. . .
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The most basic setting

We have a prover P and a verifier V.
Prover P wants to prove some statement x to the verifier.

Prover P has a witness w that contains all necessary information to
prove the statement x . He sends π as a proof.

Verifier V wants to be convinced that the statement x is true.

Proof

Claim  
Witness

Accept/ 
Reject

Figure: Typical setup for cryptographic proofs.

Distributed Lab Introduction to ZK 6 / 40 August 22, 2024 6 / 40



The Goal of SNARKs, STARKs etc.

We will try to solve the following problems:

Completeness: If x is true, π proofs the statement.

Soundness: If x is false, the prover P should not be able to convince
the verifier V via any π∗.

Zero-knowledge: π does not reveal anything about w .

Argument of knowledge: Sometimes, the prover P should convince
the verifier V that besides x is true, he knows the witness w .

Succinctness: The proof should be short, ideally polylogarithmic in
the size of the statement (π = polylog(|x |)) + fast verification.

Arithmetization: We need to convert the statement x into some
algebraic form + make it relatively universal.

Note

SNARK, STARK, etc. will solve these problems!
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Example to demonstrate the goal

Example

Given a hash function H : {0, 1}∗ → {0, 1}ℓ, P wants to convince V that
he knows the preimage x ∈ {0, 1}∗ such that H(x) = y .

Zero-knowledge: The prover P does not want to reveal anything
about the pre-image x to the verifier V.
Argument of knowledge: Proving y has a pre-image is useless. P
must show he knows x ∈ {0, 1}∗ s.t. H(x) = y .

Succinctness: If the hash function takes n operations to compute,
the proof should be much shorter than n operations. State-of-art:
size is polylog(n) = O((log n)c). Verification time is also typically
polylogarithmic (or even O(1) in some cases).

Note

But first, let us start with the basics.
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Relations. Languages. NP Statements.
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Language

Definition (Relation)

Given two sets X and Y, the relation is R ⊆ X × Y.
X is typically a set of statements.

Y is a set of witnesses.

Definition (Language of true statements)

Let R ⊆ X × Y be a relation. We say that a statement x ∈ X is a true
statement if (x , y) ∈ R for some y ∈ Y, otherwise the statement is called
false. We define by LR (the language over relation R) the set of all true
statements, that is:

LR = {x ∈ X : ∃y ∈ Y such that (x , y) ∈ R}.
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Language Example #1: Semiprimes

Example (Product of Two Primes (Semiprimes))

Claim: number n ∈ N is the product of two prime numbers
w = (p, q) ∈ N× N. The relation is given by:

R = {(n, p, q) ∈ N3 : n = p · q where p, q are primes}

In this particular case, the language of true statements is defined as

LR = {n ∈ N : ∃w = (p, q) are primes such that n = p · q}

Valid witness #1: n = 15 ∈ LR. Witness: w = (3, 5).

Invalid witness: n = 16 ̸∈ LR. There is no valid witness.

Valid witness #2: n = 50252009 ∈ LR. Witness: w = (5749, 8741).

Question: Is n = 27 a true statement? What about n = 26?
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Language Example #2: Square Root

Reminder

Z×
N = {x ∈ ZN : gcd{x ,N} = 1}. Example: Z×

10 = {1, 3, 7, 9}

Example

Claim: number x ∈ Z×
N is a quadratic residue modulo N:

(∃w ∈ Z×
N) : {x ≡ w2 (mod N)} (w is modular square root of x).

Relation: R = {(x ,w) ∈ (Z×
N)

2 : x ≡ w2 (mod N)}
Language: LR = {x ∈ Z×

N : ∃w ∈ Z×
N such that x ≡ w2 (mod N)}.

Examples for N = 7:

4 ∈ LR since 52 ≡ 4 (mod 7).

3 ̸∈ LR since there is no valid witness for 3.

Question: Is x = 1 a true statement for N = 5? What about x = 4?
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NP Statements: Demonstration

Well. . .We are simply going to send witness w to the verifier V and he will
check if the statement is true (meaning, whether x ∈ LR).

