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1 Group Theory and Polynomials
1.1 Notation

Before going into the details, let us introduce some notation.

1.1.1 Set Theory
First, let us enumerate some fundamental sets:
• N – a set of natural numbers. Examples: 10, 13, 193, . . . .
• Z – a set of integers. Examples: −2,−6, 0, 62, 103, . . . .
• Q – a set of rational numbers. Examples: { n

m
: n ∈ Z, m ∈ N}.

• R – a set of real numbers. Examples: 2.2, 1.4,−6.7, . . . .
• R>0 – a set of positive real numbers. Examples: 2.6, 10.4, 100.2.
• C – a set of complex numbers1. Examples: 1 + 2i , 5i ,−7− 5.7i , . . . .
Typically we write a ∈ A to say “element a is in set A”. To represent the number of elements

in a set A, we write |A|. If the set is finite, |A| ∈ N, otherwise |A| =∞. A ⊂ B denotes “A is
a subset of B” (meaning that all elements of A are also in B, e.g., Q ⊂ R).
A ∩ B means the intersection of A and B (a set of elements belonging to both A and B),

while A ∪ B – the union of A and B (the set of elements belonging to either A or B). A \ B
denotes the set difference (the set of elements belonging to A, but not B). A denotes the
complement of A (the set of elements not belonging to A). All operations are illustrated in
Figure 1 (this picture is typically called the Venn Diagram).

To define the set, we typically write {f (a) : φ(a)}, where f (a) is some function and φ(a) is
a predicate (function, inputting a and returning true/false if a certain condition on a is met).
For example, {x3 : x ∈ R, x2 = 4} is “a set of values x3 which are the real solutions to equation
x2 = 4”. It is quite easy to see that this set is simply {23, (−2)3} = {8,−8}.

The notation A×B means a set of pairs (a, b) where a ∈ A and b ∈ B (or, written shortly,
A×B = {(a, b) : a ∈ A, b ∈ B}), called a Cartesian product. We additionally introduce notation
An := A× A× · · · × A︸ ︷︷ ︸

n times

– Cartesian product n times. For example, Q3 is a set of triplets (a, b, c)

where a, b, c ∈ Q, while Q2 × R is a set of triplets (a, b, c) where a, b ∈ Q and c ∈ R.

1.1.2 Logic
Statement beginning with ∀ means “for all...”. For instance, (∀a ∈ A ⊂ R) : {a < 1} is read

as: “For any a in set A (which is a subset of real numbers), it is true that a < 1”. Or, more
shortly, “Any (real) a from A is less than 1”.

Statement beginning from ∃ means “there exists such...”. Let us consider the following
example: (∃ε > 0)(∀a ∈ A) : {a > ε} is read as “there exists such a positive ε such that for
any element a from A, a is greater than ε”, or, more concisely, “there exists a positive constant
ε such that any element from A is greater than ε”.

Statement beginning from ∃! means “there exists a unique...”. For example, (∃!x ∈ R>0) :
{x2 = 4} is read as “there exists a unique positive real x such that x2 = 4”.

Symbol ∧ means “and”. For example, {x ∈ R : x2 = 4 ∧ x > 0} is read as “a set of real x

1Complex number is an expression in a form x + iy for i2 = −1
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A B

A ∩ B

A B

A ∩ B

A B

A ∪ B

A B

A \ B

Figure 1: Set operations illustrated with Venn diagrams.

such that x2 = 4 and x is positive”. Of course, {x ∈ R : x2 = 4 ∧ x > 0} = {2}.
Symbol ∨ means “or”. For example, {x ∈ R : x2 = 4 ∨ x2 = 9} is read as “a set of real x

such that either x2 = 4 or x2 = 9”. Here, this set is equal to {−2, 2,−3, 3}.

1.1.3 Randomness and Probability
To denote the probability of an event A happening, we write Pr[A]. For example, if event A

represents that a coin lands heads, then Pr[A] = 0.5.
Fix some set A. To denote that we are uniformly randomly picking some element from A,

we write a R←− A. For example, a R←− {1, 2, 3, 4, 5, 6} means that we are picking a number from
1 to 6 uniformly at random.

1.1.4 Sequences and Vectors
To denote the infinite sequence {x1, x2, x3, . . . } we write {xn}n∈N. To denote the finite

sequence {x1, x2, . . . , xn} we write {xk}nk=1.
Vector is a collection of elements x = (x1, . . . , xn) ∈ An. Finally, the scalar product2 is

denoted as ⟨x, y⟩ :=
∑n
k=1 xkyk .

1.2 Introduction to Abstract Algebra
1.2.1 Groups

Throughout the lectures, probably the most important topic is the group theory.
As you can recall from the high school math, typically real-world processes are described

using real numbers, denoted by R. For example, to describe the position or the velocity of an
object, you would rather use real numbers.

When it comes to working with computers though, real numbers become very inconvenient

2It is totally normal if you do not know what that is, we will explain more in the Bulletproof lecture
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to work with. For instance, different programming languages might output different values for
quite a straightforward operation 2.01 + 2.00. This becomes a huge problem when dealing
with cryptography, which must check precisely whether two quantities are equal. For example,
if the person’s card number is N and the developed system operates with a different, but very
similar card with number N + k for k ≪ N, then this system can be safely thrown out of the
window. See Figure 2.

Card Number M Card Number N

Card Number N+k

Alice BobTx

Figure 2: Alice pays to Bob to a card number N, but our awesome system pays to N+k instead.
Bob would not be happy...

This motivates us to work with integers (denoted by Z), instead. This solves the problem
with card numbers, but for cryptography this object is still not really suitable since it is hard
to build a secure and reliable protocol exploiting pure integers (without using a more complex
structure).

This motivates us to use a different primitive for dealing with cryptographic systems. Similarly
to programmers working with interfaces (or traits, if you are the Rust developer), mathemati-
cians also use the so-called groups to represent objects obeying a certain set of rules. The
beauty is that we do not concretize how operations in this set are performed, but rather state
the fact that we can somehow combine elements with the pre-defined properties. We can
then discover properties of such objects and whenever we apply the concrete “implementation”
(spoiler, group of points on elliptic curve), these properties would still hold.

Remark. Further discussion with abstract objects should be regarded as “interfaces” which
do not concretize the “implementation” of an object. It merely shows the nature of an object
without going into the details.

Now, let us get dirty and define what the group is.

Definition 1.1. Group, denoted by (G,⊕), is a set with a binary operation ⊕, obeying the
following rules:

1. Closure: Binary operations always outputs an element from G, that is ∀a, b ∈ G :
a ⊕ b ∈ G.

2. Associativity: ∀a, b, c ∈ G : (a ⊕ b)⊕ c = a ⊕ (b ⊕ c).
3. Identity element: There exists a so-called identity element e ∈ G such that ∀a ∈ G :
e ⊕ a = a ⊕ e = a.

4. Inverse element: ∀a ∈ G ∃b ∈ G : a ⊕ b = b ⊕ a = e. We commonly denote the
inverse element as (⊖a).
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Quite confusing at first glance, right? The best way to grasp this concept is to consider a
couple of examples.

Example. A group of integers with the regular addition (Z,+) (also called the additive group
of integers) is a group. Indeed, an identity element is eZ = 0, associativity obviously holds,
and an inverse for each element a ∈ Z is (⊖a) := −a ∈ Z.

Remark. We use the term additive group when we mean that the binary operation is
addition +, while multiplicative group means that we are multiplying two numbers via ×a.

aIn this section, regard · and × as the same operation of multiplication.

Example. The multiplicative group of positive real numbers (R>0,×) is a group for similar
reasons. An identity element is eR>0 = 1, while the inverse for a ∈ R>0 is defined as 1

a
.

Example. The additive set of natural numbers (N,+) is not a group. Although operation
of addition is closed, there is no identity element nor inverse element for, say, 2 or 10.

Example. That is possible to have the situation when the element a ∈ G can be its own
inverse, meaning a = a−1. This happens when a2 = e. Additionally, we can mention that
for any group G = {g, e} with the order |G| = 2 we have g2 = e.

One might ask a reasonable question: suppose you pick a, b ∈ G. Is a⊕b the same as b⊕a?
Unfortunately, for some groups, this is not true.

For this reason, it makes sense to give a special name to a group in which the operation is
commutative (meaning, we can swap the elements in the operation).

Definition 1.2. A group (G,⊕) is called abelian if ∀a, b ∈ G : a ⊕ b = b ⊕ a.

Example. The additive group of integers (Z,+) is an abelian group. Indeed, a + b = b + a
for any a, b ∈ Z.

Example. The set of 2×2matrices with real entries and determinant 1 (denoted by SL(2,R))
is a group with respect to matrix multiplication. However, this group is not abelian! Take

A =

(
1 1

0 1

)
, B =

(
1 0

1 1

)
. (1)

Then, it is easy to verify that

AB =

(
2 1

1 1

)
, BA =

(
1 1

1 2

)
, (2)

so clearly AB ̸= BA – the elements of SL(2,R) do not commute.
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Remark. Further, we will write ab instead of a × b and a−1 instead of ⊖a for the sake of
simplicity (and because it is more common in the literature). As mentioned before, it is
usually called the multiplicative notation.

Finally, for cryptography it is important to know the number of elements in a group. This
number is called the order of the group.

Definition 1.3. The order of a finite group G is the number of elements in the group. We
denote the order of a group as |G|.

Example. Integers modulo 13, denoted by Z13, is a group with respect to addition modulo
13 (e.g., 5 + 12 = 4 in Z13). The order of this group is 13.

Despite the aforementioned definitions, many things are not generally obvious. For example,
one might ask whether the identity element is unique. Or, whether the inverse element is unique
for each group element. For that reason, we formulate the following lemma.

Lemma 1.4. Suppose G is a group. Then, the following statements hold:
1. The identity element is unique.
2. The inverse element is unique for each element: ∀a ∈ G∃!a−1 ∈ G : aa−1 = a−1a = e.
3. For all a, b ∈ G there is a unique x ∈ G such that ax = b.
4. If ab = ac then b = c . Similarly, if xy = zy then x = z .

Since this guide is not a textbook on abstract algebra, we will not prove all the statements.
However, we will prove the first and second one to show the nature of the proofs in abstract
algebra.

First Statement Proof. Suppose e1, e2 ∈ G are both identity elements. Consider e1e2.
From the definition of the identity element, we know that e1e2 = e1 and e1e2 = e2. Therefore,
e1 = e2.

Second Statement Proof. Take g ∈ G and suppose a, b ∈ G are both inverses of g. By
defininition,

ag = ga = e, bg = gb = e. (3)

Now, notice that
a = ae = a(gb) = (ag)b = eb = b (4)

Thus, a = b.

