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What Is zk-SNARK?

zk-SNARK
Zero-Knowledge Succinct Non-interactive ARgument of Knowledge.

e Argument of Knowledge — a proof that the prover knows the
data (witness) that resolves a certain problem, and this knowledge
can be “extracted”.

e Succinctness — the proof size and verification time is relatively
small to the computation size and typically does not depend on
the size of the data or statement.

e Non-interactiveness — to produce the proof, the prover does
not need any interaction with the verifier.

e Zero-Knowledge — the verifier learns nothing about the data
used to produce the proof, despite knowing that this data resolves
the given problem and that the prover possesses it.
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Still don’t get who is SNARK...

Well... Let's take a look at some example.

jﬁ P2
7% O
,»7/‘«35 ...but how to prove that without revealing the
Yai j
o chest location?
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Still don’t get who is SNARK...

The Problem o o {
You have found a hidden treasure chest, and m

you want to prove to the organizer that you % X

know its location without actually revealing M/M

that.

We can retrieve some information from that:
The Secret Data: the exact treasure location.
The Prover: you.

The Verifier: the treasure hunt organizer.




Ohh... Got it!

Here is how we can apply the zk-SNARK to our problem:

e Argument of Knowledge: You need to create a proof that
demonstrates you know the chest is.

e Succinct: The proof you provide is very small and concise. It
doesn't matter how large the treasure map is or how many steps it
took you to find the chest.

e Non-interactive: You don't need to have a back-and-forth
conversation with the organizer to create this proof.

e Zero-Knowledge: The proof doesn't reveal any information
about the actual location of the treasure chest.

Well... The golden coin where the pirates’
sign is engraved is our zk-SNARK proof!
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The First Question To Resolve
But the problems that we usually want to solve are in a slightly

different format.

When we need to prove that some element is in a merkle tree, we
can't come to a verifier and give them a "coin"...

Question?
How do we convert a program into a mathematical language?

Math

Code that
S P
given problem

interpretation |
of the code
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Boolean Circuits

We can do that in a way like the computer does it — Boolean

Circuits.

Al B| AANDB
0|0 0
@ @ i
110 0
§d od »

Note

With any of {AND, NOT} or {OR, NOT} gates sets one can build any
possible logical circuit, they are called functionally complete sets.
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Boolean Circuit Example

()—@
O

Figure: Example of a circuit evaluating d = (a AND b) OR c.

Boolean circuits receive an input vector of 0, 1 and resolve to true
(1) or false (0);

The above circuit can be satisfied with the next values:

a=1 b=1 ¢=0, d=1
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SHA-256 Boolean circuit

[File |[No. ANDs|[No. XORs|No. INV|
sha256Final txt|22,272 91,780  [2,194 |

Figure: Stats of a SHA256 boolean circuit implementation.

More than 100000 gates. Impressive, isn't it?

But it also shows how inconvenient the boolean circuits are.
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Arithmetic Circuits




Arithmetic Circuits

Similar to Boolean Circuits, the Arithmetic Circuits consist of
gates and wires.

e Wires: elements of some finite field FF.

e Gates: field addition (+) and multiplication ().

© ©

J od ®

Figure: Addition and Multiplication Gates
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Arithmetic Circuits Example |

Example

def multiply(a: F, b: F) -> F:
return a * b

This can be represented as a circuit with only one (multiplication)
gate:
r=axb

The witness vector (essentially, our solution vector) is w = (r, a, b),
for example: (6,2, 3).

We assume that the a and b are input values.

Note
We can think of the “=" in the gate as an assertion.
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Arithmetic Circuits Example Il

Example

Now, suppose we want to implement the evaluation of the
polynomial Q(x1,x2) = x§ + x3 € F[x1, x2] using arithmetic circuits.

def evaluate(xl: F, x2: F) -> F:
return x1**x3 + x2%%2

Looks easy, right? But the circuit is now much less trivial.

X12:X1><X1 n = X1 X X1
X]:_)’:X]?XX1 rn =rn X X
5 or

Xy = X2 X X2 3 = Xo X X2

Q=x3+x3 Q=r+r3
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Arithmetic Circuits Example Il

Xt
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Figure: Example of a circuit evaluating x3 + x3.
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Arithmetic Circuits Example Il

Example

Well, it is quite clear how to represent any polynomial-like
expressions. But how can we translate if statements?

def example(a: bool, b: F, c: F) -> F:
if a:
return b * c¢
else:
return b + ¢
We can transform such a function into the next expression:
r=ax(bxc)+(l—a)x(b+c)
Corresponding equations for the circuit are:
rn=b>bxc, r=1-—a, s =1r3 X rn

mn=>b+c, rp=axn, r=ry+rs
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Arithmetic Circuits Example Il
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Figure: Example of a circuit evaluating the if statement logic.
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Vector Space

