Recap 000000000

Probabilistically Checkable Proofs

QAP as a Linear PCP

Proof Of Exponent

QAP, PCP, POE: Demystifying zk-SNARK Tools

October 1, 2024

Distributed Lab

zkdl-camp.github.iogithub.com/ZKDL-Camp

 Recap
 QAP
 Probabilistically Checkable Proofs
 QAP as a Linear PCP
 Proof Of Exponent

Plan

- 2 Quadratic Arithmetic Program
- 3 Probabilistically Checkable Proofs
- 4 QAP as a Linear PCP
- 5 Proof Of Exponent

Recap QAP Probabilistically Checkable Proofs

QAP as a Linear PCP

Proof Of Exponent

Recap

QAP as a Linear PCP

Recap: what is zk-SNARK?

Definition

zk-SNARK

Zero-Knowledge Succinct Non-interactive ARgument of Knowledge.

- ✓ Argument of Knowledge a proof that the prover knows the data (witness) that resolves a certain problem, and this knowledge can be "extracted".
- ✓ Succinctness the proof size and verification time is relatively small to the computation size and typically does not depend on the size of the data or statement.
- ✓ Non-interactiveness to produce the proof, the prover does not need any interaction with the verifier.
- ✓ Zero-Knowledge the verifier learns nothing about the data used to produce the proof, despite knowing that this data resolves the given problem and that the prover possesses it.

Recap: Arbitrary Program To Circuits

We can do that in a way like the computer does it — **boolean** circuits.

Figure: Boolean AND and OR Gates

But nothing stops us from using something more powerful instead of boolean values...

Recap. Arbitrary Program To Circuits

We can do that in a way like the computer does it — **boolean** circuits.

Figure: Boolean AND and OR Gates

> 100000 gates just for SHA256...But nothing stops us from using something more powerful instead of boolean values, gates.

 Recap
 QAP
 Probabilistically Checkable Proofs
 QAP as a Linear PCP

 0000
 00000000000
 0000
 0000
 0000

Proof Of Exponent

Recap. Arbitrary Program To Circuits

Similar to Boolean Circuits, the **Arithmetic Circuits** consist of gates and wires.

- Wires: elements of some finite field $\mathbb F.$
- Gates: field addition (+) and multiplication (\times) .

Figure: Addition and Multiplication Gates

 Recap
 QAP
 Probabilistically Checkable Proofs
 QAP as a

 000000000
 00000000000
 0000
 0000
 0000

QAP as a Linear PCP

Proof Of Exponent

Recap. Arbitrary Program To Circuits

Example

How can we translate if statements?

```
def example(a: bool, b: F, c: F) -> F:
    if a:
        return b * c
    else:
        return b + c
```

We can transform such a function into the next expression:

$$r = a imes (b imes c) + (1 - a) imes (b + c)$$

Corresponding equations for the circuit are:

 $r_1 = b \times c,$ $r_3 = 1 - a,$ $r_5 = r_3 \times r_2$ $r_2 = b + c,$ $r_4 = a \times r_1,$ $r = r_4 + r_5$ Probabilistically Checkable Proofs QAP

QAP as a Linear PCP

Proof Of Exponent

Recap. Arbitrary Program To Circuits

Recap 000000€000

Figure: Example of a circuit evaluating the if statement logic.

Recap. R1CS

Each **constraint** in the Rank-1 Constraint System must be in the form:

$$\langle \pmb{a}, \pmb{w}
angle imes \langle \pmb{b}, \pmb{w}
angle = \langle \pmb{c}, \pmb{w}
angle$$

Where $\langle \boldsymbol{u}, \boldsymbol{v} \rangle$ is a dot product.

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle := \boldsymbol{u}^\top \boldsymbol{v} = \sum_{i=1}^n u_i v_i$$

Thus

$$\left(\sum_{i=1}^n a_i w_i\right) \times \left(\sum_{j=1}^n b_j w_j\right) = \sum_{k=1}^n c_k w_k$$

That is, actually, a quadratic equation with multiple variables.

