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What is zk-SNARK?
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What Is zk-SNARK?
Definition

zk-SNARK
Zero-Knowledge Succinct Non-interactive ARgument of Knowledge.

• Argument of Knowledge — a proof that the prover knows the
data (witness) that resolves a certain problem, and this knowledge
can be “extracted”.

• Succinctness — the proof size and verification time is relatively
small to the computation size and typically does not depend on
the size of the data or statement.

• Non-interactiveness — to produce the proof, the prover does
not need any interaction with the verifier.

• Zero-Knowledge — the verifier learns nothing about the data
used to produce the proof, despite knowing that this data resolves
the given problem and that the prover possesses it.
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Still don’t get who is SNARK...

Well... Let’s take a look at some example.

Imagine you’re part of a treasure hunt...

...and you’ve found a hidden treasure chest...

...but how to prove that without revealing the
chest location?
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Still don’t get who is SNARK...

The Problem
You have found a hidden treasure chest, and
you want to prove to the organizer that you
know its location without actually revealing
that.

We can retrieve some information from that:

The Secret Data: the exact treasure location.

The Prover: you.

The Verifier: the treasure hunt organizer.
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Ohh... Got it!
Here is how we can apply the zk-SNARK to our problem:

• Argument of Knowledge: You need to create a proof that
demonstrates you know the chest is.

• Succinct: The proof you provide is very small and concise. It
doesn’t matter how large the treasure map is or how many steps it
took you to find the chest.

• Non-interactive: You don’t need to have a back-and-forth
conversation with the organizer to create this proof.

• Zero-Knowledge: The proof doesn’t reveal any information
about the actual location of the treasure chest.

Well... The golden coin where the pirates’
sign is engraved is our zk-SNARK proof!
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The First Question To Resolve
But the problems that we usually want to solve are in a slightly
different format.

When we need to prove that some element is in a merkle tree, we
can’t come to a verifier and give them a "coin"...

Question?
How do we convert a program into a mathematical language?
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Boolean Circuits
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Boolean Circuits

We can do that in a way like the computer does it — Boolean
Circuits.

a b

AND

c

a b

OR

c

A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

Note
With any of {AND, NOT} or {OR, NOT} gates sets one can build any
possible logical circuit, they are called functionally complete sets.
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Boolean Circuit Example

a b c

AND

OR d

Figure: Example of a circuit evaluating d = (a AND b) OR c .

Boolean circuits receive an input vector of 0, 1 and resolve to true
(1) or false (0);

The above circuit can be satisfied with the next values:

a = 1, b = 1, c = 0, d = 1
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SHA-256 Boolean circuit

Figure: Stats of a SHA256 boolean circuit implementation.

More than 100000 gates. Impressive, isn’t it?

But it also shows how inconvenient the boolean circuits are.



What is zk-SNARK? Boolean Circuits Arithmetic Circuits Linear Algebruh Preliminaries Rank-1 Constraint System

Arithmetic Circuits
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Arithmetic Circuits
Similar to Boolean Circuits, the Arithmetic Circuits consist of
gates and wires.

• Wires: elements of some finite field F.

• Gates: field addition (+) and multiplication (×).

a b

+

c

a b

×

c

Figure: Addition and Multiplication Gates
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Arithmetic Circuits Example I

Example

def multiply(a: F, b: F) -> F:
return a * b

This can be represented as a circuit with only one (multiplication)
gate:

r = a× b

The witness vector (essentially, our solution vector) is w = (r , a, b),
for example: (6, 2, 3).

We assume that the a and b are input values.

Note
We can think of the “=“ in the gate as an assertion.
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Arithmetic Circuits Example II

Example
Now, suppose we want to implement the evaluation of the
polynomial Q(x1, x2) = x3

1 + x2
2 ∈ F[x1, x2] using arithmetic circuits.

def evaluate(x1: F, x2: F) -> F:
return x1**3 + x2**2

Looks easy, right? But the circuit is now much less trivial.
x2
1 = x1 × x1

x3
1 = x2

1 × x1

x2
2 = x2 × x2

Q = x3
1 + x2

2

or

r1 = x1 × x1

r2 = r1 × x1

r3 = x2 × x2

Q = r2 + r3
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Arithmetic Circuits Example II

x1 × ×

x2 ×
+

x2
1

x1
x3
1

x2
2 Q

Figure: Example of a circuit evaluating x3
1 + x2

2 .
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Arithmetic Circuits Example III

