
Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

QAP, PCP, POE: Demystifying
zk-SNARK Tools
October 1, 2024

Distributed Lab
� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io
https://github.com/ZKDL-Camp

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Plan

1 Recap

2 Quadratic Arithmetic Program

3 Probabilistically Checkable Proofs

4 QAP as a Linear PCP

5 Proof Of Exponent

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Recap

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Recap: what is zk-SNARK?
Definition

zk-SNARK
Zero-Knowledge Succinct Non-interactive ARgument of Knowledge.

✓ Argument of Knowledge — a proof that the prover knows the
data (witness) that resolves a certain problem, and this
knowledge can be “extracted”.

✓ Succinctness — the proof size and verification time is relatively
small to the computation size and typically does not depend on
the size of the data or statement.

✓ Non-interactiveness — to produce the proof, the prover does
not need any interaction with the verifier.

✓ Zero-Knowledge — the verifier learns nothing about the data
used to produce the proof, despite knowing that this data resolves
the given problem and that the prover possesses it.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Recap: Arbitrary Program To Circuits

We can do that in a way like the computer does it — boolean
circuits.

a b

AND

c

a b

OR

c

Figure: Boolean AND and OR Gates

But nothing stops us from using something more powerful instead of
boolean values...

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Recap. Arbitrary Program To Circuits

We can do that in a way like the computer does it — boolean
circuits.

a b

AND

c

a b

OR

c

Figure: Boolean AND and OR Gates

> 100000 gates just for SHA256. . . But nothing stops us from using
something more powerful instead of boolean values, gates.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Recap. Arbitrary Program To Circuits
Similar to Boolean Circuits, the Arithmetic Circuits consist of
gates and wires.

• Wires: elements of some finite field F.

• Gates: field addition (+) and multiplication (×).

a b

+

c

a b

×

c

Figure: Addition and Multiplication Gates

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Recap. Arbitrary Program To Circuits

Example
How can we translate if statements?

def example(a: bool , b: F, c: F) -> F:
if a:

return b * c
else:

return b + c

We can transform such a function into the next expression:
r = a× (b × c) + (1− a)× (b + c)

Corresponding equations for the circuit are:
r1 = b × c , r3 = 1− a, r5 = r3 × r2

r2 = b + c , r4 = a× r1, r = r4 + r5

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Recap. Arbitrary Program To Circuits

c

b

a

1

+

×

−

×

×

+ r

r1

r3

r2

r4

r5

Figure: Example of a circuit evaluating the if statement logic.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Recap. R1CS

Each constraint in the Rank-1 Constraint System must be in the
form:

⟨a,w⟩ × ⟨b,w⟩ = ⟨c ,w⟩

Where ⟨u, v⟩ is a dot product.

⟨u, v⟩ := u⊤v =
n∑

i=1

uivi

Thus (
n∑

i=1

aiwi

)
×

 n∑
j=1

bjwj

 =
n∑

k=1

ckwk

That is, actually, a quadratic equation with multiple variables.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Recap. R1CS

Example
Consider the most basic circuit with one multiplication gate:
x1 × x2 = r . The witnes vector w = (r , x1, x2). So

w2 × w3 = w1

(0 + w2 + 0)× (0 + 0 + w3) = w1 + 0 + 0
(0w1 + 1w2 + 0w3)× (0w1 + 0w2 + 1w3) = 1w1 + 0w2 + 0w3

Therefore the coefficients vectors are:

a = (0, 1, 0), b = (0, 0, 1), c = (1, 0, 0).

The general form of our constraint is:

(a1w1 + a2w2 + a3w3)(b1w1 + b2w2 + b3w3) = c1w1 + c2w2 + c3w3

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Recap. R1CS

r = x1 × (x2 × x3) + (1− x1)× (x2 + x3)

Thus, the next constraints can be build:
x1 × x1 = x1 (binary check) (1)
x2 × x3 = mult (2)

x1 ×mult = selectMult (3)
(1− x1)× (x2 + x3) = r − selectMult (4)

The witness vector: w = (1, r , x1, x2, x3,mult, selectMult).

The coefficients vectors:
a1 = (0, 0, 1, 0, 0, 0, 0), b1 = (0, 0, 1, 0, 0, 0, 0), c1 = (0, 0, 1, 0, 0, 0, 0)
a2 = (0, 0, 0, 1, 0, 0, 0), b2 = (0, 0, 0, 0, 1, 0, 0), c2 = (0, 0, 0, 0, 0, 1, 0)
a3 = (0, 0, 1, 0, 0, 0, 0), b3 = (0, 0, 0, 0, 0, 1, 0), c3 = (0, 0, 0, 0, 0, 0, 1)
a4 = (1, 0,−1, 0, 0, 0, 0), b4 = (0, 0, 0, 1, 1, 0, 0), c4 = (0, 1, 0, 0, 0, 0,−1)

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

QAP

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Problems we have for now:

✓ Although Rank-1 Constraint Systems provide a powerful method
for representing computations, they are not succinct.