 Recap
 QAP
 Probabilistically Checkable Proofs
 QAP as a Linear PCP
 Proof Of Exponent

 000000000
 00000000000
 00000
 00000
 00000
 0000000000

Recap. R1CS

Example

Consider the most basic circuit with one multiplication gate: $x_1 \times x_2 = r$. The witnes vector $\boldsymbol{w} = (r, x_1, x_2)$. So

 $w_2 \times w_3 = w_1$ (0 + w_2 + 0) × (0 + 0 + w_3) = w_1 + 0 + 0 (0w_1 + 1w_2 + 0w_3) × (0w_1 + 0w_2 + 1w_3) = 1w_1 + 0w_2 + 0w_3

Therefore the coefficients vectors are:

$$a = (0, 1, 0), \quad b = (0, 0, 1), \quad c = (1, 0, 0).$$

The general form of our constraint is:

 $(a_1w_1 + a_2w_2 + a_3w_3)(b_1w_1 + b_2w_2 + b_3w_3) = c_1w_1 + c_2w_2 + c_3w_3$

 Recap
 QAP
 Probabilistically Checkable Proofs
 QAP as a Linear PCP
 Proof Of Exponent

 000000000
 0000000000
 0000
 000000000
 0000000000

Recap. R1CS

$$r = x_1 \times (x_2 \times x_3) + (1 - x_1) \times (x_2 + x_3)$$

Thus, the next constraints can be build:

$$x_1 \times x_1 = x_1$$
 (binary check) (1)

$$x_2 \times x_3 = \mathsf{mult} \tag{2}$$

$$x_1 imes mult = selectMult$$
 (3)

$$(1-x_1) \times (x_2 + x_3) = r - \text{selectMult}$$
(4)

The witness vector: $\boldsymbol{w} = (1, r, x_1, x_2, x_3, \text{mult}, \text{selectMult}).$

The coefficients vectors:

 $\begin{array}{ll} \pmb{a}_1 = (0,0,1,0,0,0,0), & \pmb{b}_1 = (0,0,1,0,0,0,0), & \pmb{c}_1 = (0,0,1,0,0,0,0) \\ \pmb{a}_2 = (0,0,0,1,0,0,0), & \pmb{b}_2 = (0,0,0,0,1,0,0), & \pmb{c}_2 = (0,0,0,0,0,1,0) \\ \pmb{a}_3 = (0,0,1,0,0,0,0), & \pmb{b}_3 = (0,0,0,0,0,1,0), & \pmb{c}_3 = (0,0,0,0,0,0,1) \\ \pmb{a}_4 = (1,0,-1,0,0,0,0), & \pmb{b}_4 = (0,0,0,1,1,0,0), & \pmb{c}_4 = (0,1,0,0,0,0,-1) \end{array}$

Recap 0000000000

QAP •00000000000000

Probabilistically Checkable Proc

QAP as a Linear PCF

Proof Of Exponent

QAP

Problems we have for now:

- ✓ Although Rank-1 Constraint Systems provide a powerful method for representing computations, they are not succinct.
- ✓ We need to transform our computations into a form that is more convenient for proving statements about them.

Notice

A very convenient form for representing computations is **polynomials**!

Idea: Instead of checking polynomial equality P(x) = Q(x) at multiple points x_1, \ldots, x_n (essentially, checking each constraint), we check it only once at $\tau \xleftarrow{R} \mathbb{F}$: $P(\tau) = Q(\tau)$. Soundness is guaranteed by the **Schwartz-Zippel Lemma**.

Recap	QAP	Probabilistically Checkable Proofs	QAP as a Linear PCP	Proof Of Exponent
	000000000000000000000000000000000000000			

We finished with the following constraint vectors:

$$\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_m, \quad \boldsymbol{b}_1, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_m, \quad \boldsymbol{c}_1, \boldsymbol{c}_2, \ldots, \boldsymbol{c}_m,$$

Of course, they form corresponding matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \text{ same goes for } B \text{ and } C$$

An example of a single "if" statement:

$$\begin{array}{c} \boldsymbol{a}_1 = (0,0,1,0,0,0,0) \\ \boldsymbol{a}_2 = (0,0,0,1,0,0,0) \\ \boldsymbol{a}_3 = (0,0,1,0,0,0,0) \\ \boldsymbol{a}_4 = (1,0,-1,0,0,0,0) \end{array} \quad A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \end{bmatrix}$$

Pleeeeenty of zeroes, right? And this is just one out of 3 matrices...

for the witness element.