Witness

Claim  
Witness

Accept/ 
Reject

Figure: Typical setup for cryptographic proofs.
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NP Statements

Definition (P Language)

Problem is in the P class if exists a polytime algorithm checking x ∈ L.

Definition (NP Language)

A language LR belongs to the NP class if there exists a polynomial-time
verifier V such that the following two properties hold:

Completeness: If x ∈ LR, then there is a witness w such that
V(x ,w) = 1 with |w | = poly(|x |). Essentially, it states that true
claims have short proofs.

Soundness: If x ̸∈ LR, then for any w it holds that V(x ,w) = 0.
Essentially, it states that false claims have no proofs.

Theorem

Any NP problem has a zero-knowledge proof.
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Question (aka Motivation)

But can we do better?
Sending witness is. . .Weird. . .

Figure: Hmm. . .#2
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Interactive Proofs
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Solution!

We add two more ingredients:

Interaction: instead of
passively receiving the
proof, the verifier V can
interact with the prover
P by sending challenges
and receiving responses.

Randomness: V can
send random coins
(challenges) to the
prover, which P can use
to generate responses.

Prover P
Comp. Unbounded

Verifier V
Probabilistic

Poly-Time (PPT)

Send m1

Toss coin r1, send query q1

Send m2

Toss coin r2, send query q2
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Quadratic Residue Interactive Proof

Problem Statement

Statement: x ∈ LR where our language is defined as:

LR = {x ∈ Z×
N : ∃w ∈ Z×

N such that x ≡ w2 (modN)}

Witness: w = modular square root of x .

How does P and V interact? Consider the figure below.

�� Sample r from ZN uniforml�
�� Send a = r2 (mod N)

I know w s.t.

w2 = x (mod N)

Is x indeed a

quadr. residue?
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Quadratic Residue Interactive Proof

�� Sample r from ZN uniforml�
�� Send a = r2 (mod N)

� If I gave you the square root of a 
and ax, you would be convinced 
that the claim is true, but you learn 
the witness w�

� Instead, I will send you either r or 
rw, but you are to choose!


I know w s.t.

w2 = x (mod N)

Is x indeed a

quadr. residue?
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Quadratic Residue Interactive Proof

�� Sample r from ZN uniforml�
�� Send a = r2 (mod N)

� If I gave you the square root of a 
and ax, you would be convinced 
that the claim is true, but you learn 
the witness w�

� Instead, I will send you either r or 
rw, but you are to choose!


Ok, I choose random bit b

I know w s.t.

w2 = x (mod N)

Is x indeed a

quadr. residue?
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Quadratic Residue Interactive Proof

�� Sample r from ZN uniforml�
�� Send a = r2 (mod N)

� If I gave you the square root of a 
and ax, you would be convinced 
that the claim is true, but you learn 
the witness w�

� Instead, I will send you either r or 
rw, but you are to choose!


� If b=0, send z = �
� If b=1, send z = rw (mod N)

Ok, I choose random bit b

Check if z2 = axb

I know w s.t.

w2 = x (mod N)

Is x indeed a

quadr. residue?
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Quadratic Residue Interactive Proof: Analysis

Interactive Protocol

1 P samples r
R←− Z×

N and sends a = r2 to V.
2 V sends a random bit b ∈ {0, 1} to P.
3 P sends z = r · wb to V.
4 V accepts if z2 = a · xb, otherwise it rejects.

5 Repeat λ ∈ N times.

Lemma

The aforementioned protocol is complete and sound.

Completeness. If b = 0, then z = r and thus z2 = r2 = a, check passes.
If b = 1, then z = rw and thus z2 = r2w2 = ax , check passes.
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Quadratic Residue Interactive Proof: Analysis

Soundness. The main reason why the protocol is sound is insribed in the
theorem below.

Theorem

For any prover P∗ with x ̸∈ LR, the probability of V accepting the proof is
at most 1/2.

Corollary. After repeating the protocol λ times, we have

Pr[V accepts after λ rounds] ≤ 1

2λ
= negl(λ).

Thus, we showed both completeness and soundness of the protocol.
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Interactive Protocol Definition

⟨P,V⟩(x) reads as “interaction between P and V on the statement x”.

