What is zk-SNARK? Boolean Circuits Arithmetic Circuits Linear Algebruh Preliminaries Rank-1 Constraint System
000000 0000 0000000 0000000000000 0000000000

Introduction to zk-SNARKs. R1CS

September 12, 2024

Distributed Lab

PN

& zkdl-camp.github.io

wr

) github.com/ZKDL-Camp

Zi



https://zkdl-camp.github.io
https://github.com/ZKDL-Camp

Plan

What is zk-SNARK?
Boolean Circuits

Arithmetic Circuits

Linear Algebruh Preliminaries

Rank-1 Constraint System




What is zk-SNARK? Boolean Circuits Arithmetic Circuits Linear Algebruh Preliminaries Rank-1 Constraint System
00000 [e]e]e]e] 0000000 0000000000000 0000000000

What is zk-SNARK?




What is zk-SNARK?
000000

What Is zk-SNARK?

zk-SNARK
Zero-Knowledge Succinct Non-interactive ARgument of Knowledge.

e Argument of Knowledge — a proof that the prover knows the
data (witness) that resolves a certain problem, and this knowledge
can be “extracted”.

e Succinctness — the proof size and verification time is relatively
small to the computation size and typically does not depend on
the size of the data or statement.

e Non-interactiveness — to produce the proof, the prover does
not need any interaction with the verifier.

e Zero-Knowledge — the verifier learns nothing about the data
used to produce the proof, despite knowing that this data resolves
the given problem and that the prover possesses it.




What is zk-SNARK?
00000

Still don’t get who is SNARK...

Well... Let's take a look at some example.

jﬁ P2
7% O
,»7/‘«35 ...but how to prove that without revealing the
Yai j
o chest location?




What is zk-SNARK?
00000

Still don’t get who is SNARK...

The Problem o o {
You have found a hidden treasure chest, and m

you want to prove to the organizer that you % X

know its location without actually revealing M/M

that.

We can retrieve some information from that:
The Secret Data: the exact treasure location.
The Prover: you.

The Verifier: the treasure hunt organizer.




Ohh... Got it!

Here is how we can apply the zk-SNARK to our problem:

e Argument of Knowledge: You need to create a proof that
demonstrates you know the chest is.

e Succinct: The proof you provide is very small and concise. It
doesn't matter how large the treasure map is or how many steps it
took you to find the chest.

e Non-interactive: You don't need to have a back-and-forth
conversation with the organizer to create this proof.

e Zero-Knowledge: The proof doesn't reveal any information
about the actual location of the treasure chest.

Well... The golden coin where the pirates’
sign is engraved is our zk-SNARK proof!




What is zk-SNARK?
00000e

The First Question To Resolve
But the problems that we usually want to solve are in a slightly

different format.

When we need to prove that some element is in a merkle tree, we
can't come to a verifier and give them a "coin"...

Question?
How do we convert a program into a mathematical language?

Math

Code that
S P
given problem

interpretation |
of the code




What is zk-SNARK? Boolean Circuits Arithmetic Circuits Linear Algebruh Preliminaries Rank-1 Constraint System
000000 [ leJele] 0000000 0000000000000 0000000000

Boolean Circuits




Boolean Circuits
0®00

Boolean Circuits

We can do that in a way like the computer does it — Boolean

Circuits.

Al B| AANDB
0|0 0
@ @ i
110 0
§d od »

Note

With any of {AND, NOT} or {OR, NOT} gates sets one can build any
possible logical circuit, they are called functionally complete sets.




Boolean Circuits
0000

Boolean Circuit Example

()—@
O

Figure: Example of a circuit evaluating d = (a AND b) OR c.

Boolean circuits receive an input vector of 0, 1 and resolve to true
(1) or false (0);

The above circuit can be satisfied with the next values:

a=1 b=1 ¢=0, d=1




Boolean Circuits
ocooe

SHA-256 Boolean circuit

[File |[No. ANDs|[No. XORs|No. INV|
sha256Final txt|22,272 91,780  [2,194 |

Figure: Stats of a SHA256 boolean circuit implementation.

More than 100000 gates. Impressive, isn't it?

But it also shows how inconvenient the boolean circuits are.




What is zk-SNARK? Boolean Circuits Arithmetic Circuits Linear Algebruh Preliminaries Rank-1 Constraint System
000000 [e]e]e]e] 9000000 0000000000000 0000000000

Arithmetic Circuits




Arithmetic Circuits

Similar to Boolean Circuits, the Arithmetic Circuits consist of
gates and wires.

e Wires: elements of some finite field FF.

e Gates: field addition (+) and multiplication ().