Recap	QAP	Probabilistically Checkable Proofs	QAP as a Linear PCP	Proof Of Exponen
	000000000000000000000000000000000000000			

As we know, such a mapping can be builds using Lagrange interpolation polynomial with the following formula:

$$L(x) = \sum_{i=0}^{n} y_i \ell_i(x), \quad \ell_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}.$$

There are n columns and m constraints. So, it results in n polynomials such that:

$$A_j(i) = a_{i,j}, i \in \{1, 2, \dots, m\}, j \in \{1, 2, \dots, n\}$$

The same is true for matrices B and C, with 3n polynomials in total, n for each of the coefficients matrices:

$$A_1(x), \ldots, A_n(x), B_1(x), \ldots, B_n(x), C_1(x), \ldots, C_n(x)$$

Note

We could have assigned any *unique* index from \mathbb{F} to each constraint (say, t_i for each $i \in [m]$) and interpolate through these points: $A_j(t_i) = a_{i,j}, i \in \{1, 2, ..., m\}, j \in \{1, 2, ..., n\}$
 Recap
 QAP
 Probabilistically Checkable Proofs
 QAP as a Linear PCP
 Proof Of Exponent

 0000000000
 00000000000
 00000
 00000
 000000
 000000

Example

Considering the witness vector \boldsymbol{w} and matrix A from the previous example, for the variable x_1 , the next set of points can be derived: $\{(1, 1), (2, 0), (3, 1), (4, -1)\}$

The Lagrange interpolation polynomial for this set of points:

$$\ell_1(x) = -\frac{(x-2)(x-3)(x-4)}{6}, \ \ell_2(x) = \frac{(x-1)(x-3)(x-4)}{2}, \\ \ell_3(x) = -\frac{(x-1)(x-2)(x-4)}{2}, \ \ell_4(x) = \frac{(x-1)(x-2)(x-3)}{6}.$$

Thus, the polynomial is given by:

$$A_{x_1}(x) = 1 \cdot \ell_1(x) + 0 \cdot \ell_2(x) + 1 \cdot \ell_3(x) + (-1) \cdot \ell_4(x)$$
$$= -\frac{5}{6}x^3 + 6x^2 - \frac{79}{6}x + 9$$

Recap	QAP	Probabilistically Checkable Proofs	QAP as a Linear PCP	Proof Of Exponent
	0000000000000			

Illustration: The Lagrange inteprolation polynomial for points $\{(1, 1), (2, 0), (3, 1), (4, -1)\}$ visualized over \mathbb{R} .

Question

But what does it change? We "exchanged" 3n columns for 3n polynomials.

Consider two polynomials p(x) and q(x):

$$p(x) = -\frac{1}{2}x^2 + \frac{3}{2}x, \qquad q(x) = \frac{1}{3}x^3 - 2x^2 + \frac{8}{3}x + 1.$$

With corresponding sets of points:

 $\{(0,0),(1,1),(2,1),(3,0)\}, \quad \{(0,1),(1,2),(2,1),(3,0)\}$

The sum of these polynomials can be calculated as:

$$r(x) = \frac{1}{3}x^3 - 2 \times \frac{1}{2}x^2 + 4 \times \frac{1}{6}x + 1$$

The resulting polynomial r(x) corresponds to the set of points:

 $\{(0,1),(1,3),(2,2),(3,0)\}$

Recap	QAP	Probabilistically Checkable Proofs	QAP as a Linear PCP	Proof Of Exponent
	00000000000000			

Figure: Addition of two polynomials

Recap	QAP	Probabilistically Checkable Proofs	QAP as a Linear PCP	Proof Of Exponent
	0000000000000000			

Now, using coefficients encoded with polynomials, we can build a constraint number $X \in \{1, \dots, m\}$ in the next way:

$$(w_1A_1(X) + w_2A_2(X) + \dots + w_nA_n(X)) \times \\ \times (w_1B_1(X) + w_2B_2(X) + \dots + w_nB_n(X)) = \\ = (w_1C_1(X) + w_2C_2(X) + \dots + w_nC_n(X))$$

