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1 Group Theory and Polynomials
Exercise 1. Which of the following statements is false?
1. (∀a, b ∈ Q, a ̸= b) (∃q ∈ R) : {a < q < b}.
2. (∀ε > 0) (∃nε ∈ N) (∀n ≥ nε) : {1/n < ε}.
3. (∀k ∈ Z) (∃n ∈ N) : {n < k}.
4. (∀x ∈ Z \ {−1}) (∃!y ∈ Q) : {(x + 1)y = 2}.
Exercise 2. Denote X := {(x, y) ∈ Q2 : xy = 1}. Oleksandr claims the following:
1. X ∩ N2 = {(1, 1)}.
2. |X ∩ Z2| = 2|X ∩ N2|.
3. X is a group under the operation (x1, y1)⊕ (x2, y2) = (x1x2, y1y2).
Which statements are true?
a) Only 1.
b) Only 1 and 2.
c) Only 1 and 3.
d) Only 2 and 3.
e) All statements are correct.
Exercise 3. Does a tuple (Z,⊕) with operation a ⊕ b = a + b − 1 define a group?
a) Yes, and this group is abelian.
b) Yes, but this group is not abelian.
c) No, since the associativity property does not hold.
d) No, since there is no identity element in this group.
e) No, since there is no inverse element in this group.
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Exercise 4. Consider the Cartesian plane R2, where two coordinates are real numbers. For
two points A,B define the operation ⊕ as follows: A⊕B is the midpoint on segment AB. Does
(R2,⊕) define a group?

a) Yes, and this group is abelian.
b) Yes, but this group is not abelian.
c) No, since the associativity property does not hold and there is no identity element in this

group.
d) No, since the associativity property does not hold, but we might define an identity element

nonetheless.
Exercise 5. Find the inverse of 4 in F11.
a) 8
b) 5
c) 3
d) 7
Exercise 6. Suppose for three polynomials p, q, r ∈ F[x ] we have deg p = 3, deg q =

4, deg r = 5. Which of the following is true for n := deg{(p − q)r}?
a) n = 9.
b) n might be less than 9.
c) n = 20.
d) n is less than deg{qr}.
Exercise 7. Define the polynomial over F5: f (x) := 4x2 + 7. Which of the following is the

root of f (x)?
a) 2
b) 3
c) 4
d) This polynomial has no roots over F5.
Exercise 8. Quadratic polynomial p(x) = ax2 + bx + c ∈ R[x ] has zeros at 1 and 2 and

p(0) = 2. Find the value of a + b + c .
a) 0
b) −1
c) 1
d) Not enough information to determine.
Exercise 9. Which of the following is a valid endomorphism f : X → X?
a) X = [0, 1], f : x 7→ x2.
b) X = [0, 1], f : x 7→ x + 1.
c) X = R>0, f : x 7→ (x − 1)3.
d) X = Q>0, f : x 7→

√
x .
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Exercise 10*. Denote by GL(2,R) a set of 2×2 invertable matrices with real entries. Define
two functions ϕ : GL(2,R)→ R:

ϕ1

([
a b

c d

])
= ad − bc, ϕ2

([
a b

c d

])
= a + d (1)

Den claims the following:
1. ϕ1 is a group homomorphism between multiplicative groups (GL(2,R),×) and (R,×).
2. ϕ2 is a group homomorphism between additive groups (GL(2,R),+) and (R,+).
Which of the following is true?
a) Only statement 1 is correct.
b) Only statement 2 is correct.
c) Both statements 1 and 2 are correct.
d) None of the statements is correct.
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2 Basics of Security Analysis
Exercise 1. Suppose that for the given cipher with a security parameter λ, the adversary

A can deduce the least significant bit of the plaintext from the ciphertext. Recall that the
advantage of a bit-guessing game is defined as SSAdv[A] =

∣∣Pr[b = b̂]− 1
2

∣∣, where b is the
randomly chosen bit of a challenger, while b̂ is the adversary’s guess. What is the maximal
advantage of A in this case?