Exercise. Prove the third and fourth statements.

1.2.2 Subgroups
When we are finally comfortable with the concept of a group, we can move on to the concept

of a subgroup.
Suppose we have a group (G,⊕). Suppose one takes the subset H ⊂ G. Of course, since

all elements in H are still elements in G, we can conduct operations between them via ⊕. The
natural question to ask is whether H is a group itself. Yes, but at the same time H is called a
subgroup of G.
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Definition 1.5. A subset H ⊂ G is called a subgroup of G if H is a group with respect to
the same operation ⊕. We denote this as H ≤ G.

Example. Of course, not every subset of G is a subgroup. Take (Z,+). If we cut, say, 3 out
of Z (so we get H = Z \ {3}), then H is not a subgroup of Z since an element −3 does not
have an inverse in H. Moreover, it is not closed: take 1, 2 ∈ H. In this case, 1+2 = 3 /∈ H.

Example. Now, let us define some valid subgroup of Z. Take H = {3k : k ∈ Z} – a set of
integers divisible by 3 (commonly denoted as 3Z). This is a subgroup of Z, since it is closed
under addition, has an identity element 0, and has an inverse for each element 3k (namely,
−3k). That being said, 3Z ≤ Z.

These are good examples, but let us consider a more interesting one, which we call a lemma.
It is frequently used further when dealing with cosets and normal subgroups, but currently regard
this just as an exercise.

Lemma 1.6. Let G be a group and g ∈ G. The centralizer of g is defined to be

Cg = {h ∈ G : hg = gh} (5)

Then, Cg is a subgroup of G.

Exercise. Prove the lemma.

1.2.3 Cyclic Groups
Probably, cyclic groups are the most interesting groups in the world of cryptography. But

before defining them, we need to know how to add/subtract elements multiple times (that is,
multiplying by an integer). Suppose we have a group G and g ∈ G. Then, gn means multiplying
(adding) g to itself n times. If n is negative, then we add g−1 to itself |n| times. For n = 0 we
define g0 = e. Now, let us define what the cyclic group is.

Definition 1.7. Given a group G and g ∈ G the cyclic subgroup generated by g is

⟨g⟩ = {gn : n ∈ Z} = {. . . , g−3, g−2, g−1, e, g, g2, g3, . . . }. (6)

Example. Consider the group of integers modulo 12, denoted by Z12. Consider 2 ∈ Z12, the
group generated by 2 is then

⟨2⟩ = {2, 4, 6, 8, 10, 0} (7)

Definition 1.8. We say that a group G is cyclic if there exists an element g ∈ G such that
G is generated by g, that is, G = ⟨g⟩.

Example. The group of integers (Z,+) is an infinite cyclic group. Indeed, it is generated by
1.
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1.2.4 Isomorphisms and Endomorphisms
Finally, we will define the concept of isomorphisms and endomorphisms. These are important

concepts in the world of cryptography, since they allow us to compare different groups. Namely,
suppose we have two groups (G,⊕) and (H,⊙). Is there any way to state that these two groups
are the same? The answer is yes, and this is done via isomorphisms.

Definition 1.9. A function ϕ : G → H is called an homomorphism if it is a function that
preserves the group operation, that is,

∀a, b ∈ G : ϕ(a ⊕ b) = ϕ(a)⊙ ϕ(b). (8)

Definition 1.10. An isomorphism is a bijective homomorphism.

Definition 1.11. If there exists an isomorphism between two groups G and H, we say that
these groups are isomorphic and write G ∼= H.

Example. Consider the group of integers (Z,+) and the group of integers modulo 12
(Z12,+). The function ϕ : Z → Z12 defined as ϕ(x) = x mod 12 is a homomorphism.
Indeed:

ϕ(a + b) = (a + b) mod 12 = (a mod 12) + (b mod 12) = ϕ(a) + ϕ(b). (9)

However, this function is not an isomorphism, since it is not bijective. For example, ϕ(0) =
ϕ(12) = 0.

Example. Additive group of reals (R,+) and the multiplicative group of positive reals
(R>0,×) are isomorphic. The function ϕ : R → R>0 defined as ϕ(x) = ex is an iso-
morphism. Indeed:

ϕ(a + b) = ea+b = ea · eb = ϕ(a) · ϕ(b). (10)

Thus, ϕ is a homomorphism. It is also injective since ex = ey =⇒ x = y . Finally, it is
obviously onto. This means (R,+) ∼= (R>0,×).

Example. All groups of order 2 are isomorphic to Z2. Indeed, let G = {g, e} – any group of
order 2, and define ϕ : Z2 → G as ϕ(0) = e and ϕ(1) = g. This is an isomorphism.

A generalization of the above example is the following quite interesting theorem:

Theorem 1.12. Suppose G = ⟨g⟩ is a finite cyclic group, meaning |G| = n ∈ N. Then,
G ∼= Zn.

Idea of the proof. Define a function ϕ : Zn → G as m 7→ gm. One can prove that this is
an isomorphism.

Here, it is quite evident that isomorphism tells us that the groups have the same structure.
Moreover, it is correct to say that if G ≡ H, then G and H are equivalent since ∼= is an
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equivalence relation.
Exercise (*). Prove that ∼= is an equivalence relation.
Finally, we will define the concept of an endomorphism and automorphism to finish the

section.

Definition 1.13. An endomorphism is a function ϕ which maps set X to itself (ϕ : X → X).

Definition 1.14. An automorphism is an isomorphic endomorphism.

Example. Given a group G, fixate a ∈ G. The map ϕ : x 7→ axa−1 is an automorphism.

Last two definitions are especially frequently used in Elliptic Curves theory.

1.3 Fields
1.3.1 Formal Definition

Although typically one introduces rings before fields, we believe that for the basic under-
standing, it is better to start with fields.

Notice that when dealing with groups, we had a single operation ⊕, which, depending on the
context, is either interpreted as addition or multiplication. However, fields allow to extend this
concept a little bit further by introducing a new operation, say, ⊙, which, combined with ⊕,
allows us to perform the basic arithmetic.

This is very similar to the real or rational numbers, for example. We can add, subtract,
multiply, and divide them. This is exactly what fields are about, but in a more abstract way.
That being said, let us see the definition.

Definition 1.15. A field is a set F with two operations ⊕ and ⊙ such that:
1. (F,⊕) is an abelian group with identity e⊕.
2. (F \ {e⊕},⊙) is an abelian group.
3. The distributive law holds: ∀a, b, c ∈ F : a ⊙ (b ⊕ c) = (a ⊙ b)⊕ (a ⊙ c).

What this definition basically states is that we can perform the following operations:
1. Addition: a ⊕ b, inherited from group structure (F,⊕).
2. Subtraction: a ⊕ (⊖b), inherited from group structure (F,⊕).
3. Multiplication: a ⊙ b, inherited from group structure (F \ {e⊕},⊙).
4. Division: a ⊙ b−1, except for b = 0, inherited from group structure (F \ {e⊕},⊙).

Example. The set of real numbers (R,+,×) is obviously a field.
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Example. The set of complex numbers (C,+,×) is also a field. Indeed, let us see how we
can perform operations. Suppose we are given z = a0+a1i and w = b0+b1i with i2+1 = 0.
In this case:

1. Addition: z + w = (a0 + b0) + (a1 + b1)i .
2. Subtraction: z − w = (a0 − b0) + (a1 − b1)i .
3. Multiplication: z · w = (a0b0 − a1b1) + (a0b1 + a1b0)i .
4. Division: z/w = a0b0+a1b1

b20+b
2
1
+ a1b0−a0b1

b20+b
2
1
i .

Interestingly though, it is very difficult to come up with some more complicated, non-trivial
examples. For that reason, we will simply move to the most central field used in cryptography
– finite fields.

1.3.2 Finite Fields
Recall: we do not like reals, we want to operate with integers! But notice that (Z,+,×)

does not form a field since division is not closed. For that reason, fixate some integer p and
consider the set Zp := {0, 1, 2, . . . , p − 2, p − 1}. Now, we will define operations as follows:

Addition. To add a, b ∈ Zp, add them as usual to get c ← a + b. However, this way,
operation is not closed, since c might be easily greater than p−1 (e.g., for a = b = p−2). To
fix this, take c ′ ∈ Zp such that c ≡ c ′ (mod p) (or, written more concisely, c ′ = (a+b) mod p).

Example. Take p = 5. Then, 3+4 = 2 in Z5 since c = 3+4 = 7 and 7 ≡ 2 = c ′ (mod 5).

Multiplication and subtraction. The algorithm is the same. Find c ← ab or c ← a − b,
respectively, and find c ′ ∈ Zp such that c ′ ≡ c (mod p).

Example. Again, suppose p = 5. Then, 3 · 4 = 2 in F5 since c = 3 · 4 = 12 and 12 ≡ 2 = c ′
(mod 5). Similarly, 3− 4 = 4 in F5 since c = 3− 4 = −1 and −1 ≡ 4 = c ′ (mod 5).

Inversion. Inversion is a bit more tricky. Recall that (Zp \{0},×) must be an abelian group,
meaning that for each a ∈ Zp there should be some x ∈ Zp such that ax = 1 (multiplication in
a sense of definition above). In other words, we need to solve the modular equation:

ax ≡ 1 (mod p). (11)

Note that there is no guarantee that for any a ∈ Zp \{0} we might find such x . For example,
take p = 10 and a = 2. Then, 2x ≡ 1 (mod 10) has no solution.

The only way to guarantee that for any a ∈ Zp \ {0} we might find such x is to take p to
be a prime number. This is the reason why we call such fields prime fields (or, in many cases,
one calls them finite fields).

So finally, with all the definitions, we can define the finite field.

Definition 1.16. A finite field (or prime field) is a set with prime number p of elements
{0, 1, . . . , p − 2, p − 1}, in which operations are defined “modulo p” (see details above).
Typically, finite fields are denoted as Fp or GF(p).

Finite fields is the core object in cryptography. Instead of real numbers or pure integers, we
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will almost always use finite fields.

Remark. In many cases, one might encounter both Fp and Zp notations. The difference
is the following: when one refers to Zp, it is typically assumed that the operations are
performed in the ringa of integers modulo p (meaning, we need only addition, subtraction,
and multiplication in the protocol), while division is of little interest. When one refers to Fp,
it is typically assumed that we need full arithmetic (including division) for the procool.

aWe have not defined as of now what ring is, but, roughly speaking, this is a field without multiplicative
inverses

Example. Consider 9, 14 ∈ F17. Some examples of calculations:
1. 9 + 14 = 6.
2. 9− 14 = 12.
3. 9× 14 = 7.
4. 14−1 = 11 since 14 · 11 = 154 ≡ 1 (mod 17).