Or written more concisely:

$$\left(\sum_{i=1}^n w_i A_i(X)\right) \times \left(\sum_{i=1}^n w_i B_i(X)\right) = \left(\sum_{i=1}^n w_i C_i(X)\right)$$

Hold on, but why does it hold? Let us substitute any X = j into this equation:

$$\left(\sum_{i=1}^n w_i A_i(j)\right) \times \left(\sum_{i=1}^n w_i B_i(j)\right) = \left(\sum_{i=1}^n w_i C_i(j)\right) \ \forall j \in \{1, \ldots, m\}$$

Recall that we interpolated polynomials to have $A_i(j) = a_{j,i}$. Therefore, the equation above can be reduced to:

$$\left(\sum_{i=1}^n w_i a_{j,i}\right) \times \left(\sum_{i=1}^n w_i b_{j,i}\right) = \left(\sum_{i=1}^n w_i c_{j,i}\right) \ \forall j \in \{1,\ldots,m\}$$

But hold on again! Notice that $\sum_{i=1}^{n} w_i a_{j,i} = \langle \boldsymbol{w}, \boldsymbol{a}_j \rangle$ and therefore we have:

$$\langle \boldsymbol{w}, \boldsymbol{a}_j \rangle \times \langle \boldsymbol{w}, \boldsymbol{b}_j \rangle = \langle \boldsymbol{w}, \boldsymbol{c}_j \rangle \; \forall j \in \{1, \dots, m\},$$

so we ended up with the initial m constraint equations!

Now let us define polynomials A(X), B(X), C(X) for easier notation:

$$A(X) = \sum_{i=1}^{n} w_i A_i(X), \quad B(X) = \sum_{i=1}^{n} w_i B_i(X), \quad C(X) = \sum_{i=1}^{n} w_i C_i(X)$$

Therefore:

$$A(X) \times B(X) = C(X)$$

Now, we can define a polynomial M(X), that has zeros at all elements from the set $\Omega = \{1, \ldots, m\}$

$$M(X) = A(X) \times B(X) - C(X)$$

It means, that M(X) can be divided by vanishing polynomial $Z_{\Omega}(X)$ without a remainder!

$$Z_{\Omega}(X) = \prod_{i=1}^{m} (X-i), \qquad H(X) = \frac{M(X)}{Z_{\Omega}(X)}$$
 is a polynomial

QAP as a Linear PCP

Definition (Quadratic Arithmetic Program)

Suppose that m R1CS constraints with a witness of size n are written in a form

$$A \boldsymbol{w} \odot B \boldsymbol{w} = C \boldsymbol{w}, \qquad (A, B, C \in \mathbb{F}^{m \times n})$$

Then, the **Quadratic Arithmetic Program** consists of 3n polynomials A_1, \ldots, A_n , B_1, \ldots, B_n , C_1, \ldots, C_n such that:

$$A_j(i) = a_{i,j}, \ B_j(i) = b_{i,j}, \ C_j(i) = c_{i,j}, \ \forall i \in [m] \ \forall j \in [n]$$

Then, $\boldsymbol{w} \in \mathbb{F}^n$ is a valid assignment for the given QAP and target polynomial $Z(X) = \prod_{i=1}^m (X - i)$ if and only if there exists such a polynomial H(X) such that

$$\left(\sum_{i=1}^n w_i A_i(X)\right) \left(\sum_{i=1}^n w_i B_i(X)\right) - \left(\sum_{i=1}^n w_i C_i(X)\right) = Z(X)H(X)$$

 Recap
 QAP

 0000000000
 0000000000

Probabilistically Checkable Proofs

QAP as a Linear PCP

Proof Of Exponent

Probabilistically Checkable Proofs

Figure: Illustration of a Probabilistically Checkable Proof (PCP) system. The prover \mathcal{P} generates a PCP oracle π that is queried by the verifier \mathcal{V} at specific points q_1, \ldots, q_m .

Recap 0000000000	QAP 000000000000000000000000000000000000	Probabilistically Checkable Proofs ○○●○	QAP as a Linear PCP	Proof Of Exponent

Three main extensions of PCPs that are frequently used in SNARKs are:

- IPCP (Interactive PCP): The prover commits to the PCP oracle and then, based on the interaction between the prover and verifier, the verifier queries the oracle and decides whether to accept the proof.
- IOP (Interactive Oracle Proof): The prover and verifier interact and on each round, the prover commits to a new oracle. The verifier queries the oracle and decides whether to accept the proof.
- LPCP (Linear PCP): The prover commits to a linear function and the verifier queries the function at specific points.