© ©

J od ®

Figure: Addition and Multiplication Gates




Arithmetic Circuits
00®0000

Arithmetic Circuits Example |

Example

def multiply(a: F, b: F) -> F:
return a * b

This can be represented as a circuit with only one (multiplication)
gate:
r=axb

The witness vector (essentially, our solution vector) is w = (r, a, b),
for example: (6,2, 3).

We assume that the a and b are input values.

Note
We can think of the “=" in the gate as an assertion.




Arithmetic Circuits
000@000

Arithmetic Circuits Example Il

Example

Now, suppose we want to implement the evaluation of the
polynomial Q(x1,x2) = x§ + x3 € F[x1, x2] using arithmetic circuits.

def evaluate(xl: F, x2: F) -> F:
return x1**x3 + x2%%2

Looks easy, right? But the circuit is now much less trivial.

X12:X1><X1 n = X1 X X1
X]:_)’:X]?XX1 rn =rn X X
5 or

Xy = X2 X X2 3 = Xo X X2

Q=x3+x3 Q=r+r3




Arithmetic Circuits
0000800

Arithmetic Circuits Example Il

Xt
 —
x5

eco— 0@

Figure: Example of a circuit evaluating x3 + x3.




Arithmetic Circuits
000000

Arithmetic Circuits Example Il

Example

Well, it is quite clear how to represent any polynomial-like
expressions. But how can we translate if statements?

def example(a: bool, b: F, c: F) -> F:
if a:
return b * c¢
else:
return b + ¢
We can transform such a function into the next expression:
r=ax(bxc)+(l—a)x(b+c)
Corresponding equations for the circuit are:
rn=b>bxc, r=1-—a, s =1r3 X rn

mn=>b+c, rp=axn, r=ry+rs




Arithmetic Circuits
000000@

Arithmetic Circuits Example Il

O
©

—~
SO0

rn

Figure: Example of a circuit evaluating the if statement logic.




What is zk-SNARK? Boolean Circuits Arithmetic Circuits Linear Algebruh Preliminaries Rank-1 Constraint System
000000 0000 0000000 ©000000000000 0000000000

Linear Algebruh Preliminaries




Linear Algebruh Preliminaries
0®00000000000

Vector Space

A vector space V over the field ' is an abelian group for addition
“+" together with a scalar multiplication operation “-"* from [F x V
to V, sending (A, x) — Ax and such that for any v,u € V and
A, 1 € F we have:

e \Nu+v)=Au+ v

o (AN +p)v=Av+pv
o (Au)v = A(uv)
o lv=v

Any element v € V is called a vector, and any element A € F is
called a scalar. We also mark vector elements in boldface.




Linear Algebruh Preliminaries
00®0000000000

Matrix

The matrix is a rectangular array of numbers, symbols, or
expressions, arranged in rows and columns. For example, the matrix
A with m rows and n columns, consisting of elements from the finite
field F is denoted as A € F™*",

Definition

Let A, B be two matrices over the field F. The following operations

are defined:

e Matrix addition/subtraction: A+ B = {a;; &+ b;;}["Z]. The
matrices A and B must have the same size m x n.

e Scalar multiplication: MA = {\a; j}1<jj<n for any A € F.

e Matrix multiplication: C = AB is a matrix C € F™*P with
elements ¢;j = > ; ai¢bgj. The number of columns in A must
be equal to the number of rows in B, that is A € F™*" and
B € F"<P,




Linear Algebruh Preliminaries
000®000000000

Matrix Multiplication

Consider

2 1
A=l 12 eR>3, B=|1 3| eR3*?
2 21 L]

We cannot add A and B since they have different sizes. However, we
can multiply them:

5 6

AB:{Y 0

4 4 5
], BA=1|7 7 5
333

To see why, for example, the upper left element of AB is 5, we can
calculate it as 22:1 ajebp1 =1x2+1x14+2x1=5.




Linear Algebruh Preliminaries
0000®00000000

Vector As A Matrix

Note

It just so happens that when working with vectors, we usually
assume that they are column vectors. This means that the vector

v = (vi,v2,...,V,) is represented as a matrix:
Vi
V2
v =
Vn

This is a common convention in linear algebra, and we will use it in
the following sections.




Linear Algebruh Preliminaries
0000080000000

Matrix Transpose

Definition (Transposition)

Given a matrix A € F™*" the transpose of A is a matrix
AT € Fr*m with elements A;-Jr = Aji.