1.4 Polynomials
1.4.1 Basic Definition

Polynomials are intensively used in almost all areas of cryptography. In our particular case,
polynomials will encode the information about statements we will need to prove. That being
said, let us define what polynomial is.

Definition 1.17. A polynomial f (x) is a function of the form

p(x) = c0 + c1x + c2x
2 + · · ·+ cnxn =

n∑
k=0

ckx
k , (12)

where c0, c1, . . . , cn are coefficients of the polynomial.

Notice that for now we did not specify what are ci ’s. We are interested in the case where
ci ∈ F, where F is a field.

Definition 1.18. A set of polynomials depending on x with coefficients in a field F is denoted
as F[x ], that is

F[x ] =

{
p(x) =

n∑
k=0

ckx
k : ck ∈ F, k = 0, . . . , n

}
. (13)

Definition 1.19. Evaluation of a polynomial p(x) ∈ F[x ] at point x0 ∈ F is simply finding
the value of p(x0) ∈ F.
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Example. Consider the finite field F3. Then, some examples of polynomials from F3[x ] are
listed below:

1. p(x) = 1 + x + 2x2.
2. q(x) = 1 + x2 + x3.
3. r(x) = 2x3.

If we were to evaluate these polynomials at 1 ∈ F3, we would get:
1. p(1) = 1 + 1 + 2 · 1 mod 3 = 1.
2. q(1) = 1 + 1 + 1 mod 3 = 0.
3. r(1) = 2 · 1 = 2.

Definition 1.20. The degree of a polynomial p(x) = c0 + c1x + c2x
2 + . . . is the largest

k ∈ Z≥0 such that ck ̸= 0. We denote the degree of a polynomial as deg p. We also denote
by F(≤m)[x ] a set of polynomials of degree at most m.

Example. The degree of the polynomial p(x) = 1 + 2x + 3x2 is 2, so p(x) ∈ F(≤2)3 [x ].

Theorem 1.21. For any two polynomials p, q ∈ F[x ] and n = deg p,m = deg q, the following
two statements are true:

1. deg(pq) = n +m.
2. deg(p + q) = max{n,m} if n ̸= m and deg(p + q) ≤ m for m = n.

1.4.2 Roots and divisibility

Definition 1.22. Let p(x) ∈ F[x ] be a polynomial of degree deg p ≥ 1. A field element
x0 ∈ F is called a root of p(x) if p(x0) = 0.

Example. Consider the polynomial p(x) = 1 + x + x2 ∈ F3[x ]. Then, x0 = 1 is a root of
p(x) since p(x0) = 1 + 1 + 1 mod 3 = 0.

One of the fundamental theorems of polynomials is following.

Theorem 1.23. Let p(x) ∈ F[x ], deg p ≥ 1. Then, x0 ∈ F is a root of p(x) if and only if
there exists a polynomial q(x) (with deg q = n − 1) such that

p(x) = (x − x0)q(x) (14)

Example. Note that x0 = 1 is a root of p(x) = x2 + 2. Indeed, we can write p(x) =
(x − 1)(x − 2), so here q(x) = x − 2.

Also, this might not be obvious, but we can also divide polynomials in the same way as we
divide integers. The result of division is not always a polynomial, so we also get a remainder.
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Theorem 1.24. Given f , g ∈ F[x ] with g ̸= 0, there are unique polynomials p, q ∈ F[x ] such
that

f = q · g + r, 0 ≤ deg r < deg g (15)

Example. Consider f (x) = x3 + 2 and g(x) = x + 1 over R. Then, we can write f (x) =
(x2 − x + 1)g(x) + 1, so the remainder of the division is 1. Typically, we denote this as:

f div g = x2 − x + 1, f mod g = 1. (16)

The notation is pretty similar to one used in integer division.

Similarly, one can define gcd, lcm, and other number field theory operations for polynomials.
However, we will not go into details here, besides mentioning the divisibility.

Definition 1.25. A polynomial f (x) ∈ F[x ] is called divisible by g(x) ∈ F[x ] (or, g divides
f , written as g | f ) if there exists a polynomial h(x) ∈ F[x ] such that f = gh.

Theorem 1.26. If x0 ∈ F is a root of p(x) ∈ F[x ], then (x − x0) | p(x).

Definition 1.27. A polynomial f (x) ∈ F[x ] is said to be irreducible in F if there are no
polynomials g, h ∈ F[x ] both of degree more than 1 such that f = gh.

Example. A polynomial f (x) = x2 + 16 is irreducible in R. In turn, f (x) = x2 − 2 is not
irreducible since f (x) = (x −

√
2)(x +

√
2).

Example. There are no polynomials over complex numbers C with degree more than 2 that
are irreducible. This follows from the fundamental theorem of algebra.

1.4.3 Interpolation
Now, let us ask the question: what defines the polynomial? Well, given expression p(x) =∑n
k=0 ckx

k one can easily say: “hey, I need to know the coefficients {ck}nk=0”.
Indeed, each polynomial of degree n is uniquely determined by the vector of its coefficients

(c0, c1, . . . , cn) ∈ Fn. However, that is not the only way to define a polynomial.
Suppose I tell you that p(x) = ax + b – just a simple linear function over R. Suppose I tell

you that p(x) intercepts (0, 0) and (1, 2). Then, you can easily say that p(x) = 2x .
The more general question is: suppose deg p = n, how many points do I need to define

the polynomial p(x) uniquely? The answer is n + 1 distinct points. This is the idea behind
the interpolation: the polynomial is uniquely defined by n + 1 distinct points on the plane.
An example is depicted in Figure 3. Now, let us see how we can interpolate the polynomial
practically.
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Figure 3: 5 points on the plane uniquely define the polynomial of degree 4.

Theorem 1.28. Given a set of points {(x0, y0), (x1, y1), . . . , (xn, yn)} ⊂ F × F, there is a
unique polynomial L(x) of degree n such that L(xi) = yi for all i = 0, . . . , n. This polynomial
is called the Lagrange interpolation polynomial and can be found through the following
formula:

L(x) =

n∑
i=0

yiℓi(x), ℓi(x) =

n∏
j=0,j ̸=i

x − xj
xi − xj

. (17)

Lemma 1.29. The polynomials {ℓi}ni=1, in fact, have quite an interesting property:

ℓi(xj) = δi j =

{
1, i = j

0, i ̸= j
, (18)

where δi j is the Kronecker delta. Moreover, {ℓi}ni=1 form a basis of F(≤n)[x ]: for any polyno-
mial p(x) ∈ F(≤n)[x ] there exist unique coefficients α0, . . . , αn ∈ F such that

p(x) =

n∑
i=0

αiℓi(x). (19)

Example. Suppose we have points (0, 1) and (1, 2). Then, the Lagrange interpolation poly-
nomial is

L(x) = 1 ·
x − 1
0− 1 + 2 ·

x − 0
1− 0 = (−1) · (x − 1) + 2 · x = x + 1 (20)

1.4.4 Some Fun: Shamir’s Secret Sharing
Shamir’s Secret Sharing, also known as (t, n)-threshold scheme, is one of the protocols

exploiting Lagrange Interpolation.
But first, let us define what secret sharing is. Suppose we have a secret data α, which

is represented as an element from some finite set F . We divide this secret into n pieces
α1, . . . , αn ∈ F in such a way:
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1. Knowledge of any t shares can reconstruct the secret α.
2. Knowledge of any number of shares below t cannot be used to reconstruct the secret α.
Now, let us define the sharing scheme.

Definition 1.30. Secret Sharing scheme is a pair of efficient algorithms (Gen,Comb) which
work as follows:

• Gen(α, t, n): probabilistic sharing algorithm that yields n shards (α1, . . . , αt) for which
t shards are needed to reconstruct the secret α.

• Comb(I, {αi}i∈I): deterministic reconstruction algorithm that reconstructs the secret
α from the shards I ⊂ {1, . . . , n} of size t.

Here, we require the correctness: for every α ∈ F , for every possible output (α1, . . . , αn)←
Gen(α, t, n), and any t-size subset I of {1, . . . , n} we have

Comb(I, {αi}i∈I) = α. (21)

Now, Shamir’s protocol is one of the most famous secret sharing schemes. It works as
follows: our finite set is Fq for some large prime q. Then, algorithms in the protocol are defined
as follows:

• Gen(α, k, n): choose random k1, . . . , kt−1
R←− Fq and define the polynomial

ω(x) := α+ k1x + k2x
2 + · · ·+ kt−1x t−1 ∈ F≤(t−1)q [x ], (22)

and then compute αi ← ω(i) ∈ Fq, i = 1, . . . , n. Return (α1, . . . , αn).
• Comb(I, {αi}i∈I): reconstruct the polynomial ω(x) using Lagrange interpolation and re-

turn ω(0) = α.
The combination function is possible since, having t points {i , αi}i∈I with ω(i) = αi , we can

fully reconstruct the polynomial ω(x) and then evaluate it at 0 to get α.
Instead, suppose we have only t − 1 (or less) pairs {i , αi}i∈I. Then, there are many polyno-

mials ω(x) that pass through these points (in fact, if we were in the field of real numbers, this
number would be infinite), and thus the secret α is not uniquely determined.

The intuition behind the Shamir’s protocol is illustrated in Figure 4.
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C

A

B

Figure 4: Suppose we have t = 3. Having only 2 points means knowing two blue points without
knowing the red one. There are infinitely many quadratic polynomials passing through these
two points (gray dashed lines). However, knowing the third red point allows us to uniquely
determine the polynomial and thus get its value at 0. Note that this is illustrated over R, but
for Fq the logic is similar.

1.4.5 Some Fun: Group Implementation in Rust
In programming, we can think of a group as an interface, having a single binary operation

defined, that obeys the rules of closure, associativity, identity element, and inverse element.
For that reason, we might even code a group in Rust! We will also write a simple test to

check whether the group is valid and whether the group is abelian.
Trait for Group. First, we define a trait for a group. We will define a group as a trait with

the following methods:

1 /// Trait that represents a group.
2 pub trait Group: Sized {
3 /// Checks whether the two elements are equal.
4 fn eq(&self , other: &Self) -> bool;
5 /// Returns the identity element of the group.
6 fn identity () -> Self;
7 /// Adds two elements of the group.
8 fn add(&self , a: &Self) -> Self;
9 /// Returns the negative of the element.

10 fn negate (&self) -> Self;
11 /// Subtracts two elements of the group.
12 fn sub(&self , a: &Self) -> Self {
13 self.add(&a.negate ())
14 }
15 }

Page 19



Distributed Lab ZKDL Camp

Checking group validity. Now observer the following: we get closure for free, since the
compiler will check whether the return type of the operation is the same as the type of the
group. However, there is no guarantee that associativity holds, and our identity element is at all
valid. For that reason, we need to somehow additionally check the validity of implementation.

