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Recap: what is zk-SNARK?
Definition

zk-SNARK
Zero-Knowledge Succinct Non-interactive ARgument of Knowledge.

✓ Argument of Knowledge — a proof that the prover knows the
data (witness) that resolves a certain problem, and this
knowledge can be “extracted”.

✓ Succinctness — the proof size and verification time is relatively
small to the computation size and typically does not depend on
the size of the data or statement.

✓ Non-interactiveness — to produce the proof, the prover does
not need any interaction with the verifier.

✓ Zero-Knowledge — the verifier learns nothing about the data
used to produce the proof, despite knowing that this data resolves
the given problem and that the prover possesses it.
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Recap: Arbitrary Program To Circuits

We can do that in a way like the computer does it — boolean
circuits.

a b

AND

c

a b

OR

c

Figure: Boolean AND and OR Gates

But nothing stops us from using something more powerful instead of
boolean values...
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Recap. Arbitrary Program To Circuits

We can do that in a way like the computer does it — boolean
circuits.

a b

AND

c

a b

OR

c

Figure: Boolean AND and OR Gates

> 100000 gates just for SHA256. . . But nothing stops us from using
something more powerful instead of boolean values, gates.
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Recap. Arbitrary Program To Circuits
Similar to Boolean Circuits, the Arithmetic Circuits consist of
gates and wires.

• Wires: elements of some finite field F.

• Gates: field addition (+) and multiplication (×).

a b

+

c

a b

×

c

Figure: Addition and Multiplication Gates
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Recap. Arbitrary Program To Circuits

Example
How can we translate if statements?

def example(a: bool , b: F, c: F) -> F:
if a:

return b * c
else:

return b + c

We can transform such a function into the next expression:
r = a× (b × c) + (1− a)× (b + c)

Corresponding equations for the circuit are:
r1 = b × c , r3 = 1− a, r5 = r3 × r2

r2 = b + c , r4 = a× r1, r = r4 + r5
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Recap. Arbitrary Program To Circuits

c

b

a

1

+

×

−

×

×

+ r

r1

r3

r2

r4

r5

Figure: Example of a circuit evaluating the if statement logic.
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Recap. R1CS

Each constraint in the Rank-1 Constraint System must be in the
form:

⟨a,w⟩ × ⟨b,w⟩ = ⟨c ,w⟩

Where ⟨u, v⟩ is a dot product.

⟨u, v⟩ := u⊤v =
n∑

i=1

uivi

Thus (
n∑

i=1

aiwi

)
×

 n∑
j=1

bjwj

 =
n∑

k=1

ckwk

That is, actually, a quadratic equation with multiple variables.
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Recap. R1CS

Example
Consider the most basic circuit with one multiplication gate:
x1 × x2 = r . The witnes vector w = (r , x1, x2). So

w2 × w3 = w1

(0 + w2 + 0)× (0 + 0 + w3) = w1 + 0 + 0
(0w1 + 1w2 + 0w3)× (0w1 + 0w2 + 1w3) = 1w1 + 0w2 + 0w3

Therefore the coefficients vectors are:

a = (0, 1, 0), b = (0, 0, 1), c = (1, 0, 0).

The general form of our constraint is:

(a1w1 + a2w2 + a3w3)(b1w1 + b2w2 + b3w3) = c1w1 + c2w2 + c3w3
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Recap. R1CS

r = x1 × (x2 × x3) + (1− x1)× (x2 + x3)

Thus, the next constraints can be build:
x1 × x1 = x1 (binary check) (1)
x2 × x3 = mult (2)

x1 ×mult = selectMult (3)
(1− x1)× (x2 + x3) = r − selectMult (4)

The witness vector: w = (1, r , x1, x2, x3,mult, selectMult).

The coefficients vectors:
a1 = (0, 0, 1, 0, 0, 0, 0), b1 = (0, 0, 1, 0, 0, 0, 0), c1 = (0, 0, 1, 0, 0, 0, 0)
a2 = (0, 0, 0, 1, 0, 0, 0), b2 = (0, 0, 0, 0, 1, 0, 0), c2 = (0, 0, 0, 0, 0, 1, 0)
a3 = (0, 0, 1, 0, 0, 0, 0), b3 = (0, 0, 0, 0, 0, 1, 0), c3 = (0, 0, 0, 0, 0, 0, 1)
a4 = (1, 0,−1, 0, 0, 0, 0), b4 = (0, 0, 0, 1, 1, 0, 0), c4 = (0, 1, 0, 0, 0, 0,−1)
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QAP
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Problems we have for now:

✓ Although Rank-1 Constraint Systems provide a powerful method
for representing computations, they are not succinct.