Hint: The adversary can choose which messages to send to challenger to further distinguish
the plaintexts.

a) 1
b) 1

2

c) 1
4

d) 0
e) Negligible value (negl(λ)).
Exercise 2. Consider the cipher E = (E,D) with encryption function E : K ×M→ C over

the message space M, ciphertext space C, and key space K. We want to define the security
that, based on the cipher, the adversary A cannot restore the message (security against message
recovery). For that reason, we define the following game:

1. Challenger chooses random m R←−M, k R←− K.
2. Challenger computes the ciphertext c ← E(k,m) and sends to A.
3. Adversary outputs m̂, and wins if m̂ = m.
We say that the cipher E is secure against message recovery if the message recovery

advantage, denoted as MRadv[A, E ] is negligible. Which of the following statements is a valid
interpretation of the message recovery advantage?

a) MRadv[A, E ] :=
∣∣Pr[m = m̂]− 1

2

∣∣
b) MRadv[A, E ] := |Pr[m = m̂]− 1|.
c) MRadv[A, E ] := Pr[m = m̂]

d) MRadv[A, E ] :=
∣∣∣Pr[m = m̂]− 1

|M|

∣∣∣
Exercise 3. Suppose that f and g are negligible functions. Which of the following functions

is not neccessarily negligible?
a) f + g
b) f × g
c) f − g
d) f /g

e) h(λ) :=

{
1/f (λ) if 0 < λ < 100000

g(λ) if λ ≥ 100000
Exercise 4. Suppose that f ∈ Fp[x ] is a d-degree polynomial with d distinct roots in Fp.

What is the probability that, when evaluating f at n random points, the polynomial will be zero
at all of them?

a) Exactly (d/p)n.
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b) Strictly less that (d/p)n.
c) Exactly nd/p.
d) Exactly d/np.
Exercise 5-6. To demonstrate the idea of Reed-Solomon codes, consider the toy construc-

tion. Suppose that our message is a tuple of two elements a, b ∈ F13. Consider function
f : F13 → F13, defined as f (x) = ax + b, and define the encoding of the message (a, b) as
(a, b) 7→ (f (0), f (1), f (2), f (3)).

Question 5. Suppose that you received the encoded message (3, 5, 6, 9). Which number
from the encoded message is corrupted?

a) First element (3).
b) Second element (5).
c) Third element (6).
d) Fourth element (9).
e) The message is not corrupted.
Question 6. Consider the previous question. Suppose that the original message was (a, b).

Find the value of a × b (in F13).
a) 4
b) 6
c) 12
d) 2
e) 1
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3 Field Extensions and Elliptic Curves
Warmup (Oleksandr in search of perfect field extension)

Exercise 1. Oleksandr decided to build F49 as F7[i ]/(i2 + 1). Compute (3 + i)(4 + i).
a) 6 + i .
b) 6.
c) 4 + i .
d) 4.
e) 2 + 4i .
Exercise 2. Oleksandr came up with yet another extension Fp2 = Fp[i ]/(i2 + 2). He asked

interns to calculate 2/i . Based on five answers given below, help Oleksandr to find the correct
one.

a) 1.
b) p − 2.
c) (p − 3)i .
d) (p − 1)i .
e) p − 1.
Exercise 3*. After endless tries, Oleksandr has finally found the perfect field extension:

Fp2 := Fp[v ]/(v 2 + v + 1). However, Oleksandr became very frustrated since not for any p
this would be a valid field extension. For which of the following values p such construction
would not be a valid field extension? Use the fact that equation ω3 = 1 over Fp has non-trivial
solutions (meaning, two others except for ω = 1) if p ≡ 1 (mod 3). You can assume that listed
numbers are primes.

a) 8431.
b) 9173.
c) 9419.
d) 6947.
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Exercises 4-9. Tower of Extensions

You are given the passage explaining the topic of tower of extensions. The text has gaps
that you need to fill in with the correct statement among the provided choices.

This question demonstrates the concept of the so-called tower of extensions. Suppose
we want to build an extension field Fp4. Of course, we can find some irreducible polynomial
p(X) of degree 4 over Fp and build Fp4 as Fp[X]/(p(X)). However, this method is very
inconvenient since implementing the full 4-degree polynomial arithmetic is inconvenient.
Moreover, if we were to implement arithmetic over, say, Fp24, that would make the matters
worse. For this reason, we will build Fp4 as Fp2[j ]/(q(j)) where q(j) is an irreducible
polynomial of degree 2 over Fp2, which itself is represented as Fp[i ]/(r(i)) for some
suitable irreducible quadratic polynomial r(i). This way, we can first implement Fp2, then
Fp4, relying on the implementation of Fp2 and so on.