We propose to do the following: we will randomly sample three elements from the group
a, b, c

R←− G and check our three properties:

1. a ⊕ (b ⊕ c) ?== (a ⊕ b)⊕ c .
2. a ⊕ e ?

== e ⊕ a ?
== a.

3. a ⊕ (⊖a) ?== (⊖a)⊕ a ?
== e.

Additionally, if we want to verify whether the group is abelian, we can check whether a⊕b ?
==

b ⊕ a.
For that reason, for the check, we require the group to be samplable (i.e. we can randomly

sample elements from the group):

1 /// Trait for sampling a random element from a group.
2 pub trait Samplable {
3 /// Returns a random element from the group.
4 fn sample () -> Self;
5 }

And now, our test looks as follows:

1 /// Number of tests to check the group properties.
2 const TESTS_NUMBER: usize = 100;
3
4 /// Asserts that the given group G is valid.
5 /// A group is valid if the following properties hold:
6 /// 1. Associativity: (a + b) + c = a + (b + c)
7 /// 2. Identity: a + e = a = e + a
8 /// 3. Inverse: a + (-a) = e = (-a) + a
9 pub fn assert_group_valid <G>()

10 where
11 G: Group + Samplable ,
12 {
13 for _ in 0.. TESTS_NUMBER {
14 // Take random three elements
15 let a = G:: sample ();
16 let b = G:: sample ();
17 let c = G:: sample ();
18
19 // Check whether associativity holds
20 let ab_c = a.add(&b).add(&c);
21 let a_bc = a.add(&b.add(&c));
22 let associativity_holds = ab_c.eq(&a_bc);
23 assert!(associativity_holds , "Associativity does not hold
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↪→ for the given group");
24
25 // Check whether identity element is valid
26 let e = G:: identity ();
27 let ae = a.add(&e);
28 let ea = e.add(&a);
29 let identity_holds = ae.eq(&a) && ea.eq(&a);
30 assert!(identity_holds , "Identity element does not hold for

↪→ the given group");
31
32 // Check whether inverse element is valid
33 let a_neg = a.negate ();
34 let a_neg_add_a = a_neg.add(&a);
35 let a_add_a_neg = a.add(& a_neg);
36 let inverse_holds = a_neg_add_a.eq(&e) && a_add_a_neg.eq(&e);
37 assert!(inverse_holds , "Inverse element does not hold for

↪→ the given group");
38 }
39 }
40
41 /// Asserts that the given group G is abelian.
42 /// A group is an abelian group if the following property holds:
43 /// a + b = b + a for all a, b in G (commutativity)
44 pub fn assert_group_abelian <G>()
45 where
46 G: Group + Samplable ,
47 {
48 for _ in 0.. TESTS_NUMBER {
49 assert_group_valid ::<G>();
50
51 // Take two random elements
52 let a = G:: sample ();
53 let b = G:: sample ();
54
55 // Check whether commutativity holds
56 let ab = a.add(&b);
57 let ba = b.add(&a);
58 assert!(ab.eq(&ba), "Commutativity does not hold for the

↪→ given group");
59 }
60 }

Testing the group (Z,+). And now, we can define a group for integers and check whether
it is valid and abelian:

1 use crate:: group ::{Group , Samplable };
2 use rand::Rng;
3
4 /// Implementing group for Rotation3 <f32 >
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5 impl Group for i64 {
6 fn eq(&self , other: &Self) -> bool {
7 self == other
8 }
9

10 fn identity () -> Self {
11 0i64
12 }
13
14 fn add(&self , a: &Self) -> Self {
15 self + a
16 }
17
18 fn negate (&self) -> Self {
19 -self
20 }
21 }
22
23 impl Samplable for i64 {
24 fn sample () -> Self {
25 let mut gen = rand:: thread_rng ();
26
27 // To prevent overflow , we choose a smaller range for i64
28 let min = i64::MIN / 3;
29 let max = i64::MAX / 3;
30 gen.gen_range(min..max)
31 }
32 }

Just a small note: since we cannot generate infinite integers, we restrict the range of integers
to prevent overflow. So, for the sake of simplicity, we divide the range of integers by 3, in which
overflow never occurs.

And now, the moment of truth! Let us define some tests and run them:

1 #[cfg(test)]
2 mod tests {
3 use super ::*;
4 use group ::*;
5
6 #[test]
7 fn test_integers_are_group () {
8 assert_group_valid ::<i64 >()
9 }

10
11 #[test]
12 fn test_integers_are_abelian () {
13 assert_group_abelian ::<i64 >();
14 }
15 }
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Both tests pass! Now let us consider something a bit trickier.
Testing the group SO(3). We can define a group for 3 × 3 rotation matrices. Of course,

composition of two rotation is not commutative, so we expect the abelian test to fail. However,
the group is still valid! For example, there is an identity rotation matrix E, and for each rotation
matrix A ∈ SO(3), there exists a rotation matrix A−1 ∈ SO(3) such that AA−1 = A−1A = E.
Finally, the associativity holds as well.

We will use the nalgebra library for this purpose, which contains the implementation of
rotation matrices. So our implementation can look as follows:

1 /// A threshold below which two floating point numbers are
↪→ considered equal.

2 const EPSILON: f32 = 1e-6;
3
4 /// Implementing group for Rotation3 <f32 >
5 impl Group for Rotation3 <f32 > {
6 fn eq(&self , other: &Self) -> bool {
7 // Checking whether the norm of a difference is small
8 let difference = self.matrix () - other.matrix ();
9 difference.norm_squared () < EPSILON

10 }
11
12 fn identity () -> Self {
13 Rotation3 :: identity ()
14 }
15
16 fn add(&self , a: &Self) -> Self {
17 self * a
18 }
19
20 fn negate (&self) -> Self {
21 self.inverse ()
22 }
23 }
24
25 impl Samplable for Rotation3 <f32 > {
26 fn sample () -> Self {
27 let mut gen = rand:: thread_rng ();
28
29 // Pick three random angles
30 let roll = gen.gen_range (0.0..1.0);
31 let pitch = gen.gen_range (0.0..1.0);
32 let yaw = gen.gen_range (0.0..1.0);
33
34 Rotation3 :: from_euler_angles(roll , pitch , yaw)
35 }
36 }
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Here, there are two tricky moments:
1. We cannot compare floating point numbers directly, since they might differ by a small

amount. For that reason, we define a small threshold ε. We say that two matrices are
equal iff the norm3 of their difference is less than ε.

2. To generate a random rotation matrix, we generate three random angles and create a
rotation matrix from these angles.

1.5 Exercises
Exercise 1. Which of the following statements is false?
1. (∀a, b ∈ Q, a ̸= b) (∃q ∈ R) : {a < q < b}.
2. (∀ε > 0) (∃nε ∈ N) (∀n ≥ nε) : {1/n < ε}.
3. (∀k ∈ Z) (∃n ∈ N) : {n < k}.
4. (∀x ∈ Z \ {−1}) (∃!y ∈ Q) : {(x + 1)y = 2}.
Exercise 2. Denote X := {(x, y) ∈ Q2 : xy = 1}. Oleksandr claims the following:
1. X ∩ N2 = {(1, 1)}.
2. |X ∩ Z2| = 2|X ∩ N2|.
3. X is a group under the operation (x1, y1)⊕ (x2, y2) = (x1x2, y1y2).
Which statements are true?
a) Only 1.
b) Only 1 and 2.
c) Only 1 and 3.
d) Only 2 and 3.
e) All statements are correct.
Exercise 3. Does a tuple (Z,⊕) with operation a ⊕ b = a + b − 1 define a group?
a) Yes, and this group is abelian.
b) Yes, but this group is not abelian.
c) No, since the associativity property does not hold.
d) No, since there is no identity element in this group.
e) No, since there is no inverse element in this group.
Exercise 4. Consider the Cartesian plane R2, where two coordinates are real numbers. For

two points A,B define the operation ⊕ as follows: A⊕B is the midpoint on segment AB. Does
(R2,⊕) define a group?

a) Yes, and this group is abelian.
b) Yes, but this group is not abelian.
c) No, since the associativity property does not hold and there is no identity element in this

group.
d) No, since the associativity property does not hold, but we might define an identity element

nonetheless.
Exercise 5. Find the inverse of 4 in F11.
3one can think of norm as being the measure of “distance” between two objects. Similarly, we can define norm

not only on matrices, but on vectors as well.
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a) 8
b) 5
c) 3
d) 7
Exercise 6. Suppose for three polynomials p, q, r ∈ F[x ] we have deg p = 3, deg q =

4, deg r = 5. Which of the following is true for n := deg{(p − q)r}?
a) n = 9.
b) n might be less than 9.
c) n = 20.
d) n is less than deg{qr}.
Exercise 7. Define the polynomial over F5: f (x) := 4x2 + 7. Which of the following is the

root of f (x)?
a) 2
b) 3
c) 4
d) This polynomial has no roots over F5.
Exercise 8. Quadratic polynomial p(x) = ax2 + bx + c ∈ R[x ] has zeros at 1 and 2 and

p(0) = 2. Find the value of a + b + c .
a) 0
b) −1
c) 1
d) Not enough information to determine.
Exercise 9. Which of the following is a valid endomorphism f : X → X?
a) X = [0, 1], f : x 7→ x2.
b) X = [0, 1], f : x 7→ x + 1.
c) X = R>0, f : x 7→ (x − 1)3.
d) X = Q>0, f : x 7→

√
x .

Exercise 10*. Denote by GL(2,R) a set of 2×2 invertable matrices with real entries. Define
two functions ϕ : GL(2,R)→ R:

ϕ1

([
a b

c d

])
= ad − bc, ϕ2

([
a b

c d

])
= a + d (23)

Den claims the following:
1. ϕ1 is a group homomorphism between multiplicative groups (GL(2,R),×) and (R,×).
2. ϕ2 is a group homomorphism between additive groups (GL(2,R),+) and (R,+).
Which of the following is true?
a) Only statement 1 is correct.
b) Only statement 2 is correct.
c) Both statements 1 and 2 are correct.
d) None of the statements is correct.
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2 Basics of Security Analysis
2.1 Basics of Security Analysis

In many cases, technical papers include the analysis on the key question: “How secure is
this cryptographic algorithm?” or rather “Why this cryptographic algorithm is secure?”. In this
section, we will shortly describe the notation and typical construction for justifying the security
of cryptographic algorithms.