Example
Well, it is quite clear how to represent any polynomial-like
expressions. But how can we translate if statements?

def example(a: bool , b: F, c: F) -> F:
if a:

return b * c
else:

return b + c

We can transform such a function into the next expression:
r = a× (b × c) + (1 − a)× (b + c)

Corresponding equations for the circuit are:
r1 = b × c , r3 = 1 − a, r5 = r3 × r2

r2 = b + c , r4 = a× r1, r = r4 + r5
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Arithmetic Circuits Example III

c

b

a

1

+

×

−

×

×

+ r

r1

r3

r2

r4

r5

Figure: Example of a circuit evaluating the if statement logic.
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Linear Algebruh Preliminaries
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Vector Space

Definition
A vector space V over the field F is an abelian group for addition
“+“ together with a scalar multiplication operation “·“ from F× V
to V , sending (λ, x) 7→ λx and such that for any v ,u ∈ V and
λ, µ ∈ F we have:
• λ(u + v) = λu + λv

• (λ+ µ)v = λv + µv

• (λµ)v = λ(µv)

• 1v = v
Any element v ∈ V is called a vector, and any element λ ∈ F is
called a scalar. We also mark vector elements in boldface.
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Matrix
The matrix is a rectangular array of numbers, symbols, or
expressions, arranged in rows and columns. For example, the matrix
A with m rows and n columns, consisting of elements from the finite
field F is denoted as A ∈ Fm×n.

Definition
Let A,B be two matrices over the field F. The following operations
are defined:
• Matrix addition/subtraction: A± B = {ai ,j ± bi ,j}m×n

i ,j=1. The
matrices A and B must have the same size m × n.

• Scalar multiplication: λA = {λai ,j}1≤i ,j≤n for any λ ∈ F.

• Matrix multiplication: C = AB is a matrix C ∈ Fm×p with
elements ci ,j =

∑n
ℓ=1 ai ,ℓbℓ,j . The number of columns in A must

be equal to the number of rows in B , that is A ∈ Fm×n and
B ∈ Fn×p.
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Matrix Multiplication

Example
Consider

A =

[
1 1 2
2 2 1

]
∈ R2×3, B =

2 1
1 3
1 1

 ∈ R3×2

We cannot add A and B since they have different sizes. However, we
can multiply them:

AB =

[
5 6
7 9

]
, BA =

4 4 5
7 7 5
3 3 3


To see why, for example, the upper left element of AB is 5, we can
calculate it as

∑3
ℓ=1 a1,ℓbℓ,1 = 1 × 2 + 1 × 1 + 2 × 1 = 5.
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Vector As A Matrix

Note
It just so happens that when working with vectors, we usually
assume that they are column vectors. This means that the vector
v = (v1, v2, . . . , vn) is represented as a matrix:

v =


v1
v2
...
vn


This is a common convention in linear algebra, and we will use it in
the following sections.
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Matrix Transpose

Definition (Transposition)

Given a matrix A ∈ Fm×n, the transpose of A is a matrix
A⊤ ∈ Fn×m with elements A⊤

ij = Aji .

Example

A =

[
1 2
3 4

]
, A⊤ =

[
1 3
2 4

]

B =

[
1 2 3
4 5 6

]
, B⊤ =

1 4
2 5
3 6


v =

1
2
3

 , v⊤ = [1, 2, 3]
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Inner Product

Definition
Consider the vector space V over the finite field Fp. The inner
product is a function ⟨·, ·⟩ : V× V → Fp satisfying the following
conditions for all u, v ,w ∈ V:
• ⟨u + v ,w⟩ = ⟨u,w⟩+ ⟨v ,w⟩.

• ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u,w⟩.

• ⟨u, v⟩ = 0 for all u ∈ V iff v = 0.

• ⟨u, v⟩ = 0 for all v ∈ V iff u = 0.

