
Sigma Protocols

Distributed Lab

September 3, 2024

Distributed Lab Introduction to ZK 1 / 30 September 3, 2024 1 / 30



Plan

1 Introduction
Recap
Motivation for Σ-protocols

2 Schnorr Identification Protocol
Interactive Protocol
Non-interactive Schnorr’s Identification Protocol
Schnorr’s Signature Scheme

3 Sigma Protocols
Definition

4 Sigma Protocols Examples
Okamoto Representation Protocol
Chaum-Pedersen Protocol
Pre-image of a homomorphism Σ-protocol
Combining Σ-Protocols

5 Coding Time!
Okamoto’s Protocol

Distributed Lab Introduction to ZK 2 / 30 September 3, 2024 2 / 30



Introduction

Distributed Lab Introduction to ZK 3 / 30 September 3, 2024 3 / 30



Recap on Interactive Proofs

Interactive proofs allows practically prover P to convince the verifier
V that some statement is true.

Soundness ensures that the prover cannot cheat the verifier, while
zero-knowledge that the verifier learns nothing about the witness.

Argument of knowledge ensures that the prover also “knows” the
witness (that is, exists some extractor E that, acting as an admin, can
extract the witness).

If verifier’s messages are random values, the protocol is public-coin.

Any public-coin protocol can be transformed into a non-interactive
proof using Fiat-Shamir heuristic.

Announcement

Today, we will build and code our first non-interactive proof system using
the Fiat-Shamir heuristic based on Sigma protocols!

Distributed Lab Introduction to ZK 4 / 30 September 3, 2024 4 / 30



Motivation

In many cases, we need to prove relatively trivial statements without
revealing the witness:

“I know the discrete log of a point P ∈ E (Fp)”.

“I know the representation of a point P ∈ E (Fp), that is (α, β) ∈ Z2
q

such that P = [α]G + [β]H”.

“I know the eth modular root w of x ∈ Z×
N (that is, w e = x)”. For

e = 2, see previous lecture.

“I know that (P,Q,R) ∈ E (Fp)
3 is a Diffie-Hellman triplet”.

Σ-protocols are also fundamentally similar to Bulletproofs!

Note

Everything that has a natural “homomorphic”/discrete-log-like structure
can be proven using Sigma (Σ) protocols!

Distributed Lab Introduction to ZK 5 / 30 September 3, 2024 5 / 30



Schnorr Identification Protocol

Distributed Lab Introduction to ZK 6 / 30 September 3, 2024 6 / 30



Problem Statement

Suppose G is a cyclic group of order q with a generator g . Then, the
relation and language being considered are:

R = {(u, α) ∈ G× Zq : u = gα}, LR = {u ∈ G : ∃α ∈ Zq : u = gα}

Problem #1

P wants to convince V that it knows the discrete log of u ∈ LR. That is,
he knows α such that (u, α) ∈ R.

Problem #2

Why cannot we simply send α? Because we do not want to reveal the
witness! That is why we need a zero-knowledge non-interactive argument
of knowledge (zk-NARK).

Distributed Lab Introduction to ZK 7 / 30 September 3, 2024 7 / 30



Protocol Flow

Prover P Verifier V

r
R←− Z×

q

a← g r

Send a

e
R←− Zq

Send e

Compute σ ← r + αe ∈ Zq

Send σ

Verify gσ = a · ue

Distributed Lab Introduction to ZK 8 / 30 September 3, 2024 8 / 30



Protocol Flow

Definition

The Schnorr interactive identification protocol ΠSch = (Gen,P,V)
with a generation function Gen and prover P and verifier V is defined as:

Gen(1λ): Take α
R←− Zq and u ← gα. Output: verification key

vk := u, and secret key sk := α.

The protocol between (P,V) is run as follows:
▶ P computes r ← Z×

q , a← g r and sends a to V.
▶ V sends a random challenge e

R←− Zq to P.
▶ P computes σ ← r + αe ∈ Zq and sends σ to V.
▶ V accepts if gσ = a · ue , otherwise it rejects.

Question

V only sends a random scalar to P. How to turn this into a
non-interactive proof?

Distributed Lab Introduction to ZK 9 / 30 September 3, 2024 9 / 30



Applying Fiat-Shamir Transformation

Reminder

Suppose prover had messages (m1,m2, . . . ,mn) before verifier sends a
challenge c . If x is a public statement, it suffices to choose
c ← H(x ,m1, . . . ,mn) without any interaction.