Typically, the cryptographic security is defined in a form of a game between the adversary
(who we call A) and the challenger (who we call Ch). The adversary is trying to break the
security of the cryptographic algorithm using arbitrary (but still efficient) protocol, while the
challenger is following a simple, fixed protocol. The game is played in a form of a challenge,
where the adversary is given some information and is asked to perform some task. The security
of the cryptographic algorithm is defined based on the probability of the adversary to win the
game.

2.1.1 Cipher Semantic Security
Let us get into specifics. Suppose that we want to specify that the encryption scheme is

secure. Recall that cipher E = (E,D) over the space (K,M, C) (here, K is the space containing
all possible keys,M – all possible messages and C – all possible ciphers) consists of two efficiently
computable methods:

• E : K ×M→ C – encryption method, that based on the provided message m ∈ M and
key k ∈ K outputs the cipher c = E(k,m) ∈ C.

• D : K × C →M – decryption method, that based on the provided cipher c ∈ C and key
k ∈ K outputs the message m = D(k, c) ∈M.

Of course, we require the correctness:

(∀k ∈ K) (∀m ∈M) : {D(k, E(k,m)) = m} (24)

Now let us play the following game between adversary A and challenger Ch:
1. A picks any two messages m0, m1 ∈M on his choice.

2. Ch picks a random key k R←− K and random bit b R←− {0, 1} and sends the cipher c =
E(k,mb) to A.

3. A is trying to guess the bit b by using the cipher c .
4. A outputs the guess b̂.
Now, what should happen if our encryption scheme is secure? The adversary should not

be able to guess the bit b with a probability significantly higher than 1/2 (a random guess).
Formally, define the advantage of the adversary A as:

SSAdv[E ,A] :=
∣∣∣∣Pr[b̂ = b]− 12

∣∣∣∣ (25)

We say that the encryption scheme is semantically secure4 if for any efficient adversary A
the advantage SSAdv[A] is negligible. In other words, the adversary cannot guess the bit b with
a probability significantly higher than 1/2.

4This version of definition is called a bit-guessing version.
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Challenger Ch Adversary A

Send m0, m1 ∈M, |m0| = |m1|

b
R←− {0, 1}
k
R←− K

c ← E(k,mb)

Send cipher c

Guess bit b̂ ∈ {0, 1}

Figure 5: The game between the adversary A and the challenger Ch for defining the semantic
security.
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Now, what negligible means? Let us give the formal definition!

Definition 2.1. A function f : N → R is called negligible if for all c ∈ R>0 there exists
nc ∈ N such that for any n ≥ nc we have |f (n)| < 1/nc .

The alternative definition, which is problably easier to interpret, is the following.

Theorem 2.2. A function f : N→ R is negligible if and only if for any c ∈ R>0, we have

lim
n→∞

f (n)nc = 0 (26)

Example. The function f (n) = 2−n is negligible since for any c ∈ R>0 we have

lim
n→∞
2−nnc = 0 (27)

The function g(n) = 1
n!

is also negligible for similar reasons.

Example. The function h(n) = 1
n

is not negligible since for c = 1 we have

lim
n→∞

1

n
× n = 1 ̸= 0 (28)

Well, that is weird. For some reason we are considering a function the depends on some
natural number n, but what is this number?

Typically, when defining the security of the cryptographic algorithm, we are considering the
security parameter λ (e.g., the length of the key). The function is negligible if the probability
of the adversary to break the security of the cryptographic algorithm is decreasing with the
increasing of the security parameter λ. Moreover, we require that the probability of the adversary
to break the security of the cryptographic algorithm is decreasing faster than any polynomial
function of the security parameter λ.

So all in all, we can define the semantic security as follows.

Definition 2.3. The encryption scheme E with a security paramter λ ∈ N is semantically
secure if for any efficient adversary A we have:∣∣∣∣∣∣∣Pr

 m0, m1 ← A, k
R←− K, b R←− {0, 1}

b = b̂ c ← E(k,mb)

b̂ ← A(c)

− 1
2

∣∣∣∣∣∣∣ < negl(λ) (29)

Do not be afraid of such complex notation, it is quite simple. Notation Pr[A | B] means
“the probability of A, given that B occurred”. So our inner probability is read as “the probability
that the guessed bit b̂ equals b given the setup on the right”. Then, on the right we define the
setup: first we generate two messages m0, m1 ∈M, then we choose a random bit b and a key
k , cipher the message mb, send it to the adversary and the adversary, based on provided cipher,
gives b̂ as an output. We then claim that the probability of the adversary to guess the bit b is

Page 28



Distributed Lab ZKDL Camp

close to 1/2.
Let us see some more examples of how to define the security of certain crypographic objects.

2.1.2 Discrete Logarithm Assumption (DL)
Now, let us define the fundamental assumption used in cryptography formally: the Discrete

Logarithm Assumption (DL).

Definition 2.4. Assume that G is a cyclic group of prime order r generated by g ∈ G. Define
the following game:

1. Both challenger Ch and adversary A take a description G as an input: order r and
generator g ∈ G.

2. Ch computes α R←− Zr , u ← gα and sends u ∈ G to A.
3. The adversary A outputs α̂ ∈ Zr .

We define A’s advantage in solving the discrete logarithm problem in G, denoted as
DLadv[A,G], as the probability that α̂ = α.

Definition 2.5. The Discrete Logarithm Assumption holds in the group G if for any effi-
cient adversary A the advantage DLadv[A,G] is negligible.

Informally, this assumption means that given u, it is very hard to find α such that u = gα.
But now we can write down this formally!

2.1.3 Computational Diffie-Hellman (CDH)
Another fundamental problem in cryptography is the Computational Diffie-Hellman (CDH)

problem. It states that given gα, gβ it is hard to find gαβ. This property is frequently used in
the construction of cryptographic protocols such as the Diffie-Hellman key exchange.

Let us define this problem formally.

Definition 2.6. Let G be a cyclic group of prime order r generated by g ∈ G. Define the
following game:

1. Both challenger Ch and adversary A take a description G as an input: order r and
generator g ∈ G.

2. Ch computes α, β R←− Zr , u ← gα, v ← gβ, w ← gαβ and sends u, v ∈ G to A.
3. The adversary A outputs ŵ ∈ G.

We define A’s advantage in solving the computational Diffie-Hellman problem in G,
denoted as CDHadv[A,G], as the probability that ŵ = w .

Definition 2.7. The Computational Diffie-Hellman Assumption holds in the group G if
for any efficient adversary A the advantage CDHadv[A,G] is negligible.

2.2 Decisional Diffie-Hellman (DDH)
Now, we loosen the requirements a bit. The Decisional Diffie-Hellman (DDH) problem

states that given gα, gβ, gαβ it is “hard” to distinguish gαβ from a random element in G. For-
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mally, we define this problem as follows.

Definition 2.8. Let G be a cyclic group of prime order r generated by g ∈ G. Define the
following game:

1. Both challenger Ch and adversary A take a description G as an input: order r and
generator g ∈ G.

2. Ch computes α, β, γ R←− Zr , u ← gα, v ← gβ, w0 ← gαβ, w1 ← gγ. Then, Ch flips a
coin b R←− {0, 1} and sends u, v , wb to A.

3. The adversary A outputs the predicted bit b̂ ∈ {0, 1}.
We define A’s advantage in solving the Decisional Diffie-Hellman problem in G, denoted
as DDHadv[A,G], as

DDHadv[A,G] :=
∣∣∣∣Pr[b = b̂]− 12

∣∣∣∣ (30)

Now, let us break this assumption for some quite generic group! Consider the following
example.

Theorem 2.9. Suppose that G is a cyclic group of an even order. Then, the Decision Diffie-
Hellman Assumption does not hold in G. In fact, there is an efficient adversary A that can
distinguish gαβ from a random element in G with an advantage 1/4.

Proof. If |G| = 2n for n ∈ N, it means that we can split the group into two subgroups
of order n, say, G1 and G2. The first subgroup consists of elements in a form g2k , while the
second subgroup consists of elements in a form g2k+1.

Now, if we could efficiently determine, based on group element g ∈ G, whether g ∈ G1 or
g ∈ G2, we essentially could solve the problem. Fortunately, there is such a method! Consider
the following lemma.

Lemma 2.10. Suppose u = gα. Then, α is even if and only if un = 1.

Proof. If α is even, then α = 2α′ and thus

un = (g2α
′
)n = g2nα

′
= (g2n)α

′
= 1α

′
= 1 (31)

Conversely, if un = 1 then uαn = 1, meaning that 2n | αn, implying that α is even. Lemma
is proven.

Now, we can construct our adversary A as follows. Suppose A is given (u, v , w). Then,
1. Based on u, get the parity of α, say pα ∈ {even, odd}.
2. Based on v , get the parity of β, say pβ ∈ {even, odd}.
3. Based on w , get the parity of γ, say pγ ∈ {even, odd}.
4. Calculate p′γ ∈ {even, odd} — parity of αβ.

5. Return b̂ = 0 if p′γ = pγ, and b̂ = 1, otherwise.
Suppose γ is indeed α × β. Then, condition p′γ = pγ will always hold. If γ is a random

element, then the probability that p′γ = pγ is 1/2. Therefore, the probability that A will guess
the bit b correctly is 3/4, and the advantage is 1/4 therefore. ■
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2.2.1 Why this is needed?
Typically, it is impossible to prove the predicate “for every efficient adversary A this probability

is negligible” and therefore we need to make assumptions, such as the Discrete Logarithm
Assumption or the Computational Diffie-Hellman Assumption. In turn, proving the statement
“if X is secure then Y is also secure” is manageable and does not require solving any fundamental
problems. So, for example, knowing that the probability of the adversary to break the Diffie-
Hellman assumption is negligible, we can prove that the Diffie-Hellman key exchange is secure.

2.3 Basic Number Theory
2.3.1 Primes

Primes are often used when doing almost any cryptographic computation. A prime number
is a natural number (N) that is not a product of two smaller natural number. In other words,
the prime number is divisible only by itself and 1. The first primes are: 2, 3, 5, 7, 11...

2.3.2 Deterministic prime tests
A primality test is deterministic if it outputs True when the number is a prime and False

when the input is composite with probability 1. An example of a deterministic prime test is
Trial_Division_Test. Here is an example implementation in Rust:

1 fn is_prime(n: u32) -> bool {
2 let square_root = (n as f64).sqrt() as u32;
3
4 for i in 2.. = square_root {
5 if n % i == 0 {
6 return false;
7 }
8 }
9

10 true
11 }

Deterministic tests often lack efficiency. For instance, even with square root optimization,
the asymptotic complexity is O(

√
N). While further optimizations are possible, they do not

change the overall asymptotic complexity.
In cryptography, N can be extremely large — 256 bits, 512 bits, or even 6144 bits. An

algorithm is impractical when dealing with such large numbers.