Plenty of functions can be built that satisfy the inner product
definition, we’ll use the one that is usually called dot product.
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Dot Product

Definition
Consider the vector space Fn over the finite field F. The dot
product on Fn is a function ⟨·, ·⟩ : Fn × Fn → F, defined for every
u, v ∈ Fn as follows:

⟨u, v⟩ := u⊤v =
n∑

i=1

uivi

Note
The dot product can also be denoted using the dot notation as:

u · v
That is why it’s called the “dot“ product.
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Dot Product

Example
Let u, v are vectors over the real number R, where

u = (1, 2, 3), v = (2, 4, 3)

Then:

⟨u, v⟩ =
3∑

i=1

uivi = 2 · 1 + 2 · 4 + 3 · 3 = 2 + 8 + 9 = 19
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Hadamard Product

Definition
Suppose A,B ∈ Fm×n. The Hadamard product A⊙ B gives a
matrix C such that Ci ,j = Ai ,jBi ,j . Essentially, we multiply elements
elementwise.

Example

Consider A =

[
1 1 2
3 0 3

]
,B =

[
3 2 1
0 2 1

]
. Then, the Hadamard

product:

A⊙ B =

[
1 · 3 1 · 2 2 · 1
3 · 0 0 · 2 3 · 1

]
=

[
3 2 2
0 0 3

]
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Outer Product

Definition
Given two vectors u ∈ Fn, v ∈ Fm the outer product is a the
matrix whose entries are all products of an element in the first vector
with an element in the second vector:

u ⊗ v := uv⊤ =


u1v1 u1v2 · · · u1vn
u2v1 u2v2 · · · u2vn

...
...

. . .
...

umv1 umv2 · · · umvn


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Outer Product

Lemma (Properties of outer product)

For any scalar c ∈ F and (u, v ,w) ∈ Fn × Fm × Fp:
• Transpose: (u ⊗ v) = (v ⊗ u)T

• Distributivity: u ⊗ (v + w) = u ⊗ v + u ⊗ w

• Scalar Multiplication: c(v ⊗ u) = (cv)⊗ u = v ⊗ (cu)

• Rank: the outer product u ⊗ v is a rank-1 matrix if u and v are
non-zero vectors
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Outer Product

Example
Let u, v are vectors over the real number R, where

u = (1, 2, 3), v = (2, 4, 3)

Then:

u ⊗ v = uv⊤ =

1 · 2 1 · 4 1 · 3
2 · 2 2 · 4 2 · 3
3 · 2 3 · 4 3 · 3

 =

2 4 3
4 8 6
6 12 9


The rows/columns number 2 and 3 in the result matrix can be
represented as a linear combination of the first row/column,
specifically by multiplying it by 2 and 3, respectively.
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Rank-1 Constraint System
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Constraint Definition

Definition
Each constraint in the Rank-1 Constraint System must be in the
form:

⟨a,w⟩ × ⟨b,w⟩ = ⟨c ,w⟩

Where w is a vector containing all the input, output, and
intermediate variables involved in the computation. The vectors a,
b, and c are vectors of coefficients corresponding to these variables,
and they define the relationship between the linear combinations of
w on the left-hand side and the right-hand side of the equation.
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Constraint Example

Example
Consider the most basic circuit with one multiplication gate:
x1 × x2 = r . The witnes vector w = (r , x1, x2). So

w2 × w3 = w1

(0 + w2 + 0)× (0 + 0 + w3) = w1 + 0 + 0
(0w1 + 1w2 + 0w3)× (0w1 + 0w2 + 1w3) = 1w1 + 0w2 + 0w3

Therefore the coefficients vectors are:

a = (0, 1, 0), b = (0, 0, 1), c = (1, 0, 0).

The general form of our constraint is:

(a1w1 + a2w2 + a3w3)(b1w1 + b2w2 + b3w3) = c1w1 + c2w2 + c3w3
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Constraint System Example
Now, let us consider a more complex example.

def r(x1: F, x2: F, x3: F) -> F:
return x2 * x3 if x1 else x2 + x3

That can be expressed as:

r = x1 × (x2 × x3) + (1 − x1)× (x2 + x3)

We need a boolean restriction for x1: that is, x1 × (1 − x1) = 0.