✓ We need to transform our computations into a form that is more
convenient for proving statements about them.

Notice
A very convenient form for representing computations is
polynomials!

Idea: Instead of checking polynomial equality P(x) = Q(x) at
multiple points x1, . . . , xn (essentially, checking each constraint), we
check it only once at τ R←− F: P(τ) = Q(τ). Soundness is
guaranteed by the Schwartz-Zippel Lemma.
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We finished with the following constraint vectors:

a1, a2, . . . , am, b1,b2, . . . ,bm, c1, c2, . . . , cm,

Of course, they form corresponding matrices:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , same goes for B and C

An example of a single “if“ statement:

a1 = (0, 0, 1, 0, 0, 0, 0)
a2 = (0, 0, 0, 1, 0, 0, 0)
a3 = (0, 0, 1, 0, 0, 0, 0)
a4 = (1, 0,−1, 0, 0, 0, 0)

A =

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 −1 0 0 0 0


Pleeeeeenty of zeroes, right? And this is just one out of 3 matrices...
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The previous witness vector:

w = (1, r , x1, x2, x3,mult, selectMult)
3

Let’s take a closer look at the matrix columns:
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 −1 0 0 0 0


3

Consider 4th constraint: (1− x1)× (x2 + x3) = r − selectMult
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 −1 0 0 0 0


3

4

So, every column is a mapping of constraint number to a coefficient
for the witness element.
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As we know, such a mapping can be builds using Lagrange
interpolation polynomial with the following formula:

L(x) =
n∑

i=0

yiℓi (x), ℓi (x) =
n∏

j=0,j ̸=i

x − xj
xi − xj

.

There are n columns and m constraints. So, it results in n
polynomials such that:

Aj(i) = ai ,j , i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}

The same is true for matrices B and C , with 3n polynomials in total,
n for each of the coefficients matrices:

A1(x), . . . ,An(x),B1(x), . . . ,Bn(x),C1(x), . . . ,Cn(x)

Note
We could have assigned any unique index from F to each constraint
(say, ti for each i ∈ [m]) and interpolate through these points:

Aj(ti ) = ai ,j , i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}
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Example
Considering the witness vector w and matrix A from the previous
example, for the variable x1, the next set of points can be derived:

{(1, 1), (2, 0), (3, 1), (4,−1)}

The Lagrange interpolation polynomial for this set of points:

ℓ1(x) = −
(x − 2)(x − 3)(x − 4)

6
, ℓ2(x) =

(x − 1)(x − 3)(x − 4)
2

,

ℓ3(x) = −
(x − 1)(x − 2)(x − 4)

2
, ℓ4(x) =

(x − 1)(x − 2)(x − 3)
6

.

Thus, the polynomial is given by:

Ax1(x) = 1 · ℓ1(x) + 0 · ℓ2(x) + 1 · ℓ3(x) + (−1) · ℓ4(x)

= −5
6
x3 + 6x2 − 79

6
x + 9
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1 2 3 4

−2

−1

1

2
(1,1)

(2,0)

(3,1)

(4,-1)

x

A1(x)

Illustration: The Lagrange inteprolation polynomial for points
{(1, 1), (2, 0), (3, 1), (4,−1)} visualized over R.
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Question
But what does it change? We “exchanged“ 3n columns for 3n
polynomials.

Consider two polynomials p(x) and q(x):

p(x) = −1
2
x2 +

3
2
x , q(x) =

1
3
x3 − 2x2 +

8
3
x + 1.

With corresponding sets of points:

{(0, 0), (1, 1), (2, 1), (3, 0)}, {(0, 1), (1, 2), (2, 1), (3, 0)}

The sum of these polynomials can be calculated as:

r(x) =
1
3
x3 − 2× 1

2
x2 + 4× 1

6
x + 1

The resulting polynomial r(x) corresponds to the set of points:

{(0, 1), (1, 3), (2, 2), (3, 0)}
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1 2 3

1

2

3

p(x)

(0, 0)

(1, 1) (2, 1)

(3, 0)

q(x)(0, 1)

(1, 2)

r(x)

(1, 3)

(2, 2)

x

A1(x)

Figure: Addition of two polynomials
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Now, using coefficients encoded with polynomials, we can build a
constraint number X ∈ {1, . . . m} in the next way:

(w1A1(X ) + w2A2(X ) + · · ·+ wnAn(X ))×
×(w1B1(X ) + w2B2(X ) + · · ·+ wnBn(X )) =

=(w1C1(X ) + w2C2(X ) + · · ·+ wnCn(X ))

Or written more concisely:(
n∑

i=1

wiAi (X )

)
×

(
n∑

i=1

wiBi (X )

)
=

(
n∑

i=1

wiCi (X )

)
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Hold on, but why does it hold? Let us substitute any X = j into this
equation:(

n∑
i=1

wiAi (j)

)
×

(
n∑

i=1

wiBi (j)

)
=

(
n∑

i=1

wiCi (j)

)
∀j ∈ {1, . . . ,m}

Recall that we interpolated polynomials to have Ai (j) = aj ,i .
Therefore, the equation above can be reduced to:(

n∑
i=1

wiaj ,i

)
×

(
n∑

i=1

wibj ,i

)
=

(
n∑

i=1

wicj ,i

)
∀j ∈ {1, . . . ,m}

But hold on again! Notice that
∑n

i=1 wiaj ,i = ⟨w , aj⟩ and therefore
we have:

⟨w , aj⟩ × ⟨w ,bj⟩ = ⟨w , c j⟩ ∀j ∈ {1, . . . ,m},

so we ended up with the initial m constraint equations!
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Now let us define polynomials A(X ), B(X ), C (X ) for easier
notation:

A(X ) =
n∑

i=1

wiAi (X ), B(X ) =
n∑

i=1

wiBi (X ), C (X ) =
n∑

i=1

wiCi (X )

Therefore:
A(X )× B(X ) = C (X )

Now, we can define a polynomial M(X ), that has zeros at all
elements from the set Ω = {1, . . . ,m}

M(X ) = A(X )× B(X )− C (X )

It means, that M(X ) can be divided by vanishing polynomial
ZΩ(X ) without a remainder!

ZΩ(X ) =
m∏
i=1

(X − i), H(X ) =
M(X )

ZΩ(X )
is a polynomial
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Definition (Quadratic Arithmetic Program)

Suppose that m R1CS constraints with a witness of size n are
written in a form

Aw ⊙ Bw = Cw , (A,B,C ∈ Fm×n)

Then, the Quadratic Arithmetic Program consists of 3n
polynomials A1, . . . ,An, B1, . . . ,Bn, C1, . . . ,Cn such that:

Aj(i) = ai ,j , Bj(i) = bi ,j , Cj(i) = ci ,j , ∀i ∈ [m] ∀j ∈ [n]

Then, w ∈ Fn is a valid assignment for the given QAP and target
polynomial Z (X ) =

∏m
i=1(X − i) if and only if there exists such a

polynomial H(X ) such that(
n∑

i=1

wiAi (X )

)(
n∑

i=1

wiBi (X )

)
−

(
n∑

i=1

wiCi (X )

)
= Z (X )H(X )
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Probabilistically Checkable Proofs
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Prover P Verifier V

PCP Oracle

Generate an oracle (π) Point queries

q1 q2 q3

Figure: Illustration of a Probabilistically Checkable Proof (PCP) system.
The prover P generates a PCP oracle π that is queried by the verifier V at
specific points q1, . . . , qm.
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Three main extensions of PCPs that are frequently used in SNARKs
are:

• IPCP (Interactive PCP): The prover commits to the PCP oracle
and then, based on the interaction between the prover and verifier,
the verifier queries the oracle and decides whether to accept the
proof.

• IOP (Interactive Oracle Proof): The prover and verifier interact
and on each round, the prover commits to a new oracle. The
verifier queries the oracle and decides whether to accept the proof.

• LPCP (Linear PCP): The prover commits to a linear function
and the verifier queries the function at specific points.
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Prover P Verifier V

q1 q2 q3

PCP Oracle #1
q′1 q′2 q′3

PCP Oracle #2
q′′1 q′′2 q′′3

PCP Oracle #3

Commit to
oracles Point queries

Interaction

Figure: Illustration of an Interactive Oracle Proof (IOP). On each round i
(1 ≤ i ≤ r), V sends a message mi , and P commits to a new oracle πi ,
which V can query at q i = (qi,1, . . . , qi,m).
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QAP as a Linear PCP



Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Definition (Linear PCP)

A Linear PCP is a PCP where the prover commits to a linear
function π = (π1, . . . , πk) and the verifier queries the function at
specific points q1, . . . ,qr . Then, the prover responds with the
values of the function at these points:

⟨π1,q1⟩, ⟨π2,q2⟩, . . . , ⟨πr ,qr ⟩.
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Example (QAP as a Linear PCP)

Recall that key QAP equation is:

L(x)× R(x)− O(x) = Z (x)H(x).