For illustration purposes, let us pick p := 5. As noted above, we want to build F52 first.
A valid way to represent F52 would be to set F52 := 4 . Given this representation, the
zero of a linear polynomial f (x) = ix − (i + 3), defined over F52, is 5 .

Now, assume that we represent F54 as F52[j ]/(j2−ξ) for ξ = i+1. Given such representa-
tion, the value of j4 is 6 . Finally, given c0+ c1j ∈ F54 we call c0 ∈ F52 a real part, while
c1 ∈ F52 an imaginary part. For example, the imaginary part of number j3 + 2i2ξ is 7 ,
while the real part of (a0 + a1j)b1j is 8 . Similarly to complex numbers, it motivates us
to define the number’s conjugate: for z = c0+c1j , define the conjugate as z := c0−c1j .
The expression zz is then 9 .

Exercise 4.
a) F5[i ]/(i2 + 1)
b) F5[i ]/(i2 + 2)
c) F5[i ]/(i2 + 4)
d) F5[i ]/(i2 + 2i + 1)
e) F5[i ]/(i2 + 4i + 4)

Exercise 5.
a) 1 + i
b) 1 + 2i
c) 1 + 4i
d) 2 + 3i
e) 3 + i

Exercise 6.
a) 4 + 2i
b) 4i
c) 1
d) 1 + 2i
e) 2 + 4i

Exercise 7.
a) equal to zero.
b) equal to one.
c) equal to the real part.
d) 2(1 + i)
e) −4

Exercise 8.
a) a1b1
b) a1b1ξ
c) a0b1
d) a0b1ξ
e) a0a1

Exercise 9.
a) c20 + c

2
1

b) c20 − c21ξ
c) c20 + c

2
1ξ
2

d) (c20 + c
2
1ξ)j

e) (c20 − c21 )j
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Elliptic Curves
Exercise 10. Suppose that elliptic curve is defined as E/F7 : y 2 = x3 + b. Suppose (2, 3)

lies on the curve. What is the value of b?
Exercise 11. Sum of which of the following pairs of points on the elliptic curve E/F11 is

equal to the point at infinity O for any valid curve equation?
a) P = (2, 3), Q = (2, 8).
b) P = (9, 2), Q = (2, 8).
c) P = (9, 9), Q = (5, 7).
d) P = O, Q = (2, 3).
e) P = [10]G,Q = G where G is a generator.
Exercise 12. Consider an elliptic curve E over F1672. Denote by r the order of the group of

points on E (that is, r = |E|). Which of the following can be the value of r?
a) 1672 − 5
b) 1672 − 1000
c) 1672 + 5 · 167
d) 1702

e) 1602

Exercise 13. Suppose that for some elliptic curve E the order is |E| = qr where both q and
r are prime numbers. Among listed, what is the most optimal complexity of algorithm to solve
the discrete logarithm problem on E?

a) O(qr)
b) O(

√
qr)

c) O(
√
max{q, r})

d) O(
√
min{q, r})

e) O(max{q, r})
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4 Projective Coordinates and Pairing
Exercise 1. What is not a valid equivalence relation ∼ over a set X?

(A) a ∼ b iff a + b < 0, X = Q.
(B) a ∼ b iff a = b, X = R.
(C) a ∼ b iff a ≡ b (mod 5), X = Z.
(D) a ∼ b iff the length of a = the length of b, X = R2.
(E) (a1, a2, a3) ∼ (b1, b2, b3) iff a3 = b3, X = R3.
Exercise 2. Suppose that over R we define the following equivalence relation: a ∼ b iff

a − b ∈ Z (a, b ∈ R). What is the equivalence class of 1.4 (that is, [1.4]∼)?
(A) A set of all real numbers.
(B) A set of all integers.
(C) A set of reals x ∈ R with the fractional part of x equal to 0.4.
(D) A set of reals x ∈ R with the integer part of x equal to 1.
(E) A set of reals x ∈ R with the fractional part of x equal to 0.6.
Exercise 3. Which of the following pairs of points in homogeneous projective space P2(R)

are not equivalent?
(A) (1 : 2 : 3) and (2 : 4 : 6).
(B) (2 : 3 : 1) and (6 : 9 : 3).
(C) (5 : 5 : 5) and (2 : 2 : 2).
(D) (4 : 3 : 2) and (16 : 8 : 4).