Definition (The Schnorr non-interactive identification protocol)

Define ΓSch := (Gen,Prove,Verify):

Gen(1λ): Output α
R←− Zq and u ← gα.

Prove: on input (u, α) do:
▶ Compute r ← Z×

q , a← g r .
▶ Compute challenge e ← H(u, a).
▶ Computes σ ← r + αe. Output (a, σ).

Verify: accept iff gσ = a · ue .

Distributed Lab Introduction to ZK 10 / 30 September 3, 2024 10 / 30



Schnorr’s Signature Scheme

It easy to turn the non-interactive identification protocol into a signature
scheme! Simply regard (u,m) as a public statement with a message m!

Definition

The Schnorr Signature Scheme is ΣSch = (Gen,Sign,Verify), where:

Gen(1λ): Output α
R←− Zq and u ← gα.

Sign(m, sk): The signer computes
r ← Z×

q , a← g r , e ← H(u,m, a), σ ← r + αe and outputs (a, σ).

Verify((a, σ),m, pk): The verifier checks if gσ = a · ue for
e ← H(u,m, a).

Note: In green we marked the only difference between the identification
and signature protocols.

Distributed Lab Introduction to ZK 11 / 30 September 3, 2024 11 / 30



Sigma Protocols

Distributed Lab Introduction to ZK 12 / 30 September 3, 2024 12 / 30



Generalization

Now, can we generalize the Schnorr protocol to any relation R?
Well, not for any, but for a large class of relations called Sigma protocols!

Definition

Let R ⊂ X ×W be an effective relation. A Sigma protocol for R is an
interactive protocol (P,V) that satisfies the following properties:

In the beginning, P computes a commitment a and sends it to V.
V chooses a random challenge c ∈ C from the challenge space C and
sends it to P.
Upon receiving c, P computes the response z and sends it to V.
V outputs either accept or reject based on the conversation (a, c , z).

Definition

(a, c , z) is an accepting conversation if V outputs accept on this tuple.

Distributed Lab Introduction to ZK 13 / 30 September 3, 2024 13 / 30



Why Σ?

Commitment a

Challenge c

Response z

Figure: Why Σ-protocols are called so.

Distributed Lab Introduction to ZK 14 / 30 September 3, 2024 14 / 30



Special Soundness

Definition (Special Soundness)

Let (P,V) be a Σ-protocol for R ⊆ X × Y. We that that (P,V) is
special sound if there exists a witness extractor E such that, given
statement x ∈ X and two accepting conversations (a, c , z) and (a, c ′, z ′)
(where c ̸= c ′)a, the extractor can always efficiently compute the witness
w such that (x ,w) ∈ R.

aNotice that initial commitments in both conversations are the same!

Example

The Schnorr protocol is special sound because, given two accepting
conversations (a, e, σ) and (a, e ′, σ′), we can compute the witness α. You
can verify that α = ∆σ/∆e for ∆σ = σ′ − σ and ∆e = e ′ − e suffices.

Distributed Lab Introduction to ZK 15 / 30 September 3, 2024 15 / 30



Sigma Protocols Examples

Distributed Lab Introduction to ZK 16 / 30 September 3, 2024 16 / 30



Okamoto’s Protocol

Again, let G be a cyclic group of prime order q with a generator g ∈ G
and let h ∈ G an arbitrary group element.

Definition

For u ∈ G, a representation relative to g and h is a pair
(α, β) ∈ Zq × Zq such that u = gαhβ.

Remark

Notice that for the given u there are exactly q representations relative to g
and h. Indeed, ∀β ∈ Zq ∃!α ∈ Zq : gα = uh−β.

Question

How do we actually prove that P knows the representation of u?

R =
{
(u, (α, β)) ∈ G× Z2

q : u = gαhβ
}

Distributed Lab Introduction to ZK 17 / 30 September 3, 2024 17 / 30



Okamoto’s Protocol Flow

Definition (Okamoto’s Identification Protocol)

Okamoto’s Protocol consists of two algorithms: (P,V), where the prover
is assumed to know (u, (α, β)) ∈ R defined above. The protocol is defined
as follows:

1 P computes αr
R←− Zq, βr

R←− Zq, ur ← gαrhβr and sends
commitment ur to V.