A vector space V over the field ' is an abelian group for addition
“+" together with a scalar multiplication operation “-"* from [F x V
to V, sending (A, x) — Ax and such that for any v,u € V and
A, 1 € F we have:

e \Nu+v)=Au+ v

o (AN +p)v=Av+pv
o (Au)v = A(uv)
o lv=v

Any element v € V is called a vector, and any element A € F is
called a scalar. We also mark vector elements in boldface.
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Matrix

The matrix is a rectangular array of numbers, symbols, or
expressions, arranged in rows and columns. For example, the matrix
A with m rows and n columns, consisting of elements from the finite
field F is denoted as A € F™*",

Definition

Let A, B be two matrices over the field F. The following operations

are defined:

e Matrix addition/subtraction: A+ B = {a;; &+ b;;}["Z]. The
matrices A and B must have the same size m x n.

e Scalar multiplication: MA = {\a; j}1<jj<n for any A € F.

e Matrix multiplication: C = AB is a matrix C € F™*P with
elements ¢;j = > ; ai¢bgj. The number of columns in A must
be equal to the number of rows in B, that is A € F™*" and
B € F"<P,
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Matrix Multiplication

Consider

2 1
A=l 12 eR>3, B=|1 3| eR3*?
2 21 L]

We cannot add A and B since they have different sizes. However, we
can multiply them:

5 6

AB:{Y 0

4 4 5
], BA=1|7 7 5
333

To see why, for example, the upper left element of AB is 5, we can
calculate it as 22:1 ajebp1 =1x2+1x14+2x1=5.
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Vector As A Matrix

Note

It just so happens that when working with vectors, we usually
assume that they are column vectors. This means that the vector

v = (vi,v2,...,V,) is represented as a matrix:
Vi
V2
v =
Vn

This is a common convention in linear algebra, and we will use it in
the following sections.
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Matrix Transpose

Definition (Transposition)

Given a matrix A € F™*" the transpose of A is a matrix
AT € Fr*m with elements A;-Jr = Aji.

12 T 13
o E R

1
123 +
s=ls 5o &=

S O

v=|2|, v =]1,23]
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Inner Product

Definition
Consider the vector space V over the finite field F,. The inner
product is a function (-,-) : V x V — F, satisfying the following
conditions for all u,v,w € V:
o (ut v, w) = (u,w)+ (v, w).
(u,v+w) = (u,v)+ (uw).
e (u,v) =0 forall ucViff v =0.
(u,v) =0forall ve Viffu=0.

Plenty of functions can be built that satisfy the inner product
definition, we'll use the one that is usually called dot product.
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Dot Product

Definition

Consider the vector space F” over the finite field F. The dot
product on F" is a function (-,-) : F" x " — TF, defined for every
u,v € F" as follows:

n
u,v) = UTV: u;vi
(u,v)

i=1

Note
The dot product can also be denoted using the dot notation as:
u-v

That is why it's called the “dot™ product.
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Dot Product

Let u, v are vectors over the real number R, where
u=(1,2,3), v=(2,473)

Then:

3
(uv)=> ujv;=2-142-443-3=24+8+9=19
=l
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Hadamard Product

Suppose A, B € F™*". The Hadamard product A ® B gives a

matrix C such that C;; = A;;B; ;. Essentially, we multiply elements
elementwise.

. 1 1 2 3 21
Consider A = [3 0 3] ,B = [ 1]. Then, the Hadamard

product:
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Outer Product

Definition

Given two vectors u € F", v € F™ the outer product is a the
matrix whose entries are all products of an element in the first vector
with an element in the second vector:

uivy UV ---  U1Vp

i us vy uvy -+ UVp
uRv.=uv =

UnVi UmV2 -+ UmVp
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Outer Product

Lemma (Properties of outer product)

For any scalar c € F and (u,v,w) € F" x F™ x FP:
e Transpose: (u®@v)= (v u)"

e Distributivity: u®@ (v+w)=u@v+u®@w
e Scalar Multiplication: c(v ® u) = (cv) @ u = v ® (cu)

e Rank: the outer product u ® v is a rank-1 matrix if u and v are
non-zero vectors
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Outer Product

Let u, v are vectors over the real number R, where
u=(1,2,3), v=(2,4,3)
Then:
1-2 1-4 1-3 2 4 3
uRv=uv = (2.2 2.4 2.3 =1[4 8 6
3-2 3-4 3-3 6 12 9

=

The rows/columns number 2 and 3 in the result matrix can be
represented as a linear combination of the first row/column,
specifically by multiplying it by 2 and 3, respectively.
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Constraint Definition

Definition

Each constraint in the Rank-1 Constraint System must be in the
form:

(a,w) x (b,w) = (c,w)

Where w is a vector containing all the input, output, and
intermediate variables involved in the computation. The vectors a,
b, and c are vectors of coefficients corresponding to these variables,
and they define the relationship between the linear combinations of
w on the left-hand side and the right-hand side of the equation.
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Constraint Example

