Sigma Protocols

Distributed Lab

Distributed Lab

September 3, 2024

ZIKD
Camu;?

Introduction to ZK 1/30 September 3, 2024

1/30



Plan

o Introduction
@ Recap
@ Motivation for X-protocols
© Schnorr Identification Protocol
@ Interactive Protocol
@ Non-interactive Schnorr's Identification Protocol
@ Schnorr's Signature Scheme
© Sigma Protocols
@ Definition
@ Sigma Protocols Examples
@ Okamoto Representation Protocol
@ Chaum-Pedersen Protocol
@ Pre-image of a homomorphism X-protocol
@ Combining >-Protocols
© Coding Time!
@ Okamoto’s Protocol

Distributed Lab Introduction to ZK 2/30 September 3, 2024 2/30



Introduction J

_ Introduction to ZK 3/30 September 3, 2024 3/30



Recap on Interactive Proofs

o Interactive proofs allows practically prover P to convince the verifier
V that some statement is true.

@ Soundness ensures that the prover cannot cheat the verifier, while
zero-knowledge that the verifier learns nothing about the witness.

o Argument of knowledge ensures that the prover also “"knows" the
witness (that is, exists some extractor £ that, acting as an admin, can
extract the witness).

o If verifier's messages are random values, the protocol is public-coin.

@ Any public-coin protocol can be transformed into a non-interactive
proof using Fiat-Shamir heuristic.

Announcement

Today, we will build and code our first non-interactive proof system using
the Fiat-Shamir heuristic based on Sigma protocols!

Distributed Lab Introduction to ZK 4/30 September 3, 2024 4/30



Motivation

In many cases, we need to prove relatively trivial statements without
revealing the witness:

@ "I know the discrete log of a point P € E(F,)".

o “I know the representation of a point P € E(F,), that is (a, 3) € Z2
such that P = [o]G + [B]H".

o I know the eth modular root w of x € Zy, (that is, w® = x)". For
e = 2, see previous lecture.

o “l know that (P, Q, R) € E(F,)? is a Diffie-Hellman triplet”.
> -protocols are also fundamentally similar to Bulletproofs!

Note

Everything that has a natural “homomorphic” /discrete-log-like structure
can be proven using Sigma (X) protocols!

Distributed Lab Introduction to ZK 5/30 September 3, 2024 5/30



Schnorr Identification Protocol J

_ Introduction to ZK 6/30 September 3, 2024 6/30



Problem Statement

Suppose G is a cyclic group of order g with a generator g. Then, the
relation and language being considered are:

R={(u,a) eGxZg:u=g Lr={uveG:3a€Zy:u=g"}

Problem #1

P wants to convince V that it knows the discrete log of u € L. That is,
he knows « such that (u, ) € R.

Problem #2

Why cannot we simply send a? Because we do not want to reveal the
witness! That is why we need a zero-knowledge non-interactive argument
of knowledge (zk-NARK).

Distributed Lab Introduction to ZK 7/30 September 3, 2024 7/30



Protocol Flow

g 8

Prover P Verifier V
1
r i Z; :
a«— g’ 1
1
. 1
1 1
' Send a -
1 2
, .
: e & Zq
1
1
' Send e
I‘

Compute 0 < r + ae € Zg

Send o

1
1

A
r >
1
1

Verify g7 = a- u¢

ibuted Lab Introduction to ZK 8/30 September 3, 2024 8/30



Protocol Flow

Definition
The Schnorr interactive identification protocol s, = (Gen, P, V)
with a generation function Gen and prover P and verifier V is defined as:

o Gen(11): Take « & Zgq and u < g®. Output: verification key
vk := u, and secret key sk := a.
@ The protocol between (P, V) is run as follows:
P computes r <~ Z;,a <+ g’ and sends a to V.
V sends a random challenge e <* Zg to P.

P computes 0 < r + ce € Zg and sends o to V.
V accepts if g7 = a- u®, otherwise it rejects.

Question
V only sends a random scalar to P. How to turn this into a
non-interactive proof?

Distributed Lab Introduction to ZK 9/30 September 3, 2024 9/30



Applying Fiat-Shamir Transformation

Reminder

Suppose prover had messages (my, my, ..., my,) before verifier sends a
challenge c. If x is a public statement, it suffices to choose

¢ « H(x,my,..., m,) without any interaction.