2 V samples the challenge c
R←− Zq and sends c to P.

3 P computes αz ← αr + αc , βz ← βr + βc and sends z = (αz , βz).

4 V checks whether gαzhβz = uru
c and accepts or rejects the proof.

Announcement

We will code the non-interactive Okamoto’s protocol in the next section!
Stay tuned!

Distributed Lab Introduction to ZK 18 / 30 September 3, 2024 18 / 30



Okamoto’s Protocol Correctness

Theorem

Okamoto’s Protocol is a Σ-protocol for the relation R which is
Honest-Verifier Zero-Knowledge (HVZK).

Part of the proof. Again, let us show correctness and special soundness
without honest-verifier zero-knowledge properties.
Completeness. Suppose indeed that (u, (α, β)) ∈ R. Then, the verification
condition can be written as follows:

gαzhβz = gαr+αchβr+βc = gαr gαchβrhβc = (gαrhβr )︸ ︷︷ ︸
=ur

·(gαhβ︸ ︷︷ ︸
=u

)c = uru
c

Distributed Lab Introduction to ZK 19 / 30 September 3, 2024 19 / 30



Okamoto’s Protocol Special Soundness

Special Soundness. Suppose we are given two accepting conversations:
(ur , c , (αz , βz)) and (ur , c

′, (α′
z , β

′
z)) and we want to construct an

extractor E which would give us a witness (α, β). In this case, we have the
following holding:

gαzhβz = uru
c , gα′

zhβ
′
z = uru

c ′

We can divide the former by the latter to obtain:

gαz−α′
zhβz−β′

z = uc−c ′ = gα(c−c ′)hβ(c−c ′),

from which the extractor E can efficiently compute witness as follows:
α← (αz − α′

z)
/
(c − c ′) and β ← (βz − β′z)

/
(c − c ′).

Distributed Lab Introduction to ZK 20 / 30 September 3, 2024 20 / 30



Diffie-Hellman Triplets

Suppose we are given the cyclic group G or prime order q and generator
g ∈ G.

Definition

A triplet (u, v ,w) ∈ G3 is a Diffie-Hellman triplet if
∃α, β ∈ Zq : u = gα, v = gβ,w = gαβ.

Alternative DH-triple Definition

(u, v ,w) is a DH-triplet iff ∃β ∈ Zq : v = gβ,w = uβ.

Now, this makes it easier to define the relation R for the Chaum-Pedersen
protocol:

R =
{
((u, v ,w), β) ∈ G3 × Zq : v = gβ ∧ w = uβ

}

Distributed Lab Introduction to ZK 21 / 30 September 3, 2024 21 / 30



Chaum-Pedersen Protocol

Definition (Chaum-Pedersen Protocol)

Chaum-Pedersen Protocol consists of two algorithms: (P,V), where the
prover is assumed to know (β, (u, v ,w)) ∈ R defined above. The protocol
is defined as follows:

1 P computes βr
R←− Zq, vr

R←− gβr , wr ← uβr and sends (ur ,wr ) to V.
2 V samples the challenge c

R←− Zq and sends c to P.
3 P computes βz ← βr + βc and sends βz to V.
4 V checks whether two conditions hold: gβz = vrv

c and uβz = wrw
c ,

and accepts or rejects the proof accordingly.

Theorem

Chaum-Pedersen Protocol is a Σ-protocol for the relation R which is
Honest-Verifier Zero-Knowledge (HVZK).

Distributed Lab Introduction to ZK 22 / 30 September 3, 2024 22 / 30



Homomorphism

Let us formulate the core objects that we will use in this section:

(H,+) is a finite abelian input group.

(T,×) is a finite abelian output group.

ψ : H→ T is a hard-to-invert homomorphism.

F = Hom(H,T) is a set of all homomorphisms from H to T.

Reminder

Homomorphism ψ : H→ T is a function, satisfying the following property:

∀h1, h2 ∈ H : ψ(h1 + h2) = ψ(h1)ψ(h2)

Note

If between input and output we have an easy-to-compute and
hard-to-invert homomorphism, we can use Sigma protocols to prove
pre-images of this homomorphism!

Distributed Lab Introduction to ZK 23 / 30 September 3, 2024 23 / 30



Problem Statement

Define the following relation:

R = {((t, ψ), h) ∈ (T×F)×H : ψ(h) = t}

P wants to convince V that he knows witness h to the statement (t, ψ).