Consider the most basic circuit with one multiplication gate:
x1 X xa = r. The witnes vector w = (r, x1, x2). So

Wy X w3 = wp
(04+w2+0)x(0+0+w3)=w; +0+40
(Owg + 1wy + Ows) x (0wg + Ows + 1ws) = 1wy + Ows + Ows
Therefore the coefficients vectors are:
a=(0,1,0), b=(0,0,1), ¢=(1,0,0).
The general form of our constraint is:

(alwl + aowy + a3W3)(b1W1 + bows + b3W3) =cwy + oows + c3ws




Constraint System Example

Now, let us consider a more complex example.

def r(x1: F, x2: F, x3: F) -> F:
return x2 * x3 if x1 else x2 + x3

That can be expressed as:

r=xi X (x2xx3)+(1—x1)x (x2+ x3)
We need a boolean restriction for x: that is, x; x (1 — x3) = 0.

Thus, the next constraints can be built:
x1 X x1 = x1  (binary check) (1)
xp X x3 = mult (2)
x1 X mult = selectMult (3)
(1 —x1) X (x2 + x3) = r — selectMult (4)




Constraint System Example

The witness vector: w = (1, r, x1, x2, x3, mult, selectMult). The
coefficients vectors:

a; = (0,0,1,0,0,0,0), by =(0,0,1,0,0,0,0), ¢1 = (0,0,1,0,0,0,0)

a, = (0,0,0,1,0,0,0), by =(0,0,0,0,1,0,0), ¢, =(0,0,0,0,0,1,0)
=(0,0,1,0,0,0,0), b3 =(0,0,0,0,0,1,0), 3= (0,0,0,0,0,0,1)

a, = (1,0,—1,0,0,0,0), bs=(0,0,0,1,1,0,0), c4=(0,1,0,0,0,0,—1)

Using the arithmetic in a large F,,, consider the following values:
x1=1 xx=3, x3=4

Verifying the constraints:

L.xaxxg=x3 (I1x1=1)

2. xo x x3=mult (3 x4=12)

3. x3 X mult = selectMult (1 x 12 = 12)

4. (1 —x1) X (x2 4+ x3) = r —selectMult (0 x 7 =12 — 12)
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R1CS In Matrix Form

Theorem

Consider a Rank-1 Constraint System (R1CS) defined over m
constraints. Each constraint in such system is associated with
coefficient vectors a;, b;, and c;, where i € {1,2,...,m} and also a
witness vector w consisting of n elements.

Then this system can also be represented using the corresponding
matrices A, B, and C.

all ai2 500 din
ani doo 000 don

A= | | ] , .| , same for B and C,
dmi dm2 --- dmn

such that all constraints can be reduced to the single equation:

Aw ®© Bw = Cw
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R1CS In Matrix Form

Proof. Matrices defined this way can be expressed as

a] b/ c/
a) by c,
A=| .|, B=| .|, C=
a) b L
Consider an expression Aw:
a7 [wm a w] Doim1 AW (a1, w)
a) | [w2 a, w SN aiw; (az, w)
Aw = ) ) = = =
anl Lwn anwl L300 aniw; (am, w)
Therefore, we have:
(a1, w) [ (b1, w) (€1, w)
<82, W> <b27 W> <C27 W>
Aw = . , Bw= . , Cw=
(am, w) L(bm, w) (€m, w)

Thus, Aw ® Bw = Cw is equivalent to the system of m constraints:
(aj, w) x (bj,w) = (cj,w), je{l,...,m}.




R1CS In Matrix Form

Rank-1 Constraint System
0000000800

The vectors a; from the previous examples have the form:

a1 = (0,0,1,0,0,0,0)
a, = (0,0,0,1,0,0,0)
a3 = (0,0,1,0,0,0,0)
as = (1,0,

_1a 07 07 07 0)

This corresponds to n = 7, m = 4, so the matrix A becomes:

ai,1
azi
as,1
a4.1

ai,2
az 2
as2
4,2

ai3
a2 3
as;3
d4.3

aia
aza
as,a
a4.4

ais
azs
as,s
d4.5

ai,6
a2e
as.6
d4.6

aiz
az.7
as,7
as7

= O O O

o O oo

=

o O+~ O

o O oo

o O oo

o O O o
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Why Rank-17

Lemma

Suppose we have a constraint (a,w) x (b,w) = (c, w) with
coefficient vectors a, b, ¢ and witness vector w (all from F"). Then
it can be expressed in the form:

w Aw +¢c'w =0
Where A = a ® b — rank-1 matrix.

Lemma proof. Consider a, b, c,w € F".

n n n
E ajw; | X E bjo = E Cj Wi
i=1 Jj=1 k=1

Combine the products into a double sum on the left side:
n

ZZaibjw,-Wj =w'(a@ b)w =w'Aw

i=1 j=1

Thus, the constraint can be written as w' Aw + ¢’ w = 0.
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