Exercise 4. The main reason for using projective coordinates in elliptic curve cryptography
is:
(A) To reduce the number of point additions in algorithms involving elliptic curves.
(B) To make the curve more secure against attacks.
(C) To make the curve more efficient in terms of memory usage.
(D) To reduce the number of field multiplications when performing scalar multiplication.
(E) To avoid making too many field inversions in complicated algorithms involving elliptic

curves.
Exercise 5. Suppose k = 19 is a scalar and we are calculating [k ]P using the double-and-add

algorithm. How many elliptic curve point addition operations will be performed?
(A) 0.
(B) 1.
(C) 2.
(D) 3.
(E) 4.
Exercise 6. What is the minimal number of inversions needed to calculate the value of

expression (over Fp)
a − b
(a + b)4

+
c

a + b
+

d

a2 + c2
,

Page 11



Distributed Lab ZKDL Camp

for the given scalars a, b, c, d ∈ Fp?
(A) 1.
(B) 2.
(C) 3.
(D) 4.
(E) 5.
Exercise 7. Given pairing e : G1 × G2 → GT with G1 — generator of G1 and G2 ∈ G2 —

generator of G2, which of the following is not equal to e([3]G1, [5]G2)?
(A) e([5]G1, [3]G2).
(B) e([4]G1, [4]G2).
(C) e([15]G1, G2).
(D) e([3]G1, G2)e(G1, [12]G2).
(E) e(G1, G2)15.
Exercise 8*. Unit Circle Proof. Suppose Alice wants to convince Bob that she knows a point

on the unit circle x2 + y 2 = 1. Suppose we are given a symmetric pairing e : G1 × G2 → GT
for G1 = G2 = ⟨G⟩ and Alice computes P ← [x ]G,Q ← [y ]G. She then proceeds to sending
(P,Q) to Bob. Which of the following checks should Bob perform to verify that Alice indeed
knows a point on the unit circle?
(A) Check if e(P,Q)e(Q,P ) = 1.
(B) Check if e([2]P, [2]Q) = e(G,G).
(C) Check if e([2]P,Q)e(Q, [2]P ) = 1.
(D) Check if e(P, P ) + e(Q,Q) = 1.
(E) Check if e(P, P )e(Q,Q) = e(G,G).
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5 Commitment Schemes
Exercise 1. Dmytro and Denis were watching a horse race. Confident in his ability to predict

the outcome, Dmytro decided to commit to his prediction. However, in his haste, he forgot
to use a blinding factor. Now, Dmytro is concerned that Denis might discover his prediction
before the race ends, which would defeat the purpose of his commitment.

We define a dummy hash function H(a) = (a ·13+17) (mod 41). Dmytro used a hash-based
commitment and H as a hash function. Set of race horse numbers is (3, 5, 8, 15). Help Denis to
find out the horse number Dmytro have made a commitment to, if commitment equals C = 39.
(A) 3.
(B) 5.
(C) 8.
(D) 15.

Exercise 2. Denis made a setup (points G and U) for a Pedersen commitment scheme and
commited values (m, r) = (3, 7) to Dmytro by sending him C = [3]G + [7]U. Dmytro did not
verify the setup. Turns out that Denis knows that U = [6]G. Denis is planning to send a
different message from the one he originally committed to to m2 = 15. Which values (m2, r2)
should he send to Dmytro at the opening stage?
(A) (15, 5)
(B) (15, 7)
(C) (15, 4)
(D) (3, 5)

Exercise 3. We define a dummy hash function H(a, b) = (a · 3+ b · 7) (mod 41). You have
a Merkle tree built with depth 4 using hash function H with root equal 37. Position defines
how leaves should be hashed:

• if left, then hi ← H(hi−1, branch[i ])
• if right, then hi ← H(branch[i ], hi−1)
Which inclusion proof is valid for element 3?