Definition

A pair of algorithms (P,V) is called an interactive proof for a language
LR if V is a polynomial-time verifier and the following two properties hold:

Completeness: For any x ∈ LR, Pr[⟨P,V⟩(x) = accept] = 1.

Soundness: For any x ̸∈ LR and for any prover P∗, we have

Pr[⟨P∗,V⟩(x) = accept] ≤ negl(λ)

Definition

The class of interactive proofs (IP) is defined as:

IP = {L : there is an interactive proof (P,V) for L}.
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Zero-Knowledge Informal Definition

Definition

An interactive proof system (P,V) is called zero-knowledge if for any
polynomial-time verifier V∗ and any x ∈ LR, the interaction ⟨P,V∗⟩(x)
gives nothing new about the witness w .

Definition

The pair of algorithms (P,V) is called a zero-knowledge interactive
protocol if it is complete, sound, and zero-knowledge.

Well, the claim is true,

but what was the witness


anyway?!

I know witness,

but I will not show


you it!
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Verifier’s View

Question #1

What has the verifier learned during the interaction?

First things first, he learned that the statement x is true.

He also knows queries (q1, . . . , qℓ) and random coins (r1, . . . , rℓ) he
tossed (since he is the one who has sent them).

Moreover, he knows the prover’s messages (m1,m2, . . . ,mℓ).

Definition

All the conversation that verifier has witnessed is called verifier’s view
and is denoted as

viewV(P,V) = (m1, r1, q1,m2, r2, q2, . . . ,mℓ, rℓ, qℓ).

Fact: viewV(P,V) is a random variable.
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Verifier’s View: Example

Example

For QN test, set N := 3× 230 + 1 (prime number), and P wants to
convince that 1286091780 ∈ LR . Conversation is the following:

1 During the first round, P sends 672192003 to V.
2 V sends b = 0 to P.
3 P sends 2606437826 to V.
4 V verifies that indeed 26064378262 ≡ 672192003 (mod N).

5 During the second round, P sends 2619047580 to V.
6 V chooses b = 1 and sends to P.
7 P sends 1768388249 to V.
8 V verifies that 17683882492 ≡ 2619047580× 1286091780 (mod N).

9 Conversation ends.
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Verifier’s View: Example

Example

The view of the verifier V is the following:

viewV(V,P)[1286091780]
= (672192003, 0, 2606437826, 2619047580, 1, 1768388249)

Essentially, this view is the same as you have witnessed.

You have not learned anything about w that prover P knows.

The witness was w = 3042517305 and two randomnesses were
r1 = 2606437826 and r2 = 3023142760.

This is a random variable: conversation could be different.
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Zero-Knowledge Formally: Simulation Paradigm

Question #2

What does it mean that the protocol is zero-knowledge?

Protocol is zero-knowledge if, given the verifier’s viewV(P,V), verifier
cannot infer any information about the witness w .

What does it mean that verifier V learns nothing new? It means that
this view could have been simulated by V without even running an
interaction.

Call the view after the real interaction as real view, while the view
after the simulation as simulated view.

Note

Such idea of defining the zero-knowledge is called simulation paradigm
and currently the most widely used way to prove zero-knowledge.
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Computational Indistinguishability

PPT Distinguisher

Distribution D1

Distribution D2

Sample 
from Db

Definition (Informal Computational Indistinguisability)

D1 and D2 are computationally indistinguishable (denoted by D1 ≈ D2)
if for any PPT distinguisher D, even after polynomial number k of samples

from Db (where b
R←− {0, 1}), for prediction b̂: Pr[b̂ = b] < 1

2 + negl(k).
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Zero-Knowledge Formally (Kind of)

Finally, we are ready to define the zero-knowledge.

Definition (Honest-Verifier Zero-Knowledge (HVZK))

An interactive protocol (P,V) is honest-verifier zero-knowledge
(HVZK) for a language LR there exists a poly-time simulator Sim such
that for any valid statement x ∈ LR:

viewV(P,V)[x ] ≈ Sim(x , 1λ)

Definition (Zero-Knowledge (ZK))

An interactive protocol (P,V) is zero-knowledge (ZK) for a language
LR if for every poly-time verifier V∗ there exists a poly-time simulator Sim
such that for any valid statement x ∈ LR:

viewV∗(P,V∗)[x ] ≈ Sim(x , 1λ)
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Proof of Knowledge: Why?