2.3.3 Probabilistic prime tests
A primality test is probabilistic if it outputs True when the number is a prime and False when

the input is composite with probability less than 1. Such test is often called a pseudoprimality
test. Fermat Primality and Miller-Rabin Primality Tests are examples of probabilistic primality
test. Both of them use the idea of Fermat’s Little Theorem:

Theorem 2.11. Let p be a prime number and a be an integer not divisible by p. Then
ap−1 − 1 is always divisible by p: ap−1 ≡ 1 (mod p)
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The key idea behind the Fermat Primality Test is that if for some a not divisible by n we have
an−1 ̸≡ 1 (mod n) then n is definitely NOT prime. Athough, with such an approach, we might
get a false positive, as you cannot state for sure that n is prime. For example, consider n = 15
and a = 4. 415−1 ≡ 1 (mod 15), but n = 15 = 3 · 5 is composite. To solve this issue, a is
picked many times, decreasing the chances of a false positive. The probability that a composite

number is mistakenly called prime for k iterations is 2−k =
1

2k
.

There exists a problem with such an algorithm in the form of Carmichael numbers, which
are numbers that are Fermat pseudoprime to all bases. To put it simply, no matter how many
times you check whether the number is prime using this type of primality test, it will always stay
positive, even though the number is composite. The good thing is that Carmichael numbers
are pretty rare. The bad thing is that there are infinitely many of them.

Even though this algorithm is probabilistic (which does not guarantee the correctness of the
output) and has a vulnerability in the form of Carmichael numbers, it runs with an asymptotic
complexity O(log3 n). This is much better for large numbers and is often used in cryptography.
Here is a pseudocode implementation of this algorithm:

1 # n = number to be tested for primality
2 # k = number of times the test will be repeated
3 def is_prime(n, k):
4 i = 1
5 while i <= k:
6 a = rand(2, n - 1)
7
8 if a^(n - 1) != 1 (mod n):
9 return False

10
11 i++
12
13 return True

Miller-Rabin primality test, is a more advanced form of Fermat primality test. The main
difference is it is not vulnerable to Carmichael numbers, which makes it much better to use in
practice.

2.3.4 Greatest Common Divisor
Greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest

positive integer that divides each of the integers.

Example. gcd(8, 12) = 4, gcd(3, 15) = 3, gcd(15, 10) = 5.

Computing GCD using Euclid’s algorithm. The is based on the fact that, given two positive
integers a and b such that a > b, the common divisors of a and b are the same as the common
divisors of a − b and b. It can be observed, that it can be further optimized, by using amodb,
instead of a − b. For example, gcd(26, 8) = gcd(18, 8) = gcd(10, 8) = gcd(2, 8) can be
optimized to gcd(26, 8) = gcd(26 (mod 8), 8) => gcd(2, 8) Algorithm can be implemented
using recursion. Base of the recursion is gcd(a, 0) = a.
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1 int gcd(a, b):
2 if (b == 0):
3 return a
4 return gcd(b, a % b)

Provided algorithm work with O(log(N)) asymptotic complexity.

2.3.5 Least common multiple
Least common multiple (LCM) of two integers a and b, is the smallest positive integer that

is divisible by both a and b.
The least common multiple can be computed from the greatest common divisor with the

formula: lcm(a, b) = |ab|
gcd(a,b)

1 int lcm(a, b):
2 return a * (b / gcd(a, b))

2.3.6 Modular inverse
Modular multiplicative inverse of an integer a is an integer b such that a · b ≡ 1 (mod m).

In prime fields it is commonly used as a division operation.
One of the ways to compute the modular inverse is by using Euler‘s theorem:
aφ(m) ≡ 1 (mod m), where φ is Euler’s totient function.
For prime numbers, where φ(m) = m − 1:
am−2 ≡ a−1 (mod m).

1 a_inverse = powmod(a, m-2, m) # where powmod(base , power ,
↪→ modulus)

2.3.7 Reed-Solomon codes
Reed-Solomon codes allows to restore lost or corrupted data, implement threshold secret

sharing and is used in some ZK protocols. Given a vector of data V a polynomial P is constructed
using Lagrange interpolation. Polynomial with degree n can be uniquely defined using (n + 1)
unique points. Defining more points on the same polynomial add a redundancy, which can be
used to restore the polynomial even if some points are missing. Common choices for a set of
evaluation points include 0, 1, 2, ..., n − 1.

The error-correcting ability of a Reed-Solomon code is n− k , the measure of redundancy in
the block. If the locations of the error symbols are not known in advance, then a Reed-Solomon
code can correct up to n − k/2 erroneous symbols, i.e., it can correct half as many errors as
there are redundant symbols added to the block.
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2.3.8 Schwartz-Zippel Lemma

Lemma 2.12. Let F be a field. Let f (x1, x2, ..., xn) be a polynomial of total degree d . Sup-
pose that f is not the zero polynomial. Let S be a finite subset of F. Let r1, r2, ...rn be chosen
at random uniformly and independently from S. Then the probability that f (r1, r2, ..., rn) = 0
is ≤ d

|S| .

Example. Let F = F3, f (x) = x2 − 5x + 6, S = F , r R←− F3.
Schwartz-Zippel lemma says that the probability that f (r) = 0 is ≤ 2

3
.

Given two polynomials P,Q with degree d in a field Fp, for r R←− F3: Pr[P (r) == Q(r)] ≤ d
p
.

For large fields, where d
p

is negligible, this property allows to succinctly check the equality of
polynomials. Let H(x) := P (x) − Q(x). Than for each P (x) = Q(x) → H(x) = 0. Applying
Schwartz-Zippel lemma, the probability of H(x) = 0 for x R←− F is ≤ d

|S| .

2.4 Exercises
Exercise 1. Suppose that for the given cipher with a security parameter λ, the adversary

A can deduce the least significant bit of the plaintext from the ciphertext. Recall that the
advantage of a bit-guessing game is defined as SSAdv[A] =

∣∣Pr[b = b̂]− 1
2

∣∣, where b is the
randomly chosen bit of a challenger, while b̂ is the adversary’s guess. What is the maximal
advantage of A in this case?

Hint: The adversary can choose which messages to send to challenger to further distinguish
the plaintexts.

a) 1
b) 1

2

c) 1
4

d) 0
e) Negligible value (negl(λ)).
Exercise 2. Consider the cipher E = (E,D) with encryption function E : K ×M→ C over

the message space M, ciphertext space C, and key space K. We want to define the security
that, based on the cipher, the adversary A cannot restore the message (security against message
recovery). For that reason, we define the following game:

1. Challenger chooses random m
R←−M, k

R←− K.
2. Challenger computes the ciphertext c ← E(k,m) and sends to A.
3. Adversary outputs m̂, and wins if m̂ = m.
We say that the cipher E is secure against message recovery if the message recovery

advantage, denoted as MRadv[A, E ] is negligible. Which of the following statements is a valid
interpretation of the message recovery advantage?

a) MRadv[A, E ] :=
∣∣Pr[m = m̂]− 1

2

∣∣
b) MRadv[A, E ] := |Pr[m = m̂]− 1|.
c) MRadv[A, E ] := Pr[m = m̂]
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d) MRadv[A, E ] :=
∣∣∣Pr[m = m̂]− 1

|M|

∣∣∣
Exercise 3. Suppose that f and g are negligible functions. Which of the following functions

is not neccessarily negligible?
a) f + g
b) f × g
c) f − g
d) f /g

e) h(λ) :=

{
1/f (λ) if 0 < λ < 100000

g(λ) if λ ≥ 100000
Exercise 4. Suppose that f ∈ Fp[x ] is a d-degree polynomial with d distinct roots in Fp.

What is the probability that, when evaluating f at n random points, the polynomial will be zero
at all of them?

a) Exactly (d/p)n.
b) Strictly less that (d/p)n.
c) Exactly nd/p.
d) Exactly d/np.
Exercise 5-6. To demonstrate the idea of Reed-Solomon codes, consider the toy construc-

tion. Suppose that our message is a tuple of two elements a, b ∈ F13. Consider function
f : F13 → F13, defined as f (x) = ax + b, and define the encoding of the message (a, b) as
(a, b) 7→ (f (0), f (1), f (2), f (3)).

Question 5. Suppose that you received the encoded message (3, 5, 6, 9). Which number
from the encoded message is corrupted?

a) First element (3).
b) Second element (5).
c) Third element (6).
d) Fourth element (9).
e) The message is not corrupted.
Question 6. Consider the previous question. Suppose that the original message was (a, b).

Find the value of a × b (in F13).
a) 4
b) 6
c) 12
d) 2
e) 1
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3 Field Extensions and Elliptic Curves
3.1 Finite Field Extensions
3.1.1 General Definition

Previously, our discussion resolved around the finite field Fp for a prime p. However, many
protocols need more than just a prime field. For example, elliptic curve pairings and certain
STARK constructions require extending Fp to, in a sense, the analogous of complex numbers.

From school and, possibly, university, you might remember how complex numbers C are
constructed. You take two real numbers, say, x, y ∈ R, introduce a new symbol i satisfying
i2 = −1, and define the complex number as z = x + iy . In certain cases, one might encounter
a bit more rigorous and abstract definition of complex numbers as the set of pairs (x, y) ∈ R2
where addition in naturally defined as (x1, y1)+(x2, y2) = (x1+x2, y1+y2), and the multiplication
is:

(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1)5. (32)

In spite of what interpretation you have seen, the complex number is just a tuple of two real
numbers that satisfy a bit different rules of multiplication (since addition is typically defined
in the same way). What is even more important to us, is that C is our first example of the
so-called field extension of R.

Formally, definition of the field extension is very straightforward:

Definition 3.1. Let F be a field and K be another field. We say that K is an extension of
F if F ⊂ K and we denote it as K/F.

Despite just a simplicity of the definition, the field extensions are a very powerful tool in
mathematics. But first, let us consider a few non-trivial examples of field extensions.

Example. Denote by Q(
√
2) = {x + y

√
2 : x, y ∈ Q}. This is a field extension of Q. It is

obvious that Q ⊂ Q(
√
2), but why is Q(

√
2) a field? Addition and multiplication operations

are obviously closed:

(x1 + y1
√
2) + (x2 + y2

√
2) = (x1 + x2) + (y1 + y2)

√
2,

(x1 + y1
√
2) · (x2 + y2

√
2) = (x1x2 + 2y1y2) + (x1y2 + x2y1)

√
2.