(A) branch: [4, 16, 13], position: [left, right, left]
(B) branch: [1, 40, 3], position: [left, left, left]
(C) branch: [5, 12, 13], position: [right, right, left]
(D) branch: [4, 17, 13], position: [left, right, left]

Exercise 4. Given a polynomial p(x) = x3 − 10x2 + 31x − 30, Oleksandr wants to prove
that p(2) = 0. To do that, according to the KZG commitment scheme, he constructs the
quotient polynomial q(x) and wants to show that q(τ) · (τ − 2) = p(τ). Assuming Oleksandr
has conducted these steps correctly, what value of q(x) has Oleksandr calculated?
(A) q(x) = 2x2 + 4x − 6
(B) q(x) = x3 − 10x2 + 30x − 28
(C) q(x) = x2 − 8x + 15
(D) q(x) = x2 + 5x + 18
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6 Introduction to Zero-Knowledge Proofs
Exercise 1. When dealing with RSA protocol, one frequently encounters the following rela-

tion where e is a prime number and n ∈ N:

R =
{
(w, x) ∈ Z×n × Z×n : w e = x

}
Which of the following is the language LR that corresponds to the relation R?

(A) Integers from Z×n which have a modular root of e-th degree.
(B) Integers from Z×n which are divisible by e.
(C) Integers x from Z×n with properly defined expression xe.
(D) Integers from Z×n which are prime.
(E) Integers from Z×n for which e is a primitive root.
Exercise 2. Suppose that for some interactive protocol (P,V) during one round, the proba-

bility that the verifier V accepts a false statement is 1/8. How many rounds of interaction are
needed to guarantee 120 bits of security? Assume here that n bits of security means that the
probability of accepting a false statement is at most 2−n.
(A) 30.
(B) 40.
(C) 60.
(D) 90.
(E) 120.
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Exercise 3. Recall that for relation R = {(w, x) ∈ Z×N × Z
×
N : x = w

2} we defined the
following interactive protocol (P,V) to prove that x ∈ LR:

• P samples r R←− Z×N and sends a = r 2 to V.
• V sends a random bit b ∈ {0, 1} to P.
• P sends z = r · w b to V.
• V accepts if z2 = a · xb, otherwise it rejects.
Suppose we use the protocol (P,V∗) where the “broken” verifier V∗ always outputs b = 1.

Which of the following statements is true?
(A) Both the soundness and completeness of the protocol are preserved.
(B) The soundness of the protocol is preserved, but the completeness is broken.
(C) The completeness of the protocol is preserved, but the soundness is broken.
(D) Both the soundness and completeness of the protocol are broken.

Exercise 4. What is the difference between the cryptographic proof and the proof of knowl-
edge?
(A) Cryptographic proof is a proof of knowledge that is secure against malicious verifiers.
(B) Cryptographic proof is a proof of knowledge that is secure against malicious provers.
(C) Cryptographic proof merely states the correctness of a statement, while the proof of

knowledge also guarantees that the prover knows the witness.
(D) While cryptographic proof states that witness exists for the given statement, the proof of

knowledge makes sure to make this witness unknown to the verifier.
(E) Proof of knowledge does not require verifier to know the statement, while cryptographic

proof does.
Exercise 5. What is the purpose of introducing the extractor?

(A) To introduce the algorithm that simulates the malicious verifier trying to extract the
witness from the prover.

(B) To define what it means that the prover knows the witness.
(C) To give the verifier the ability to extract the witness from the prover during the interactive

protocol.
(D) To define the security of the interactive protocol that uses a more powerful verifier that

can extract additional information from the prover.
(E) To give prover more power to extract randomness generated by the verifier.
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Exercise 6. What it means that the interactive protocol (P,V) is a zero-knowledge?
(A) The verifier V cannot know whether the given statement is true or false.
(B) The verifier V cannot know whether the prover P knows the witness.
(C) View of the prover P in the protocol is indistinguishable from the view of the verifier V.
(D) Any view of any verifier V can be simulated using some polynomial-time algorithm, out-

putting computationally indistinguishable distribution from the given view.
(E) The prover P can convince the verifier V that the statement is true without knowing the

witness.
Hint: View of the participant in the protocol consists of all data he has access to during

the protocol execution. For example, verifier V’s view consists of the messages he sends and
receives, as well as the random coins he generates.

Exercise 7. Which of the following is not true about the Fiat-Shamir heuristic?
(A) If the public-coin protocol is sound, the Fiat-Shamir transformation preserves the sound-

ness.
(B) The Fiat-Shamir heuristic does not break the completeness of the public-coin protocol it

is applied to.
(C) Practically, it allows to convert any interactive protocol into a non-interactive one.
(D) To make Fiat-Shamir transformation pratical, the function modelling the random oracle

should be hard to invert.
(E) It is reasonable to use SHA256 to model the random oracle in the Fiat-Shamir transfor-

mation.
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7 Sigma Protocols
Exercises 1-5. In search of correct Schnorr’s Identification Protocol. . .