Figure: Illustration of an Interactive Oracle Proof (IOP). On each round *i* $(1 \le i \le r)$, \mathcal{V} sends a message m_i , and \mathcal{P} commits to a new oracle π_i , which \mathcal{V} can query at $\mathbf{q}_i = (q_{i,1}, \ldots, q_{i,m})$.

Recap QAF

AP D0000000000000

Probabilistically Checkable Proofs

QAP as a Linear PCP ●○○○ Proof Of Exponent

QAP as a Linear PCP

QAP as a Linear PCP ○●○○

Definition (Linear PCP)

A Linear PCP is a PCP where the prover commits to a linear function $\boldsymbol{\pi} = (\pi_1, \dots, \pi_k)$ and the verifier queries the function at specific points $\boldsymbol{q}_1, \dots, \boldsymbol{q}_r$. Then, the prover responds with the values of the function at these points:

$$\langle \boldsymbol{\pi}_1, \boldsymbol{q}_1 \rangle, \langle \boldsymbol{\pi}_2, \boldsymbol{q}_2 \rangle, \ldots, \langle \boldsymbol{\pi}_r, \boldsymbol{q}_r \rangle.$$

QAP as a Linear PCP

Proof Of Exponent

Example (QAP as a Linear PCP)

Recall that key QAP equation is:

$$L(x) \times R(x) - O(x) = Z(x)H(x).$$

Now, consider the following linear PCP for QAP:

- 1. \mathcal{P} commits to an extended witness \boldsymbol{w} and coefficients $\boldsymbol{h} = (h_1, \dots, h_n)$ of H(x).
- 2. \mathcal{V} samples $\gamma \xleftarrow{R}{\leftarrow} \mathbb{F}$ and sends query $\gamma = (\gamma, \gamma^2, \dots, \gamma^n)$ to \mathcal{P} .
- 3. \mathcal{P} reveals the following values:

 $\begin{aligned} \pi_1 \leftarrow \langle \boldsymbol{w}, \boldsymbol{L}(\gamma) \rangle, & \pi_2 \leftarrow \langle \boldsymbol{w}, \boldsymbol{R}(\gamma) \rangle, \\ \pi_3 \leftarrow \langle \boldsymbol{w}, \boldsymbol{O}(\gamma) \rangle, & \pi_4 \leftarrow Z(\gamma) \cdot \langle \boldsymbol{h}, \boldsymbol{\gamma} \rangle. \end{aligned}$

4. \mathcal{V} checks whether $\pi_1\pi_2 - \pi_3 = \pi_4$.

Recap QAP Probabilistically Checkable Proofs QAP as a Linear PCP Proof Of Exponent

Why is it safe to use such a check? (assuming proper commitments).

The polynomials L(x), R(x) and O(x) are interpolated polynomials using |C| (number of gates) points, so:

 $\deg(L) \leq |C|, \quad \deg(R) \leq |C|, \quad \deg(O) \leq |C|$

Thus, we can estimate the degree of polynomial M(x) = L(x)R(x) - O(x).

 $\deg(M) \le \max\{\deg(L) + \deg(R), \deg(O)\} \le 2|C|$

If an adversary \mathcal{A} does not know a valid witness \boldsymbol{w} , he can compute a polynomial $(\widetilde{M}(x), \widetilde{H}(x)) \leftarrow \mathcal{A}(\cdot)$ that satisfies a verifier \mathcal{V} :

$$\Pr_{\substack{\mathcal{K} \\ s \notin \mathbb{F}}} [\widetilde{M}(s) = Z(s)\widetilde{H}(s)] \leq \frac{2|\mathcal{C}|}{|\mathbb{F}|}$$

If $|\mathbb{F}|$ is large enough, $2|C|/|\mathbb{F}|$ is *negligible*.