12 T 13
o E R

1
123 +
s=ls 5o &=

S O

v=|2|, v =]1,23]




Linear Algebruh Preliminaries
000000®000000

Inner Product

Definition
Consider the vector space V over the finite field F,. The inner
product is a function (-,-) : V x V — F, satisfying the following
conditions for all u,v,w € V:
o (ut v, w) = (u,w)+ (v, w).
(u,v+w) = (u,v)+ (uw).
e (u,v) =0 forall ucViff v =0.
(u,v) =0forall ve Viffu=0.

Plenty of functions can be built that satisfy the inner product
definition, we'll use the one that is usually called dot product.




Linear Algebruh Preliminaries
0000000800000

Dot Product

Definition

Consider the vector space F” over the finite field F. The dot
product on F" is a function (-,-) : F" x " — TF, defined for every
u,v € F" as follows:

n
u,v) = UTV: u;vi
(u,v)

i=1

Note
The dot product can also be denoted using the dot notation as:
u-v

That is why it's called the “dot™ product.




Linear Algebruh Preliminaries
00000000®0000

Dot Product

Let u, v are vectors over the real number R, where
u=(1,2,3), v=(2,473)

Then:

3
(uv)=> ujv;=2-142-443-3=24+8+9=19
=l




Linear Algebruh Preliminaries
0000000008000

Hadamard Product

Suppose A, B € F™*". The Hadamard product A ® B gives a

matrix C such that C;; = A;;B; ;. Essentially, we multiply elements
elementwise.

. 1 1 2 3 21
Consider A = [3 0 3] ,B = [ 1]. Then, the Hadamard

product:




Linear Algebruh Preliminaries
0000000000800

Outer Product

Definition

Given two vectors u € F", v € F™ the outer product is a the
matrix whose entries are all products of an element in the first vector
with an element in the second vector:

uivy UV ---  U1Vp

i us vy uvy -+ UVp
uRv.=uv =

UnVi UmV2 -+ UmVp




Linear Algebruh Preliminaries
0000000000080

Outer Product

Lemma (Properties of outer product)

For any scalar c € F and (u,v,w) € F" x F™ x FP:
e Transpose: (u®@v)= (v u)"

e Distributivity: u®@ (v+w)=u@v+u®@w
e Scalar Multiplication: c(v ® u) = (cv) @ u = v ® (cu)

e Rank: the outer product u ® v is a rank-1 matrix if u and v are
non-zero vectors




Linear Algebruh Preliminaries
0000000000008

Outer Product

Let u, v are vectors over the real number R, where
u=(1,2,3), v=(2,4,3)
Then:
1-2 1-4 1-3 2 4 3
uRv=uv = (2.2 2.4 2.3 =1[4 8 6
3-2 3-4 3-3 6 12 9

=

The rows/columns number 2 and 3 in the result matrix can be
represented as a linear combination of the first row/column,
specifically by multiplying it by 2 and 3, respectively.




What is zk-SNARK? Boolean Circuits Arithmetic Circuits Linear Algebruh Preliminaries Rank-1 Constraint System
000000 [e]e]e]e] 0000000 0000000000000 000000000

Rank-1 Constraint System




Rank-1 Constraint System
0®00000000

Constraint Definition

Definition

Each constraint in the Rank-1 Constraint System must be in the
form:

(a,w) x (b,w) = (c,w)

Where w is a vector containing all the input, output, and
intermediate variables involved in the computation. The vectors a,
b, and c are vectors of coefficients corresponding to these variables,
and they define the relationship between the linear combinations of
w on the left-hand side and the right-hand side of the equation.




Rank-1 Constraint System
0080000000

Constraint Example

Consider the most basic circuit with one multiplication gate:
x1 X xa = r. The witnes vector w = (r, x1, x2). So

Wy X w3 = wp
(04+w2+0)x(0+0+w3)=w; +0+40
(Owg + 1wy + Ows) x (0wg + Ows + 1ws) = 1wy + Ows + Ows
Therefore the coefficients vectors are:
a=(0,1,0), b=(0,0,1), ¢=(1,0,0).
The general form of our constraint is:

(alwl + aowy + a3W3)(b1W1 + bows + b3W3) =cwy + oows + c3ws




Constraint System Example

Now, let us consider a more complex example.

def r(x1: F, x2: F, x3: F) -> F:
return x2 * x3 if x1 else x2 + x3

That can be expressed as:

r=xi X (x2xx3)+(1—x1)x (x2+ x3)
We need a boolean restriction for x: that is, x; x (1 — x3) = 0.