✓ We need to transform our computations into a form that is more
convenient for proving statements about them.

Notice
A very convenient form for representing computations is
polynomials!

Idea: Instead of checking polynomial equality P(x) = Q(x) at
multiple points x1, . . . , xn (essentially, checking each constraint), we
check it only once at τ R←− F: P(τ) = Q(τ). Soundness is
guaranteed by the Schwartz-Zippel Lemma.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

We finished with the following constraint vectors:

a1, a2, . . . , am, b1,b2, . . . ,bm, c1, c2, . . . , cm,

Of course, they form corresponding matrices:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , same goes for B and C

An example of a single “if“ statement:

a1 = (0, 0, 1, 0, 0, 0, 0)
a2 = (0, 0, 0, 1, 0, 0, 0)
a3 = (0, 0, 1, 0, 0, 0, 0)
a4 = (1, 0,−1, 0, 0, 0, 0)

A =

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 −1 0 0 0 0


Pleeeeeenty of zeroes, right? And this is just one out of 3 matrices...

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

The previous witness vector:

w = (1, r , x1, x2, x3,mult, selectMult)
3

Let’s take a closer look at the matrix columns:
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 −1 0 0 0 0


3

Consider 4th constraint: (1− x1)× (x2 + x3) = r − selectMult
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 −1 0 0 0 0


3

4

So, every column is a mapping of constraint number to a coefficient
for the witness element.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

As we know, such a mapping can be builds using Lagrange
interpolation polynomial with the following formula:

L(x) =
n∑

i=0

yiℓi (x), ℓi (x) =
n∏

j=0,j ̸=i

x − xj
xi − xj

.

There are n columns and m constraints. So, it results in n
polynomials such that:

Aj(i) = ai ,j , i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}

The same is true for matrices B and C , with 3n polynomials in total,
n for each of the coefficients matrices:

A1(x), . . . ,An(x),B1(x), . . . ,Bn(x),C1(x), . . . ,Cn(x)

Note
We could have assigned any unique index from F to each constraint
(say, ti for each i ∈ [m]) and interpolate through these points:

Aj(ti) = ai ,j , i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Example
Considering the witness vector w and matrix A from the previous
example, for the variable x1, the next set of points can be derived:

{(1, 1), (2, 0), (3, 1), (4,−1)}

The Lagrange interpolation polynomial for this set of points:

ℓ1(x) = −
(x − 2)(x − 3)(x − 4)

6
, ℓ2(x) =

(x − 1)(x − 3)(x − 4)
2

,

ℓ3(x) = −
(x − 1)(x − 2)(x − 4)

2
, ℓ4(x) =

(x − 1)(x − 2)(x − 3)
6

.

Thus, the polynomial is given by:

Ax1(x) = 1 · ℓ1(x) + 0 · ℓ2(x) + 1 · ℓ3(x) + (−1) · ℓ4(x)

= −5
6
x3 + 6x2 − 79

6
x + 9

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

1 2 3 4

−2

−1

1

2
(1,1)

(2,0)

(3,1)

(4,-1)

x

A1(x)

Illustration: The Lagrange inteprolation polynomial for points
{(1, 1), (2, 0), (3, 1), (4,−1)} visualized over R.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Question
But what does it change? We “exchanged“ 3n columns for 3n
polynomials.

Consider two polynomials p(x) and q(x):

p(x) = −1
2
x2 +

3
2
x , q(x) =

1
3
x3 − 2x2 +

8
3
x + 1.