Thus, the next constraints can be built:
x1 × x1 = x1 (binary check) (1)
x2 × x3 = mult (2)

x1 × mult = selectMult (3)
(1 − x1)× (x2 + x3) = r − selectMult (4)
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Constraint System Example
The witness vector: w = (1, r , x1, x2, x3,mult, selectMult). The
coefficients vectors:

a1 = (0, 0, 1, 0, 0, 0, 0), b1 = (0, 0, 1, 0, 0, 0, 0), c1 = (0, 0, 1, 0, 0, 0, 0)
a2 = (0, 0, 0, 1, 0, 0, 0), b2 = (0, 0, 0, 0, 1, 0, 0), c2 = (0, 0, 0, 0, 0, 1, 0)
a3 = (0, 0, 1, 0, 0, 0, 0), b3 = (0, 0, 0, 0, 0, 1, 0), c3 = (0, 0, 0, 0, 0, 0, 1)
a4 = (1, 0,−1, 0, 0, 0, 0), b4 = (0, 0, 0, 1, 1, 0, 0), c4 = (0, 1, 0, 0, 0, 0,−1)

Using the arithmetic in a large Fp, consider the following values:

x1 = 1, x2 = 3, x3 = 4

Verifying the constraints:

1. x1 × x1 = x1 (1 × 1 = 1)

2. x2 × x3 = mult (3 × 4 = 12)

3. x1 × mult = selectMult (1 × 12 = 12)

4. (1 − x1)× (x2 + x3) = r − selectMult (0 × 7 = 12 − 12)
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R1CS In Matrix Form
Theorem
Consider a Rank-1 Constraint System (R1CS) defined over m
constraints. Each constraint in such system is associated with
coefficient vectors ai , bi , and c i , where i ∈ {1, 2, . . . ,m} and also a
witness vector w consisting of n elements.
Then this system can also be represented using the corresponding
matrices A, B , and C .

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , same for B and C ,

such that all constraints can be reduced to the single equation:

Aw ⊙ Bw = Cw
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R1CS In Matrix Form
Proof. Matrices defined this way can be expressed as

A =


a⊤
1

a⊤
2
...

a⊤
m

 , B =


b⊤

1
b⊤

2
...

b⊤
m

 , C =


c⊤

1
c⊤

2
...

c⊤
m


Consider an expression Aw :

Aw =


a⊤
1

a⊤
2
...

a⊤
m



w1
w2
...
wn

 =


a⊤
1 w

a⊤
2 w
...

a⊤
mw

 =


∑n

i=1 a1iwi∑n
i=1 a2iwi

...∑n
i=1 aniwi

 =


⟨a1,w⟩
⟨a2,w⟩

...
⟨am,w⟩


Therefore, we have:

Aw =


⟨a1,w⟩
⟨a2,w⟩

...
⟨am,w⟩

 , Bw =


⟨b1,w⟩
⟨b2,w⟩

...
⟨bm,w⟩

 , Cw =


⟨c1,w⟩
⟨c2,w⟩

...
⟨cm,w⟩


Thus, Aw ⊙ Bw = Cw is equivalent to the system of m constraints:

⟨aj ,w⟩ × ⟨bj ,w⟩ = ⟨c j ,w⟩, j ∈ {1, . . . ,m}.
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R1CS In Matrix Form

Example
The vectors ai from the previous examples have the form:

a1 = (0, 0, 1, 0, 0, 0, 0)
a2 = (0, 0, 0, 1, 0, 0, 0)
a3 = (0, 0, 1, 0, 0, 0, 0)
a4 = (1, 0,−1, 0, 0, 0, 0)

This corresponds to n = 7,m = 4, so the matrix A becomes:
a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

 =


0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 −1 0 0 0 0


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Why Rank-1?
Lemma
Suppose we have a constraint ⟨a,w⟩ × ⟨b,w⟩ = ⟨c ,w⟩ with
coefficient vectors a, b, c and witness vector w (all from Fn). Then
it can be expressed in the form:

w⊤Aw + c⊤w = 0

Where A = a ⊗ b — rank-1 matrix.
Lemma proof. Consider a,b, c ,w ∈ Fn.(

n∑
i=1

aiwi

)
×

 n∑
j=1

bjwj

 =
n∑

k=1

ckwk

Combine the products into a double sum on the left side:
n∑

i=1

n∑
j=1

aibjwiwj = w⊤(a ⊗ b)w = w⊤Aw

Thus, the constraint can be written as w⊤Aw + c⊤w = 0.
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