Thus, the next constraints can be built:
x1 X x1 = x1  (binary check) (1)
xp X x3 = mult (2)
x1 X mult = selectMult (3)
(1 —x1) X (x2 + x3) = r — selectMult (4)




Constraint System Example

The witness vector: w = (1, r, x1, x2, x3, mult, selectMult). The
coefficients vectors:

a; = (0,0,1,0,0,0,0), by =(0,0,1,0,0,0,0), ¢1 = (0,0,1,0,0,0,0)

a, = (0,0,0,1,0,0,0), by =(0,0,0,0,1,0,0), ¢, =(0,0,0,0,0,1,0)
=(0,0,1,0,0,0,0), b3 =(0,0,0,0,0,1,0), 3= (0,0,0,0,0,0,1)

a, = (1,0,—1,0,0,0,0), bs=(0,0,0,1,1,0,0), c4=(0,1,0,0,0,0,—1)

Using the arithmetic in a large F,,, consider the following values:
x1=1 xx=3, x3=4

Verifying the constraints:

L.xaxxg=x3 (I1x1=1)

2. xo x x3=mult (3 x4=12)

3. x3 X mult = selectMult (1 x 12 = 12)

4. (1 —x1) X (x2 4+ x3) = r —selectMult (0 x 7 =12 — 12)




Rank-1 Constraint System
00000@0000

R1CS In Matrix Form

Theorem

Consider a Rank-1 Constraint System (R1CS) defined over m
constraints. Each constraint in such system is associated with
coefficient vectors a;, b;, and c;, where i € {1,2,...,m} and also a
witness vector w consisting of n elements.

Then this system can also be represented using the corresponding
matrices A, B, and C.

all ai2 500 din
ani doo 000 don

A= | | ] , .| , same for B and C,
dmi dm2 --- dmn

such that all constraints can be reduced to the single equation:

Aw ®© Bw = Cw




Rank-1 Constraint System
000000@000

R1CS In Matrix Form

Proof. Matrices defined this way can be expressed as

a] b/ c/
a) by c,
A=| .|, B=| .|, C=
a) b L
Consider an expression Aw:
a7 [wm a w] Doim1 AW (a1, w)
a) | [w2 a, w SN aiw; (az, w)
Aw = ) ) = = =
anl Lwn anwl L300 aniw; (am, w)
Therefore, we have:
(a1, w) [ (b1, w) (€1, w)
<82, W> <b27 W> <C27 W>
Aw = . , Bw= . , Cw=
(am, w) L(bm, w) (€m, w)

Thus, Aw ® Bw = Cw is equivalent to the system of m constraints:
(aj, w) x (bj,w) = (cj,w), je{l,...,m}.




R1CS In Matrix Form

Rank-1 Constraint System
0000000800

The vectors a; from the previous examples have the form:

a1 = (0,0,1,0,0,0,0)
a, = (0,0,0,1,0,0,0)
a3 = (0,0,1,0,0,0,0)
as = (1,0,

_1a 07 07 07 0)

This corresponds to n = 7, m = 4, so the matrix A becomes:

ai,1
azi
as,1
a4.1

ai,2
az 2
as2
4,2

ai3
a2 3
as;3
d4.3

aia
aza
as,a
a4.4

ais
azs
as,s
d4.5

ai,6
a2e
as.6
d4.6

aiz
az.7
as,7
as7

= O O O

o O oo

=

o O+~ O

o O oo

o O oo

o O O o




Rank-1 Constraint System
0000000080

Why Rank-17

Lemma

Suppose we have a constraint (a,w) x (b,w) = (c, w) with
coefficient vectors a, b, ¢ and witness vector w (all from F"). Then
it can be expressed in the form:

w Aw +¢c'w =0
Where A = a ® b — rank-1 matrix.

Lemma proof. Consider a, b, c,w € F".

n n n
E ajw; | X E bjo = E Cj Wi
i=1 Jj=1 k=1

Combine the products into a double sum on the left side:
n

ZZaibjw,-Wj =w'(a@ b)w =w'Aw

i=1 j=1

Thus, the constraint can be written as w' Aw + ¢’ w = 0.




Thank you for your attention

v

/N

& zkdl-camp.github.io
) github.com/ZKDL-Camp

Zi

DL


https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	What is zk-SNARK?
	Boolean Circuits
	Arithmetic Circuits
	Linear Algebruh Preliminaries
	Rank-1 Constraint System