You are given the protocol and five ways to implement it. Most of them lack the crucial
properties. For each attempt, you need to determine whether the protocol is correct and,
if not, specify which of the properties are violated.

Recall, that given the cyclic group G of order q, the prover wants to convince the verifier
that he knows the discrete logarithm α of h ∈ G with respect to the generator g ∈ G (so
that gα = h).
Here are five attempts to construct the protocol:
Attempt 1. Prover sends witness α to the verifier. Verifier checks whether h = gα.
Attempt 2. Prover chooses random r R←− Zq and sends a← α+ r to the verifier. Verifier
checks whether h = ga.
Attempt 3. Prover chooses random r R←− Zq, calculates a← α+ r and sends both (a, r)
to the verifier. Verifier checks whether grh = ga.
Attempt 4. Prover chooses random r R←− Zq, calculates a ← gr , z ← α + r and sends
(a, z) to the verifier. Verifier checks whether a · h = gz .
Attempt 5. Prover chooses random r R←− Zq, calculates a ← gr , and sends a to the

verifier. Verifier chooses e R←− Zq and sends to the prover. Prover calculates z ← αe + r
and sends to the prover. Verifier checks whether a · he = gz .

Below, mark whether the properties of completeness, soundness, and zero-knowledge
hold for each attempt.

Attempt # 1 2 3 4 5
Completeness holds? ✓/✗ ✓/✗ ✓/✗ ✓/✗ ✓/✗

Soundness holds? ✓/✗ ✓/✗ ✓/✗ ✓/✗ ✓/✗

Zero-Knowledge holds? ✓/✗ ✓/✗ ✓/✗ ✓/✗ ✓/✗
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Exercises 6-10. Non-Interactive Chaum-Pedersen Protocol.

This section explores how to make the previously considered Chaum-Pedersen protocol
non-interactive. Fill in the gaps in the following text with the correct statements.

Recall that the Chaum-Pedersen protocol allows the prover P to convince the skeptical
verifier V that the given triplet (u, v , w) ∈ G3 is a Diffie-Hellman (DH) triplet in the cyclic
group G of prime order q with a generator g ∈ G, meaning that u = gα, v = gβ, w = gαβ

for some α, β ∈ Zq. However, instead of making (α, β) as a witness, observe that β is
sufficient. Indeed, if u = gα, v = gβ, then w = 6 . Thus, the relation is:

R =
{
((u, v , w), β) ∈ G3 × Zq : 7

}
Now, we apply the Fiat-Shamir Transformation. Recall that prover, instead of getting
the random challenge c R←− C ⊂ Zq from the verifier interactively, calculates it as the
hash function from the public statement (u, v , w) and the prover’s commitment. For
that reason, define the non-interactive proof system Φ = (Gen,Verify) as follows:

• Gen: On input (u, v , w) ∈ G3,
1. Sample βr

R←− Zq and compute the commitment 8 .

2. Use the hash function 9 to get the challenge c ← 10 .
3. Compute response βz ← βr + βc and output commitment (vr , wr) and βz as

a proof π.
• Verify: Upon receiving statement (u, v , w) and a proof π = (vr , wr , βz), the verifier:

1. Recomputes the challenge c using the hash function.
2. Accepts if and only if gβz = vrv c and uβz = wrw c .

Exercise 6.
A) vβ

B) uβ

C) vu
D) v u

E) vβu

Exercise 7.
A) v = gβ and w = vu
B) v = gβ and w = vβ

C) v = gβ and w = uβ

D) u = gβ and w = uβ

E) u/w = gβ

Exercise 8.
A) (vr , wr) = (gβr , gβrβ)
B) (vr , wr) = (gβr , wβr )
C) (vr , wr) = (gβr , uβr )
D) (vr , wr) = (gβ, gβr )
E) (vr , wr) = (gβ, gβrgβ)

Exercise 9.
A) H : G3 ×G2 → C
B) H : G3× (G×Zq)→ C
C) H : G3 → C
D) H : G3 × Zq → C
E) H : G2 × Zq → C

Exercise 10.
A) H((u, v , w), (vr , wr))
B) H((u, v , w), (vr , βr))
C) H(u, v , w)
D) H((u, v , w), βr)
E) H((vr , wr), βr)
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8 Introduction to SNARKs. R1CS. QAP

8.1 R1CS In Rust
8.1.1 Introduction

This time, the task is a bit unusual: you need to implement a simple Rank-1 Constraint
System (R1CS) in Rust. For that reason, consider a pretty simple problem: the prover P wants
to convince the verifier V that he knows the modular cube root of y modulo p for the given
y ∈ Fp. Here, p is the BLS12-381 prime, which will become handy in the next tasks.