Now, the main issue with the above definition is that we have proven the
statement correctness, but we have not proven that the prover knows the
witness. These are completely two distinct things!

Example

Consider the discrete logarithm relation and language for a cyclic
group E (Fp) of order r :

R = {(P, α) ∈ E (Fp)× Zr : P = [α]G},
LR = {P ∈ E (Fp) : ∃α ∈ Zr such that P = [α]G}

Question

What does it mean that X ∈ LR?

Turns out LR = E (Fp), so the proof X ∈ LR itself is useless.
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Proof of Knowledge: Definition

1 The knowledge of witness means that we can extract the witness
while interacting with the prover.

2 Thus, there should be an algorithm called extractor E which can
extract the witness w .

3 E is given more power than V (otherwise, if the protocol is
zero-knowledge, we cannot extract w). E can rewind and call prover
P multiple times.

4 Sometimes, this is referred to as “extractor E uses P as an oracle”.

Definition (Proof of Knowledge)

The interactive protocol (P,V) is a proof of knowledge for LR if exists a
poly-time extractor algorithm E such that for any valid statement x ∈ LR,
in expected poly-time EP(x) outputs w such that (x ,w) ∈ R.
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Proof of Knowledge: Example

Lemma

The quadratic residue interactive protocol is a proof of knowledge.

Proof. Let us define the extractor E for the statement x as follows:

1 Run the prover to receive a ≡ r2 (mod N) (r is chosen randomly
from Z∗

N).

2 Set verifier’s message to b = 0 to get z1 ← r .

3 Rewind and set verifier’s message to b = 1 to get z2 ← rw (mod N).

4 Output z2/z1 (mod N)

The extractor E will always output w if x ∈ LR. □
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Fiat-Shamir Heuristic
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Cryptographic Oracle

Definition (Cryptographic Oracle)

Informally, cryptographic oracle is simply a function O that gives in O(1)
an answer to some typically very hard problem.

Example (CDH Problem)

Consider the Computational Diffie-Hellman (CDH) problem on the
cyclic elliptic curve E (Fp) of prime order r with a generator G .
Hard Problem: [αβ]G given [α]G and [β]G where α, β ∈ Zr .
Oracle: However, we could assume that such problem can be solved in
O(1) by a cryptographic oracle OCDH : ([α]G , [β]G ) 7→ [αβ]G .
This way, we can rigorously prove the security of some cryptographic
protocols even if the Diffie-Hellman problem is suddenly solved.
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Random Oracle (RO)

One of the most popular cryptographic oracles is the random oracle OR.

Definition (Informal definition of RO)

Suppose someone is inputting x to the random oracle OR : X → Ya. The
oracle OR does the following:

1 If x has been queried before, the oracle returns the same value as it
returned before.

2 If x has not been queried before, the oracle returns a randomly
uniformly sampled value from the output space Y.

aTypically, RO works with a family of functions f : X → Y, but we are not going too
deep into the details.

Question

Which very well-known cryptographic object can “serve” as a random
oracle?
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Fiat-Shamir Transformation

Statement

Any interactive public-coin protocol can be converted into a
non-interactive public-coin protocol with preserving completeness,
soundness, and zero-knowledge using the random oracle.

One of such transformations is called Fiat-Shamir heuristic. Idea:

1 If all what V does is sending uniformly random values, this is an
overkill.

2 Instead of V sending random values, prover should be able to generate
it himself, but he should not know the randomness in advance.

3 Thus, we can replace the verifier’s messages with the hash (random
oracle) of all the previous conversation.
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Fiat-Shamir Heuristic Illustration

N
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n
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p
ar
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Prover P
Proof Stream

(with random oracle OR)
Verifier V

“Send” m1

r1 ← OR(x ,m1)

“Send” m2

r2 ← OR(x ,m1,m2)

“Send” mℓ

rℓ ← OR(x ,m1, . . . ,mℓ)

Send π = (m1, r1,m2, r2, . . . ,mℓ, rℓ)
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Thank you for your attention!
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