With corresponding sets of points:

{(0, 0), (1, 1), (2, 1), (3, 0)}, {(0, 1), (1, 2), (2, 1), (3, 0)}

The sum of these polynomials can be calculated as:

r(x) =
1
3
x3 − 2× 1

2
x2 + 4× 1

6
x + 1

The resulting polynomial r(x) corresponds to the set of points:

{(0, 1), (1, 3), (2, 2), (3, 0)}

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

1 2 3

1

2

3

p(x)

(0, 0)

(1, 1) (2, 1)

(3, 0)

q(x)(0, 1)

(1, 2)

r(x)

(1, 3)

(2, 2)

x

A1(x)

Figure: Addition of two polynomials

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Now, using coefficients encoded with polynomials, we can build a
constraint number X ∈ {1, . . . m} in the next way:

(w1A1(X) + w2A2(X) + · · ·+ wnAn(X))×
×(w1B1(X) + w2B2(X) + · · ·+ wnBn(X)) =

=(w1C1(X) + w2C2(X) + · · ·+ wnCn(X))

Or written more concisely:(
n∑

i=1

wiAi (X)

)
×

(
n∑

i=1

wiBi (X)

)
=

(
n∑

i=1

wiCi (X)

)

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Hold on, but why does it hold? Let us substitute any X = j into this
equation:(

n∑
i=1

wiAi (j)

)
×

(
n∑

i=1

wiBi (j)

)
=

(
n∑

i=1

wiCi (j)

)
∀j ∈ {1, . . . ,m}

Recall that we interpolated polynomials to have Ai (j) = aj ,i .
Therefore, the equation above can be reduced to:(

n∑
i=1

wiaj ,i

)
×

(
n∑

i=1

wibj ,i

)
=

(
n∑

i=1

wicj ,i

)
∀j ∈ {1, . . . ,m}

But hold on again! Notice that
∑n

i=1 wiaj ,i = ⟨w , aj⟩ and therefore
we have:

⟨w , aj⟩ × ⟨w ,bj⟩ = ⟨w , c j⟩ ∀j ∈ {1, . . . ,m},

so we ended up with the initial m constraint equations!

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Now let us define polynomials A(X), B(X), C (X) for easier
notation:

A(X) =
n∑

i=1

wiAi (X), B(X) =
n∑

i=1

wiBi (X), C (X) =
n∑

i=1

wiCi (X)

Therefore:
A(X)× B(X) = C (X)

Now, we can define a polynomial M(X), that has zeros at all
elements from the set Ω = {1, . . . ,m}

M(X) = A(X)× B(X)− C (X)

It means, that M(X) can be divided by vanishing polynomial
ZΩ(X) without a remainder!

ZΩ(X) =
m∏
i=1

(X − i), H(X) =
M(X)

ZΩ(X)
is a polynomial

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Definition (Quadratic Arithmetic Program)

Suppose that m R1CS constraints with a witness of size n are
written in a form

Aw ⊙ Bw = Cw , (A,B,C ∈ Fm×n)

Then, the Quadratic Arithmetic Program consists of 3n
polynomials A1, . . . ,An, B1, . . . ,Bn, C1, . . . ,Cn such that:

Aj(i) = ai ,j , Bj(i) = bi ,j , Cj(i) = ci ,j , ∀i ∈ [m] ∀j ∈ [n]

Then, w ∈ Fn is a valid assignment for the given QAP and target
polynomial Z (X) =

∏m
i=1(X − i) if and only if there exists such a

polynomial H(X) such that(
n∑

i=1

wiAi (X)

)(
n∑

i=1

wiBi (X)

)
−

(
n∑

i=1

wiCi (X)

)
= Z (X)H(X)

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Probabilistically Checkable Proofs

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Prover P Verifier V

PCP Oracle

Generate an oracle (π) Point queries

q1 q2 q3

Figure: Illustration of a Probabilistically Checkable Proof (PCP) system.
The prover P generates a PCP oracle π that is queried by the verifier V at
specific points q1, . . . , qm.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Three main extensions of PCPs that are frequently used in SNARKs
are:

• IPCP (Interactive PCP): The prover commits to the PCP oracle
and then, based on the interaction between the prover and verifier,
the verifier queries the oracle and decides whether to accept the
proof.

• IOP (Interactive Oracle Proof): The prover and verifier interact
and on each round, the prover commits to a new oracle. The
verifier queries the oracle and decides whether to accept the proof.

• LPCP (Linear PCP): The prover commits to a linear function
and the verifier queries the function at specific points.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Prover P Verifier V

q1 q2 q3

PCP Oracle #1
q′1 q′2 q′3

PCP Oracle #2
q′′1 q′′2 q′′3

PCP Oracle #3

Commit to
oracles Point queries

Interaction

Figure: Illustration of an Interactive Oracle Proof (IOP). On each round i
(1 ≤ i ≤ r), V sends a message mi , and P commits to a new oracle πi ,
which V can query at q i = (qi,1, . . . , qi,m).