Definition (The Schnorr non-interactive identification protocol)
Define sch := (Gen, Prove, Verify):
o Gen(1)): Output a <& Zg and u « g°.
@ Prove: on input (v, «) do:
Compute r « Zg,a < g".

Compute challenge e + H(u, a).
Computes o < r 4+ ae. Output (a,0).

o Verify: accept iff g7 = a- u®.

Distributed Lab Introduction to ZK 10/30 September 3, 2024 10 /30




Schnorr's Signature Scheme

It easy to turn the non-interactive identification protocol into a signature
scheme! Simply regard (u, m) as a public statement with a message m!

Definition
The Schnorr Signature Scheme is s, = (Gen, Sign, Verify), where:
o Gen(1)): Output a <& Z, and u « g°.
e Sign(m,sk): The signer computes
r<12y,a< g",e< H(u,m,a),o < r+ ae and outputs (a, o).
o Verify((a, o), m, pk): The verifier checks if g7 = a- u® for
e < H(u, m,a).

Note: In green we marked the only difference between the identification
and signature protocols.

Distributed Lab Introduction to ZK 11/30 September 3, 2024 11/30



Sigma Protocols J

_ Introduction to ZK 12 /30 September 3, 2024 12 /30



Generalization

Now, can we generalize the Schnorr protocol to any relation R?
Well, not for any, but for a large class of relations called Sigma protocols!
Definition
Let R C X X W be an effective relation. A Sigma protocol for R is an
interactive protocol (P, V) that satisfies the following properties:

@ In the beginning, P computes a commitment a and sends it to V.

@ V chooses a random challenge ¢ € C from the challenge space C and
sends it to P.

@ Upon receiving ¢, P computes the response z and sends it to V.

@ V outputs either accept or reject based on the conversation (a, c, z).

Definition

(a, ¢, z) is an accepting conversation if } outputs accept on this tuple.

Distributed Lab Introduction to ZK 13 /30 September 3, 2024 13 /30



Why ¥?

2 8

' Commitment a >
E Challenge ¢ '
< S E :
Response z
2z 2

Figure: Why %-protocols are called so.

Distributed Lab Introduction to ZK 14 /30 September 3, 2024 14 /30



Special Soundness

Definition (Special Soundness)

Let (P, V) be a -protocol for R C X x V. We that that (P, V) is
special sound if there exists a witness extractor £ such that, given
statement x € X’ and two accepting conversations (a, ¢, z) and (a,c’, z)
(where ¢ # ¢’)?, the extractor can always efficiently compute the witness
w such that (x, w) € R.

?Notice that initial commitments in both conversations are the same!

Example

The Schnorr protocol is special sound because, given two accepting
conversations (a, e,0) and (a, €/, 0’), we can compute the witness a. You
can verify that « = Ao /Ae for Ac = ¢’ — o and Ae = €’ — e suffices.

Distributed Lab Introduction to ZK 15 /30 September 3, 2024 15 /30



Sigma Protocols Examples }

_ Introduction to ZK 16 /30 September 3, 2024 16 /30



Okamoto’s Protocol

Again, let G be a cyclic group of prime order g with a generator g € G
and let h € G an arbitrary group element.

Definition
For u € G, a representation relative to g and h is a pair
(o, B) € Zg x Zg such that u = g*hP.

Remark

Notice that for the given u there are exactly g representations relative to g
and h. Indeed, V3 € Zy 3o € Zg : g% = uh™".

Question

How do we actually prove that P knows the representation of u?

R:{(u,(a,ﬁ))EGXZz:u:gahﬁ}

Distributed Lab Introduction to ZK 17 /30 September 3, 2024 17 /30



Okamoto’s Protocol Flow

Definition (Okamoto's Identification Protocol)

Okamoto’s Protocol consists of two algorithms: (P, V), where the prover
is assumed to know (u, (c, 8)) € R defined above. The protocol is defined
as follows:

@ P computes a, il ZLq, Br il Lg, Up < g% hP and sends
commitment u, to V.