For that reason, we construct the circuit of the following form:

C(x, y) = x3 − y ,

Here, we need only two constraints to check the correctness of the prover’s statement:
1. r1 = x × x .
2. r2 = x × r1 − y .
Therefore, the solution vector becomes w = (1, x, y , r1, r2). The goal of this task is to:
• Implement the basic Linear Algebra operations for R1CS in Rust.
• Implement the R1CS satisfiability check.
• Construct the matrices L,R,O to check the satisfiability of the given solution vector w

(checking the cubic root of given y).

8.1.2 Task 1: Preparation
All the source code we are going to refer to is specified by the link below:

https://github.com/ZKDL-Camp/lecture-8-r1cs-qap

Download Rust1 (in case you do not have one), clone/fork the repository and verify that
everything compiles (just that, the code does not work yet). In case you are confused, the
project is structured as follows:

• src/main.rs contains the entrypoint where you can test your implementation.
• src/finite_field.rs contains the Fp specification — you will not need it.
• src/linear_algebra.rs contains the basic Linear Algebra operations (with vectors and

matrices) you need to implement.
• src/r1cs.rs contains the R1CS implementation where you also would need to implement

a piece of functionality.

8.1.3 Task 2: Linear Algebra Operations
Now, recall that our ultimate goal is to construct the matrices L,R,O to check the following

satisfiability condition:
Lw ⊙ Rw = Ow,

1If you are the total beginner, you might find these official resources useful: https://www.rust-lang.org/
learn
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And additionally, for education purposes, we will want to check the satisfiability of any
specified constraint, that is:

⟨ℓj ,w⟩ × ⟨rj ,w⟩ = ⟨oj ,w⟩.

For that reason, we need to have the Hadamard product (element-wise multiplication) and
inner (dot) product of two vectors and the matrix-vector product. For that reason, implement
the following functions in the linear_algebra.rs module:

1. Vector::dot(&self, other: &Self) -> Fp — the inner product of two vectors.
2. Vector::hadamard_product(&self, other: &Self) -> Self — the Hadamard (el-

ementwise) product v ⊙ u of two vectors.
3. Matrix::hadamard_product(&self, other: &Self) -> Self — the Hadamard (el-

ementwise) product A⊙ B of two matrices.
4. Matrix::vector_product(&self, other: &Vector) -> Vector — the matrix-vector

product Av.
To test the correctness of your implementation, run

cargo test linear_algebra

8.1.4 Task 3: R1CS Satisfiability Check
Now, we need to implement the R1CS satisfiability check. For that reason, implement the

following functions in the r1cs.rs module:
1. R1CS::is_satisfied(&self, witness: &Vector<WITNESS_SIZE>) -> bool — the

function that checks the satisfiability of the given solution vector w.
2. R1CS::is_constraint_satisfied(&self, witness: &Vector<WITNESS_SIZE>, j:

usize) -> bool — the function that checks whether the j-th constraint is satisfied.
To test the correctness of your implementation, run

cargo test r1cs

8.1.5 Task 4: R1CS for Cubic Root
Now, as the final step, construct the matrices L,R,O for the given R1CS problem and

check the satisfiability of the solution vector w = (1, x, y , r1, r2) where x is the cubic root of y
modulo p. For that reason, insert the missing pieces of code in the main.rs file. This file will
automatically:

1. Generate a random valid witness.
2. Construct the R1CS with the given matrices L,R,O.
3. Check the satisfiability of the given solution vector.
Hint. In the lecture, we considered a bit more complicated circuit

C(x1, x2, x3) = x1 × x2 × x3 + (1− x1)× (x2 + x3), x1 ∈ {0, 1}, x2, x3 ∈ Fp

You might take a look at how this circuit is implemented in the r1cs.rs file in the tests
module and adapt it to the cubic root problem.
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