(33)

But what about the inverse element? Well, here is the trick:

1

x + y
√
2
=

x − y
√
2

(x + y
√
2)(x − y

√
2)
=
x − y

√
2

x2 − 2y 2 =
x

x2 − 2y 2 −
y

x2 − 2y 2
√
2 ∈ Q(

√
2). (34)

5Notice that (x1 + iy1)(x2 + iy2) = x1x2 + iy2x1 + iy1x2 + i2y1y2 = (x1x2 − y1y2) + (x1y2 + x2y1)i .
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Example. Consider Q(
√
2, i) = {a + bi : a, b ∈ Q(

√
2)} where i2 = −1. This is a field

extension of Q(
√
2) and, consequently, of Q. The representation of the element is:

(a + b
√
2) + (c + d

√
2)i = a + b

√
2 + ci + d

√
2i (35)

Showing that this is a field is a bit more tedious, but still straightforward. Suppose we take
α+ βi ∈ Q(

√
2, i) with α, β ∈ Q(

√
2). Then:

1

α+ βi
=
α− βi
α2 + β2

=
α

α2 + β2
−

β

α2 + β2
i (36)

Since Q(
√
2) is a field, both α

α2+β2
and β

α2+β2
are in Q(

√
2), and, consequently, Q(

√
2, i) is

a field as well.

Remark. Notice that basically, Q(
√
2, i) is just a linear combination of {1,

√
2, i ,
√
2i}. This

has a very important implication: Q(
√
2, i) is a four-dimensional vector space over Q, where

elements {1,
√
2, i ,
√
2i} naturally form basis. We are not going to use it implicitly, but this

observation might make further discussion a bit more intuitive.

Remark. One might have defined Q(
√
2, i) = {x +

√
2y : x, y ∈ Q(i)} instead. Indeed,

Q(
√
2)(i) = Q(i)(

√
2) = Q(

√
2, i).

3.1.2 Polynomial Quotient Ring
Now, we present a more general way to construct field extensions. Notice that when con-

structing C, we used the magical element i that satisfies i2 = −1. But here is another way how
to think of it.

Consider the set of polynomials R[x ], then I pick p(x) := x2 + 1 ∈ R[x ] and ask you to find
roots of p(x). Of course, you would claim “hey, this equation has no solutions over R” and that
is totally true. That is why mathematicians introduced a new element i that we formally called
the root of x2 + 1. Note however, that i is not a number in the traditional sense, but rather a
fictional symbol that we artifically introduced to satisfy the equation.

Now, could we have picked another polynomial, say, q(x) = x2 + 4? Sure! As long as its
roots cannot be found in R, we are good to go.

Example. Suppose β is the root of q(x) := x2 + 4. Then we could have defined complex
numbers as a set of x + yβ for x, y ∈ R. In this case, multiplication, for example, would be
defined a bit differently than in the case of C:

(x1 + y1β) · (x2 + y2β) = (x1x2 − 4y1y2) + (x1y2 + x2y1)β. (37)

We shifted to the polynomial consideration for a reason: now, instead of considering the
complex number C as “some” tuple of real numbers (c0, c1), now let us view it as a polynomial6

c0 + c1X modulo polynomial X2 + 1.

6Here, we use X to represent the polynomial variable to avoid confusion with the notation x + y i .
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Example. Indeed, take, for example, p1(X) := 1 + 2X and p2(X) := 2 + 3X. Addition is
performed as we are used to:

p1 + p2 = (1 + 2X) + (2 + 3X) = 3 + 5X, (38)

but multiplication is a bit different:

p1p2 = (1 + 2X) · (2 + 3X) = 2 + 3X + 4X + 6X2 = 6X2 + 7X + 2. (39)

Well, and what next? Recall that we are doing arithmetic modulo X2+1 and for that reason,
we divide the polynomial by X2 + 1:

6X2 + 7X + 2 = 6(X2 + 1) + 7X − 4 =⇒ (6X2 + 7X + 2)mod (X2 + 1) = 7X − 4, (40)

meaning that p1p2 = 7X − 4. Oh wow, hold on! Let us come back to our regular complex
number representation and multiply (1 + 2i)(2 + 3i). We get 2 + 3i + 4i + 6i2 = −4 + 7i .
That is exactly the same result if we change X to i above! In fact, what we have observed
is the fact that our polynomial quotient ring R[X]/(X2 + 1) is isomorphic to C.

So, let us generalize this observation to any field F and any irreducible polynomial µ(x) ∈ F[x ].

Theorem 3.2. Let F be a field and µ(x) — irreducible polynomial over F (sometimes called
a reduction polynomial). Consider a set of polynomials over F[x ] modulo µ(x), formally
denoted as F[x ]/(µ(x)). Then, F[x ]/(µ(x)) is a field.

Example. As we considered above, let F = R, µ(x) = x2+1, then R[X]/(X2+1) (a set of
polynomials modulo X2 + 1) is a field.

Example. Suppose F = Q and µ(x) := x2 − 2. Then, Q[X]/(X2 − 2) is a field isomorphic
to Q(

√
2), considered above.

Example. Suppose F = Q and µ(x) := (x2 + 1)(x2 − 2) = x4 − x2 − 2. Then, Q[X]/(x4 −
x2 − 2) is a field isomorphic to Q(

√
2, i).

Remark. Although we have not defined the isomorphism between two rings/fields, it is
defined similarly to group isomorphism. Suppose we have fields (F,+,×) and (K,⊕,⊗). Bi-
jective function φ : F→ K is called an isomorphism if it preserves additive and multiplicative
structures, that is for all a, b ∈ F:

φ(a + b) = φ(a)⊕ φ(b),
φ(a × b) = φ(a)⊗ φ(b).

(41)

This theorem (aka definition) corresponds to viewing complex numbers as a polynomial
quotient ring R[X]/(X2 + 1). But, we can give a theorem (aka definition) for our classical
representation via magical root i of x2 + 1.
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Theorem 3.3. Let F be a field and µ ∈ F[X] is an irreducible polynomial of degree n and let
K := F[X]/(µ(X)). Let θ ∈ K be the root of µ over K. Then,

K = {c0 + c1θ + · · ·+ cn−1θn−1 : c0, . . . , cn−1 ∈ F} (42)

Although this definition is quite useful, we will mostly rely on the polynomial quotient ring
definition. Let us define the prime field extension.

Definition 3.4. Suppose p is prime and m ≥ 2. Let µ ∈ Fp[X] be an irreducible polynomial
of degree m. Then, elements of Fpm are polynomials in F(≤m)p [X]. In other words,

Fpm = {c0 + c1X + · · ·+ cm−1Xm−1 : c0, . . . , cm−1 ∈ Fp}, (43)

where all operations are performed modulo µ(X).

Again, let us consider a few examples.

Example. Consider the F24. Then, there are 16 elements in this set:

0, 1, X,X + 1,

X2, X2 + 1, X2 +X,X2 +X + 1,

X3, X3 + 1, X3 +X,X3 +X + 1,

X3 +X2, X3 +X2 + 1, X3 +X2 +X,X3 +X2 +X + 1.

(44)

One might choose the following reduction polynomial: µ(X) = X4 + X + 1 (of degree 4).
Then, operations are performed in the following manner:

• Addition: (X3 +X2 + 1) + (X2 +X + 1) = X3 +X.
• Subtraction: (X3 +X2 + 1)− (X2 +X + 1) = X3 +X.
• Multiplication: (X3 +X2 + 1) · (X2 +X + 1) = X2 + 1 since:

(X3 +X2 + 1) · (X2 +X + 1) = X5 +X + 1 mod (X4 +X + 1) = X2 + 1 (45)

• Inversion: (X3 +X2 + 1)−1 = X2 since (X3 +X2 + 1) ·X2 mod (X4 +X + 1) = 1.

Now, in the subsequent sections, we would need to extend Fp at least to Fp2. A convenient
choice, similarly to the complex numbers, is to take µ(X) = X2 + 1. However, in contrast to
R, equation X2 = −1 (mod p) might have solutions over certain prime numbers p. Thus, we
consider proposition below.

Proposition 3.5. Let p be an odd prime. Then X2 + 1 is irreducible in Fp[X] if and only if
p ≡ 3 (mod 4).

Corollary 3.6. Fp2 = Fp[u]/(u2+1) is a valid prime field extension for odd primes p satisfying
p ≡ 3 (mod 4). In this case, extended elements are of the form c0 + c1u where c0, c1 ∈ Fp
and u2 = −1.
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3.1.3 Multiplicative Group of a Finite Field
The non-zero elements of Fp, denoted as F×p , form a multiplicative cyclic group. In other

words, there exist elements g ∈ F×p , called generators, such that

F×p = {gk : 0 ≤ k ≤ p − 2} (46)

The order of x ∈ F×p is the smallest positive integer r such that x r = 1. It is also not difficult
to show that r | (p − 1).

Definition 3.7. ω ∈ F is the primitive root in the finite field F if ⟨ω⟩ = F×.

Example. ω = 3 is the primitive root of F7. Indeed,

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1. (47)

So clearly ⟨ω⟩ = 7.

In STARKs (and in optimizing operations) for DFT (Discrete Fourier Transform) we would
need the so-called nth primitive roots of unity.

Example. For those who studied complex numbers a bit (it is totally OK if you did not,
so you might skip this example), recall an equation ζn = 1 over C. The solutions are
ζk = cos

(
2πk
n

)
+ i sin

(
2πk
n

)
for k ∈ {0, 1, . . . , n − 1}, so one has exactly n solutions (in

contrast to xn = 1 over R where there are at most 2 solutionsa). For any solution ζk ,
it is true that ζnk = 1, but if one were to consider the subgroup generated by ζk (that is,
{1, ζk , ζ2k , . . . }), then not neccecerily ⟨ζk⟩ would enumerate all the roots of unity {ζj}n−1j=0 .
For that reason, we call ζk the nth primitive root of unity if ⟨ζk⟩ enumerates all roots of unity.
One can show that this is the case if and only if gcd(k, n) = 1. This is always the case for
k = 1, so commonly mathematicians use ζn to denote an expression cos 2π

n
+i sin 2π

n
= e2πi/n.

aThink why.

Yet, let us give the broader definition, including the finite fields case.

Definition 3.8. ω is the nth primitive root of unity if ωn = 1 and ωk ̸= 1 for all 1 ≤ k < n.

Note that such ω exists if and only if n | (p − 1).

3.1.4 Algebraic Closure
Consider the following interesting question: suppose we have a field F. Is there an extension

K/F such that K contains all roots of any polynomial in F[X]? The answer is yes, and such a
field is called the algebraic closure of F, although not always this algebraic closure has a nice
form. But first, let us define what it means for field F to be algebraically closed.