@ V samples the challenge ¢ £ Zgq and sends c to P.

© P computes o, < a, + ac,B; < B + Bc and sends z = (ay, 5;).

© V checks whether g®h% = u,u¢ and accepts or rejects the proof.

Announcement

We will code the non-interactive Okamoto's protocol in the next section!
Stay tuned!

Distributed Lab Introduction to ZK 18 /30 September 3, 2024 18 /30



Okamoto’s Protocol Correctness

Theorem

Okamoto’s Protocol is a X-protocol for the relation R which is
Honest-Verifier Zero-Knowledge (HVZK).

Part of the proof. Again, let us show correctness and special soundness
without honest-verifier zero-knowledge properties.

Completeness. Suppose indeed that (u, (o, §)) € R. Then, the verification
condition can be written as follows:

gocz hﬁz — ga,—i-achﬁr—&-ﬁc _ ga,gachﬁr hﬁc _ (garhﬂr) '(gozhﬁ)c = u,uf

=u, =u

Distributed Lab Introduction to ZK 19/30 September 3, 2024 19 /30



Okamoto’s Protocol Special Soundness

Special Soundness. Suppose we are given two accepting conversations:
(ur, ¢, (az, B;)) and (u,, c’, (al,, B.)) and we want to construct an
extractor £ which would give us a witness («, /3). In this case, we have the
following holding:

g hP = uu, g®:h’: = uu®
We can divide the former by the latter to obtain:
gaz—a/zhﬂz—ﬂ; _ uc—c/ _ ga(c—c’)hﬁ(c—c/)’

from which the extractor £ can efficiently compute witness as follows:

o+ (az;— o) /(c—c')and B+ (B, — B})/(c — ).

Distributed Lab Introduction to ZK 20/30 September 3, 2024 20/30



Diffie-Hellman Triplets

Suppose we are given the cyclic group G or prime order g and generator
g €G.

Definition

A triplet (u, v, w) € G® is a Diffie-Hellman triplet if
Ha,ﬂeZq:u:ga,v:gﬂ,W:go‘ﬁ.

Alternative DH-triple Definition

(u,v,w) is a DH-triplet iff 33 € Zg : v = g’ w = .

v

Now, this makes it easier to define the relation R for the Chaum-Pedersen
protocol:

R:{((u,v,w),ﬁ)€G3qu:v:gﬁ/\W:uﬁ}

Introduction to ZK 21/30 September 3, 2024 21/30



Chaum-Pedersen Protocol

Definition (Chaum-Pedersen Protocol)

Chaum-Pedersen Protocol consists of two algorithms: (P, V), where the

prover is assumed to know (53, (u, v, w)) € R defined above. The protocol
is defined as follows:

@ P computes S, it ZLg, Vr il g%, w, < u” and sends (ur, w;,) to V.
@ V samples the challenge ¢ il Zq and sends ¢ to P.

© P computes 3, < (B, + fc and sends 3, to V.

@ YV checks whether two conditions hold: gﬂz = v,v¢ and v = w,w¢,
and accepts or rejects the proof accordingly.

Theorem

Chaum-Pedersen Protocol is a X-protocol for the relation R which is
Honest-Verifier Zero-Knowledge (HVZK).

Distributed Lab Introduction to ZK 22 /30 September 3, 2024 22/30



Homomorphism

Let us formulate the core objects that we will use in this section:
o (H,+) is a finite abelian input group.
e (T, x) is a finite abelian output group.
e ¢ : H — T is a hard-to-invert homomorphism.
o F =Hom(H,T) is a set of all homomorphisms from H to T.

Reminder
Homomorphism 1 : H — T is a function, satisfying the following property:

Vhi, ha € H: ¢p(h1 + h2) = ¢(h1)y(h2)

Note

If between input and output we have an easy-to-compute and
hard-to-invert homomorphism, we can use Sigma protocols to prove
pre-images of this homomorphism!

Distributed Lab Introduction to ZK 23 /30 September 3, 2024 23/30



Problem Statement

Define the following relation:

R ={((t;9), h) € (T x F) x H:¢(h) =t}
P wants to convince V that he knows witness h to the statement (t, ).