Example

Now, why does this generalize the previous protocols? Well, let us consider
all previous examples:

Schnorr Protocol: Here we have H = Zq, T = G, and ψ : Zq → G
is defined as ψ(α) = gα. Moreover, here ψ is an isomorphism!

Okamoto Protocol: Here we have H = Z2
q, T = G, and ψ : Z2

q → G
is defined as ψ(α, β) = gαhβ.

Chaum-Pedersen Protocol: Here we have H = Zq, T = G2, and
ψ : Zq → G2 is defined as ψ(β) = (gβ, uβ).

Distributed Lab Introduction to ZK 24 / 30 September 3, 2024 24 / 30



Sigma Protocol

Definition (Sigma Protocol for the pre-image of a homomorphism)

The protocol consists of two algorithms: (P,V), where the prover is
assumed to know the witness h ∈ H defined above. The protocol is
defined as follows:

1 P computes hr
R←− H, tr ← ψ(hr ) ∈ T and sends tr to the verifier V.

2 V samples the challenge c
R←− C ⊂ Z from the challenge space and

sends c to P.
3 P computes hz ← hr + h · c and sends hz to V.
4 V checks whether ψ(hz) = tr t

c , and accepts or rejects the proof.

Theorem

Such protocol is a Σ-protocol for the relation R which is Honest-Verifier
Zero-Knowledge (HVZK).

Distributed Lab Introduction to ZK 25 / 30 September 3, 2024 25 / 30



Combining Σ-Protocols

One of the features (which we are not going to delve into) is the ability to
combine Σ-protocols to prove more complex statements. Namely,

Given two relations R0 and R1, we can prove that the prover knows
witnesses for both relations.

Given two relations R0 and R1, we can prove that the prover knows a
witness for at least one of the relations.

Example

P can prove that he either knows the discrete log of u or the
representation of u relative to g and h. Moreover, V does not know which
of the two statements P is proving.

Distributed Lab Introduction to ZK 26 / 30 September 3, 2024 26 / 30



Coding Time!

Distributed Lab Introduction to ZK 27 / 30 September 3, 2024 27 / 30



Methodology

Reminder

Suppose prover had messages (m1,m2, . . . ,mn) before verifier sends a
challenge c . If x is a public statement, it suffices to choose
c ← H(x ,m1, . . . ,mn) without any interaction.

Let us turn Okamoto’s Protocol into a non-interactive proof using the
Fiat-Shamir heuristic!

Reminder: Okamoto’s Identification Protocol

1 P computes αr
R←− Zq, βr

R←− Zq, ur ← gαrhβr and sends
commitment ur to V.

2 V samples the challenge c
R←− Zq and sends c to P.

3 P computes αz ← αr + αc , βz ← βr + βc and sends z = (αz , βz).

4 V checks whether gαzhβz = uru
c and accepts or rejects the proof.

Distributed Lab Introduction to ZK 28 / 30 September 3, 2024 28 / 30



Non-Interactive Okamoto Protocol

Okamoto’s Non-Interactive Identification Protocol

Now, we apply the Fiat-Shamir Transformation.

Gen(1λ): On input (u, (α, β)) ∈ G× Z2
q,

1 Sample αr , βr
R←− Zq and compute ur ← gαrhβr .

2 Using the hash function H : G×G→ C, compute c ← H(u, ur ).
3 Compute αz ← αr + αc , βz ← βr + βc and publish (ur , αz , βz) as a

proof π.

Verify: Upon receiving statement u and a proof π = (ur , αz , βz), the
verifier:

1 Recomputes the challenge c using the hash function.
2 Accepts if and only if gαzhβz = uru

c .

https://github.com/ZKDL-Camp/lecture-7-sigma

Distributed Lab Introduction to ZK 29 / 30 September 3, 2024 29 / 30

https://github.com/ZKDL-Camp/lecture-7-sigma


Thank you for your attention!

Distributed Lab Introduction to ZK 30 / 30 September 3, 2024 30 / 30


	Introduction
	Recap
	Motivation for -protocols

	Schnorr Identification Protocol
	Interactive Protocol
	Non-interactive Schnorr's Identification Protocol
	Schnorr's Signature Scheme

	Sigma Protocols
	Definition

	Sigma Protocols Examples
	Okamoto Representation Protocol
	Chaum-Pedersen Protocol
	Pre-image of a homomorphism -protocol
	Combining -Protocols

	Coding Time!
	Okamoto's Protocol