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

QAP as a Linear PCP

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Definition (Linear PCP)

A Linear PCP is a PCP where the prover commits to a linear
function π = (π1, . . . , πk) and the verifier queries the function at
specific points q1, . . . ,qr . Then, the prover responds with the
values of the function at these points:

⟨π1,q1⟩, ⟨π2,q2⟩, . . . , ⟨πr ,qr ⟩.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Example (QAP as a Linear PCP)

Recall that key QAP equation is:

L(x)× R(x)− O(x) = Z (x)H(x).

Now, consider the following linear PCP for QAP:
1. P commits to an extended witness w and coefficients

h = (h1, . . . , hn) of H(x).

2. V samples γ
R←− F and sends query γ = (γ, γ2, . . . , γn) to P.

3. P reveals the following values:

π1 ← ⟨w ,L(γ)⟩, π2 ← ⟨w ,R(γ)⟩,
π3 ← ⟨w ,O(γ)⟩, π4 ← Z (γ) · ⟨h,γ⟩.

4. V checks whether π1π2 − π3 = π4.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Question
Why is it safe to use such a check? (assuming proper commitments).

The polynomials L(x), R(x) and O(x) are interpolated polynomials
using |C | (number of gates) points, so:

deg(L) ≤ |C | , deg(R) ≤ |C | , deg(O) ≤ |C |

Thus, we can estimate the degree of polynomial
M(x) = L(x)R(x)− O(x).

deg(M) ≤ max{deg(L) + deg(R), deg(O)} ≤ 2 |C |

If an adversary A does not know a valid witness w , he can compute
a polynomial (M̃(x), H̃(x))← A(·) that satisfies a verifier V:

Pr
s

R←−F
[M̃(s) = Z (s)H̃(s)] ≤ 2 |C |

|F|

If |F| is large enough, 2|C |/|F| is negligible.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Proof Of Exponent

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Encrypted Verification
Let us try to prove that we know some polynomial p(x) that can be
divided to t(x) without a remainder.

Consider the polynomial: p(x) = x2 − 5x + 2. Additionally, we will
need a cyclic group G with a generator g ∈ G. We also define the
encryption operation as follows:

Enc : F→ G, Enc(x) := g x

Essentially, Enc(p(τ)) is the KZG Commitment. Let us see the
encryption of p(τ) for our example:

Enc(p(τ)) = gp(τ) = g(τ
2−5τ+2) =

(
g τ2
)1
·
(
g τ1
)−5
·
(
g τ0
)2

Note

KZG Commitment requires only encrypted powers of τ : {g τ i}i∈[d].

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Encrypted Verification

Verifier:
✓ Picks a random value τ

R←− F.
✓ Calculates the public parameters {g τ i}i∈[d].
✓ Calculates t(τ).

✓ Outputs prover parameters {g τ i}i∈[d].

Prover:
✓ Calculates h(x) = p(x)

t(x) .

✓ Using {g τ i}i∈[d] calculates gp(τ) and gh(τ).

✓ Provides encrypted polynomials gp(τ) and gh(τ) to the verifier.

Verifier:
✓ Checks whether gp(τ) =

(
gh(τ)

)t(τ)
.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

That doesn’t work...

Verifier:
✓ Picks a random value τ

R←− F.
✓ Calculates the public parameters {g τ i}i∈[d].
✓ Calculates t(τ).

✓ Outputs prover parameters {g τ i}i∈[d].

Adversary:
✓ Picks a random value r

R←− F, calculates g r .
✓ Calculates g t(τ).
✓ Calculates g p̃(τ) =

(
g t(τ)

)r
.

Verifier:
✓ Checks whether g p̃(τ) = (g r)t(τ).

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Proof Of Exponent

Verifier:
✓ Picks a random values τ

R←− F, a R←− F.
✓ Calculates the public parameters {g τ i}i∈[d] and {gaτ i}i∈[d]
✓ Calculates t(τ).

Prover:
✓ Calculates h(x) = p(x)

t(x) .

✓ Using {g τ i}i∈[d] calculates gp(τ), gh(τ).

✓ Using {gaτ i}i∈[d] calculates gp′(τ) = gap(τ).
✓ Provides encrypted polynomials to the verifier.

Verifier:
✓ Checks whether gp(τ) =

(
gh(τ)

)t(τ)
.

✓ Checks whether gp′(τ) =
(
gp(τ)

)a
= gap(τ).

Thank you for your attention

♥

� zkdl-camp.github.io
§ github.com/ZKDL-Camp

https://zkdl-camp.github.io/
https://github.com/ZKDL-Camp

	Recap
	Quadratic Arithmetic Program
	Probabilistically Checkable Proofs
	QAP as a Linear PCP
	Proof Of Exponent