Example

Now, why does this generalize the previous protocols? Well, let us consider
all previous examples:
@ Schnorr Protocol: Here we have Hl = Zg, T =G, and ¢ : Zg =+ G
is defined as ¥(a) = g“. Moreover, here v is an isomorphism!
o Okamoto Protocol: Here we have H =72, T=G, and ¢ : Z2 = G
is defined as ¥(a, B) = g*h®.
o Chaum-Pedersen Protocol: Here we have H = Z,, T = G2, and
Y : Zg — G? is defined as 1(8) = (g”, u).

Distributed Lab Introduction to ZK 24 /30 September 3, 2024 24 /30



Sigma Protocol

Definition (Sigma Protocol for the pre-image of a homomorphism)

The protocol consists of two algorithms: (P, V), where the prover is
assumed to know the witness h € H defined above. The protocol is
defined as follows:

© P computes h, <~ H, t, + 1(h,) € T and sends t, to the verifier V.

@ V samples the challenge ¢ & ¢ c 7 from the challenge space and
sends ¢ to P.

© P computes h, < h, + h- c and sends h, to V.

@ V checks whether 1(h;) = t,t, and accepts or rejects the proof.

Theorem

Such protocol is a X-protocol for the relation R which is Honest-Verifier
Zero-Knowledge (HVZK).

Introduction to ZK 25 /30 September 3, 2024 25 /30



Combining >-Protocols

One of the features (which we are not going to delve into) is the ability to
combine 2-protocols to prove more complex statements. Namely,

@ Given two relations Ry and R1, we can prove that the prover knows
witnesses for both relations.

@ Given two relations Ry and R, we can prove that the prover knows a
witness for at least one of the relations.
Example

P can prove that he either knows the discrete log of u or the
representation of u relative to g and h. Moreover, V does not know which
of the two statements P is proving.

Distributed Lab Introduction to ZK 26 /30 September 3, 2024 26 /30



Coding Time!

_ Introduction to ZK 27/30 September 3, 2024 27 /30



Methodology

Reminder

Suppose prover had messages (my, ma, ..., m,) before verifier sends a
challenge c. If x is a public statement, it suffices to choose
¢ < H(x, m1,..., my) without any interaction.

Let us turn Okamoto’s Protocol into a non-interactive proof using the
Fiat-Shamir heuristic!

Reminder: Okamoto's ldentification Protocol

R R
© P computes o, < Zgq, Br < Lg, Ur < g% h? and sends
commitment u, to V.

@ V samples the challenge ¢ il Zg and sends c to P.
© P computes a; < a, + ac, 5; «+ B, + B¢ and sends z = (az, ;).

@ V checks whether g®zh% = u,u¢ and accepts or rejects the proof.

Introduction to ZK 28 /30 September 3, 2024 28/30



Non-Interactive Okamoto Protocol

Okamoto's Non-Interactive ldentification Protocol

Now, we apply the Fiat-Shamir Transformation.
e Gen(1*): On input (u, (av, B)) € G x Z2,

Q@ Sample a,, 3, <& Z, and compute u, + g h?.
@ Using the hash function H: G x G — C, compute ¢ < H(u, u,).
© Compute o, + a, + ac, B, < B, + Bc and publish (u,, a, 5;) as a
proof .
@ Verify: Upon receiving statement v and a proof © = (uy, az, 82), the
verifier:
© Recomputes the challenge ¢ using the hash function.
@ Accepts if and only if g®<h% = u,uc.

https://github.com/ZKDL-Camp/lecture-7-sigma

Distributed Lab Introduction to ZK 29 /30 September 3, 2024 29/30


https://github.com/ZKDL-Camp/lecture-7-sigma

Thank you for your attention!

Introduction to ZK 30/30 September 3, 2024 30/30



	Introduction
	Recap
	Motivation for -protocols

	Schnorr Identification Protocol
	Interactive Protocol
	Non-interactive Schnorr's Identification Protocol
	Schnorr's Signature Scheme

	Sigma Protocols
	Definition

	Sigma Protocols Examples
	Okamoto Representation Protocol
	Chaum-Pedersen Protocol
	Pre-image of a homomorphism -protocol
	Combining -Protocols

	Coding Time!
	Okamoto's Protocol