5

Recap QAP

AP | 0000000000000

Probabilistically Checkable Proofs

QAP as a Linear PCP

Proof Of Exponent

Proof Of Exponent

 Recap
 QAP
 Probabilistically Checkable Proofs
 QAP as a Linear PCP
 Proof Of Exponent

 0000000000
 00000000000
 0000
 0000
 00000
 00000

Encrypted Verification

Let us try to prove that we know some polynomial p(x) that can be divided to t(x) without a remainder.

Consider the polynomial: $p(x) = x^2 - 5x + 2$. Additionally, we will need a cyclic group \mathbb{G} with a generator $g \in \mathbb{G}$. We also define the *encryption* operation as follows:

$$\operatorname{Enc}: \mathbb{F} \to \mathbb{G}, \quad \operatorname{Enc}(x) := g^x$$

Essentially, $Enc(p(\tau))$ is the **KZG Commitment**. Let us see the encryption of $p(\tau)$ for our example:

$$\mathsf{Enc}(p(\tau)) = g^{p(\tau)} = g^{(\tau^2 - 5\tau + 2)} = (g^{\tau^2})^1 \cdot (g^{\tau^1})^{-5} \cdot (g^{\tau^0})^2$$

Note

KZG Commitment requires only encrypted powers of τ : $\{g^{\tau^i}\}_{i \in [d]}$.

fs QAP as a Linear PCP

Encrypted Verification

Verifier:

- ✓ Picks a random value $\tau \xleftarrow{R}{\leftarrow} \mathbb{F}$.
- ✓ Calculates the public parameters $\{g^{\tau^i}\}_{i \in [d]}$.
- ✓ Calculates $t(\tau)$.
- ✓ Outputs prover parameters $\{g^{\tau^i}\}_{i \in [d]}$.

Prover:

- ✓ Calculates $h(x) = \frac{p(x)}{t(x)}$.
- ✓ Using $\{g^{\tau^i}\}_{i \in [d]}$ calculates $g^{p(\tau)}$ and $g^{h(\tau)}$.
- \checkmark Provides encrypted polynomials $g^{p(\tau)}$ and $g^{h(\tau)}$ to the verifier.

Verifier:

✓ Checks whether
$$g^{p(\tau)} = (g^{h(\tau)})^{t(\tau)}$$
.

That doesn't work...

Verifier:

- ✓ Picks a random value $\tau \xleftarrow{R}{\leftarrow} \mathbb{F}$.
- ✓ Calculates the public parameters $\{g^{\tau^i}\}_{i \in [d]}$.
- ✓ Calculates $t(\tau)$.
- ✓ Outputs prover parameters $\{g^{\tau^i}\}_{i \in [d]}$.

Adversary:

- ✓ Picks a random value $r \leftarrow {R \over C}$ F, calculates g^r .
- ✓ Calculates $g^{t(\tau)}$.

✓ Calculates
$$g^{\tilde{p}(\tau)} = (g^{t(\tau)})^r$$
.

Verifier:

✓ Checks whether $g^{\tilde{p}(\tau)} = (g^r)^{t(\tau)}$.

Proof Of Exponent

Verifier:

- $\checkmark \text{ Picks a random values } \tau \xleftarrow{R}{\leftarrow} \mathbb{F}, \ a \xleftarrow{R}{\leftarrow} \mathbb{F}.$
- ✓ Calculates the public parameters $\{g^{\tau^i}\}_{i \in [d]}$ and $\{g^{a\tau^i}\}_{i \in [d]}$
- ✓ Calculates $t(\tau)$.

Prover:

- ✓ Calculates $h(x) = \frac{p(x)}{t(x)}$.
- ✓ Using $\{g^{\tau^i}\}_{i \in [d]}$ calculates $g^{p(\tau)}$, $g^{h(\tau)}$.
- ✓ Using $\{g^{a\tau^i}\}_{i\in[d]}$ calculates $g^{p'(\tau)} = g^{ap(\tau)}$.
- \checkmark Provides encrypted polynomials to the verifier.

Verifier:

- ✓ Checks whether $g^{p(\tau)} = (g^{h(\tau)})^{t(\tau)}$.
- ✓ Checks whether $g^{p'(\tau)} = (g^{p(\tau)})^a = g^{ap(\tau)}$.

Thank you for your attention ♥

zkdl-camp.github.iogithub.com/ZKDL-Camp