Now, consider the following linear PCP for QAP:
1. P commits to an extended witness w and coefficients

h = (h1, . . . , hn) of H(x).

2. V samples γ
R←− F and sends query γ = (γ, γ2, . . . , γn) to P.

3. P reveals the following values:

π1 ← ⟨w ,L(γ)⟩, π2 ← ⟨w ,R(γ)⟩,
π3 ← ⟨w ,O(γ)⟩, π4 ← Z (γ) · ⟨h,γ⟩.

4. V checks whether π1π2 − π3 = π4.
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Question
Why is it safe to use such a check? (assuming proper commitments).

The polynomials L(x), R(x) and O(x) are interpolated polynomials
using |C | (number of gates) points, so:

deg(L) ≤ |C | , deg(R) ≤ |C | , deg(O) ≤ |C |

Thus, we can estimate the degree of polynomial
M(x) = L(x)R(x)− O(x).

deg(M) ≤ max{deg(L) + deg(R), deg(O)} ≤ 2 |C |

If an adversary A does not know a valid witness w , he can compute
a polynomial (M̃(x), H̃(x))← A(·) that satisfies a verifier V:

Pr
s

R←−F
[M̃(s) = Z (s)H̃(s)] ≤ 2 |C |

|F|

If |F| is large enough, 2|C |/|F| is negligible.
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Proof Of Exponent
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Encrypted Verification
Let us try to prove that we know some polynomial p(x) that can be
divided to t(x) without a remainder.

Consider the polynomial: p(x) = x2 − 5x + 2. Additionally, we will
need a cyclic group G with a generator g ∈ G. We also define the
encryption operation as follows:

Enc : F→ G, Enc(x) := g x

Essentially, Enc(p(τ)) is the KZG Commitment. Let us see the
encryption of p(τ) for our example:

Enc(p(τ)) = gp(τ) = g(τ
2−5τ+2) =

(
g τ2
)1
·
(
g τ1
)−5
·
(
g τ0
)2

Note

KZG Commitment requires only encrypted powers of τ : {g τ i}i∈[d ].
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Encrypted Verification

Verifier:
✓ Picks a random value τ

R←− F.
✓ Calculates the public parameters {g τ i}i∈[d ].
✓ Calculates t(τ).

✓ Outputs prover parameters {g τ i}i∈[d ].

Prover:
✓ Calculates h(x) = p(x)

t(x) .

✓ Using {g τ i}i∈[d ] calculates gp(τ) and gh(τ).

✓ Provides encrypted polynomials gp(τ) and gh(τ) to the verifier.

Verifier:
✓ Checks whether gp(τ) =

(
gh(τ)

)t(τ)
.
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That doesn’t work...

Verifier:
✓ Picks a random value τ

R←− F.
✓ Calculates the public parameters {g τ i}i∈[d ].
✓ Calculates t(τ).

✓ Outputs prover parameters {g τ i}i∈[d ].

Adversary:
✓ Picks a random value r

R←− F, calculates g r .
✓ Calculates g t(τ).
✓ Calculates g p̃(τ) =

(
g t(τ)

)r
.

Verifier:
✓ Checks whether g p̃(τ) = (g r )t(τ).
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Proof Of Exponent

Verifier:
✓ Picks a random values τ

R←− F, a R←− F.
✓ Calculates the public parameters {g τ i}i∈[d ] and {gaτ i}i∈[d ]
✓ Calculates t(τ).

Prover:
✓ Calculates h(x) = p(x)

t(x) .

✓ Using {g τ i}i∈[d ] calculates gp(τ), gh(τ).

✓ Using {gaτ i}i∈[d ] calculates gp′(τ) = gap(τ).
✓ Provides encrypted polynomials to the verifier.

Verifier:
✓ Checks whether gp(τ) =

(
gh(τ)

)t(τ)
.

✓ Checks whether gp′(τ) =
(
gp(τ)

)a
= gap(τ).



Thank you for your attention

♥

� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	Recap
	Quadratic Arithmetic Program
	Probabilistically Checkable Proofs
	QAP as a Linear PCP
	Proof Of Exponent