Definition 3.9. A field F is called algebraically closed if every non-constant polynomial
p(x) ∈ F[X] has a root in F.
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Example. R is not algebraically closed since X2 + 1 has no roots in R. However, C is
algebraically closed, which follows from the fundamental theorem of algebra. Since C is a
field extension of R, it is also an algebraic closure of R. This is commonly denoted as R = C.

Definition 3.10. A field K is called an algebraic closure of F if K/F is algebraically closed.
This is denoted as F = K.

Since we are doing cryptography and not mathematics, we are interested in the algebraic
closure of Fp. Well, I have two news for you (as always, one is good and one is bad). The
good news is that any finite field Fpm has an algebraic closure. The bad news is that it does
not have a form Fpk for k > m and there are infinitely many elements in it (so in other words,
the algebraic closure of a finite field is not finite). This is due to the following theorem.

Theorem 3.11. No finite field F is algebraically closed.

Proof. Suppose f1, f2, . . . , fn ∈ F are all elements of F. Consider the following polynomial:

p(x) =

n∏
i=1

(x − fi) + 1 = (x − f1)(x − f2) · · · (x − fn) + 1. (48)

Clearly, p(x) is a non-constant polynomial and has no roots in F, since for any f ∈ F, one
has p(f ) = 1. ■

But what form does the Fp have? Well, it is a union of all Fpk for k ≥ 1. This is formally
written as:

Fp =
⋃
k∈N

Fpk . (49)

Remark. But this definition is super counter-intuitive! So here how we usually interpret it.
Suppose I tell you that polynomial q(x) has a root in Fp. What that means is that there
exists some extension Fpm such that for some α ∈ Fpm , q(α) = 0. We do not know how
large this m is, but we know that it exists. For that reason, Fp is defined as an infinite union
of all possible field extensions.

3.2 Elliptic Curves
3.2.1 Classical Definition

Probably, there is no need to explain the importance of elliptic curves. Essentially, the main
group being used for cryptographic protocols is the group of points on an elliptic curve. If
elliptic curve is “good enough”, then the discrete logarithm problem assumption, Diffie-Hellman
assumption and other core cryptographic assumptions hold. Moreover, this group does not
require a large field size, which is a huge advantage for many cryptographic protocols.

So, let us formally define what an elliptic curve is. Further assume that, when speaking of the
finite field Fp, the underlying prime number is greater than 3.7. The definition is the following.

7Note that, for example, for F2n equation of elliptic curve is very different, but usually we do not deal with
binary field elements.
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Definition 3.12. Suppose that K is a field. An elliptic curve E over K is defined as a set
of points (x, y) ∈ K2:

y 2 = x3 + ax + b, (50)

called a Short Weierstrass equation, where a, b ∈ K and 4a3+27b2 ̸= 0. We denote E/K
to denote the elliptic curve over field K.

Remark. One might wonder why 4a3 + 27b2 ̸= 0. This is due to the fact that the curve
y 2 = x3+ax +b might have certain degeneracies and special points, which are not desirable
for us. So we require this condition to make E/K “good”.

Definition 3.13. We say that P = (xP , yP ) ∈ A2(K) is the affine representation of the
point on the elliptic curve E/K if it satisfies the equation y 2P = x

3
P + axP + b.

Example. Consider the curve E/Q : y 2 = x3 − x + 9. This is an elliptic curve. Consider
P = (0, 3), Q = (−1,−3) ∈ A2(Q): both are valid affine points on the curve. See Figure 6.

-4 -2 0 2 4
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Figure 6: Elliptic curve E/Q : y 2 = x3−x+9 with points P = (0, 3), Q = (−1,−3) depicted
on it.

Typically, our elliptic curve is defined over a finite field Fp, so we are interested in this paricular
case.

Remark. Although, in many cases one might encounter the definition where an elliptic curve
E is defined over the algebraic closure of Fp, that is E/Fp. This is typically important when
considering elliptic curve pairings. However, for the sake of simplicity, we will consider elliptic
curves over Fp and corresponding finite extensions Fpm as of now.

Remark. It is easy to see that if (x, y) ∈ E/K, then (x,−y) ∈ E/K. We will use this fact
intensively further.
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Now, elliptic curves are useless without any operation defined on top of them. But as will be
seen later, it is quite unclear how to define the identity element. For that reason, we introduce
a bit different definition of a set of points on the curve.

Definition 3.14. The set of points on the curve, denoted as Ea,b(K), is defined as:

Ea,b(K) = {(x, y) ∈ A2(K) : y 2 = x3 + ax + b} ∪ {O}, (51)

where O is the so-called point at infinity.

Remark. The difference between E(K) and E/K is that the former includes the point at
infinity, while the latter does not. We also omit the index a, b, so instead of Ea,b(K) we
write simply E(K).

Now, the reason we introduced the point at infinity O is because it allows us to define
the group binary operation ⊕ on the elliptic curve. The operation is sometimes called the
chord-tangent law. Let us define it.

Definition 3.15. Consider the curve E(Fpm). We define O as the identity element of the
group. That is, for all points P , we set P ⊕ O = O ⊕ P = P . For any other non-identity
elements P = (xP , yP ), Q = (xQ, yQ) ∈ E(Fpm), define the P ⊕Q = (xR, yR) as follows:

1. If xP ̸= xQ, use the chord method. Define λ := yP−yQ
xP−xQ — the slope between P and Q.

Set the resultant coordinates as:

xR := λ
2 − xP − xQ, yR := λ(xP − xR)− yP . (52)

2. If xP = xQ ∧ yP = yQ (that is, P = Q), use the tangent method. Define the slope of
the tangent at P as λ := 3x2P+a

2yP
and set

xR := λ
2 − 2xP , yR := λ(xP − xR)− yP . (53)

3. Otherwise, define P ⊕Q := O.

The aforementioned definition is illustrated in the Figure below8.

8Illustration taken from “Pairing for Beginners”
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Example. Consider E/R : y 2 = x3 − 2x . The points (−1,−1), (0, 0), (2, 2) are all on
E and also on the line ℓ : y = x . Therefore, (−1, 1) ⊕ (0, 0) = (2,−2) or, similarly,
(2, 2)⊕ (−1,−1) = (0, 0).
Now, let us compute [2](−1,−1). Calculate the tangent slope as λ := 3·(−1)2−2

2·(−1) = −1
2
.

Thus, the tangent line has an equation ℓ′ : y = −1
2
x + c . Substituting (−1,−1) into the

equation, we get c = −3
2
. Therefore, the equation of the tangent line is y = −1

2
x − 3

2
. The

intersection of the curve and the line is
(
9
4
,−21

8

)
, yielding [2](−1,−1) =

(
9
4
,−21

8

)
.

The whole illustration is depicted in Figure 7.
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Figure 7: Illustration of the group law on the elliptic curve E/R : y 2 = x3 − 2x . In red we
marked points lying on the line ℓ : y = x . In dashed red, we marked the line ℓ, while in
dashed green — the tangent line ℓ′ at (−1,−1), which is used to calculate [2](−1, 1).

Theorem 3.16. (E(Fpm),⊕) forms an abelian group.

Proof Sketch. The identity element is O. Every point O ̸= P = (xP , yP ) ∈ E(Fpm) has
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an additive inverse: indeed, ⊖P := (xP ,−yP ). Finally, a bit of algebra might show that the
operation is associative. It is also clearly commutative: even geometrically it is evident, that
the result of P ⊕Q does not depend on the order of P and Q (“drawing a line between P and
Q” and “drawing a line between Q and P ” are equivalent statements). ■

Now, let us talk a bit about the group order. The group order is the number of elements in
the group. For elliptic curves, the group order is typically denoted as r or n, but we are going
to use r . Also, the following theorem is quite important.

Theorem 3.17. Define r := |E(Fpm)|. Then, r = pm + 1− t for some integer |t| ≤ 2
√
pm.

A bit more intuitive explanation: the number of points on the curve is close to pm +1. This
theorem is commonly called the Hasse’s theorem on elliptic curves, and the value t is
called the trace of Frobenius.

Remark. In fact, r = |E(Fpm)| can be computed in O(log(pm)), so the number of points
can be computed efficiently even for fairly large primes p.

Finally, let us define the scalar multiplication operation.

Definition 3.18. Let P ∈ E(Fpm) and α ∈ Zr . Define the scalar multiplication [α]P as:

[α]P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
α times

. (54)

Question. Why do we restrict α to Zr and not to Z?

3.2.2 Discrete Logarithm Problem on Elliptic Curves
Finally, as defined in the previous section, the discrete logarithm problem on the elliptic

curve is the following: typically, E(Fp) is cyclic, meaning there exist some point G ∈ E(Fp),
called the generator, such that ⟨G⟩ = E(Fp). Given P ∈ E(Fp), the problem consists in finding
such a scalar α ∈ Zr such that [α]G = P .

Now, if the curve is “good”, then the discrete logarithm problem is hard. In fact, the best-
known algorithms have a complexity O(

√
r). However, there are certain cases when the discrete

log problem is much easier.
1. If r is composite, and all its prime factors are less than some bound rmax, then the discrete

log problem can be solved in O(
√
rmax). For this very reason, typically r is prime.

2. If |E(Fp)| = p, then the discrete logarithm can be solved in polynomial time. These curves
are called anomalous curves.

3. Suppose that there is some small integer τ > 0 such that r | (pτ − 1). The discrete log
in that case reduces to the discrete log in the finite field Fpτ , which is typically not hard
for small enough τ .

3.3 Exercises
Warmup (Oleksandr in search of perfect field extension)

Exercise 1. Oleksandr decided to build F49 as F7[i ]/(i2 + 1). Compute (3 + i)(4 + i).
a) 6 + i .
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b) 6.
c) 4 + i .
d) 4.
e) 2 + 4i .
Exercise 2. Oleksandr came up with yet another extension Fp2 = Fp[i ]/(i2 + 2). He asked

interns to calculate 2/i . Based on five answers given below, help Oleksandr to find the correct
one.

a) 1.
b) p − 2.
c) (p − 3)i .
d) (p − 1)i .
e) p − 1.
Exercise 3*. After endless tries, Oleksandr has finally found the perfect field extension:

Fp2 := Fp[v ]/(v 2 + v + 1). However, Oleksandr became very frustrated since not for any p
this would be a valid field extension. For which of the following values p such construction
would not be a valid field extension? Use the fact that equation ω3 = 1 over Fp has non-trivial
solutions (meaning, two others except for ω = 1) if p ≡ 1 (mod 3). You can assume that listed
numbers are primes.

a) 8431.
b) 9173.
c) 9419.
d) 6947.
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Exercises 4-9. Tower of Extensions

You are given the passage explaining the topic of tower of extensions. The text has gaps
that you need to fill in with the correct statement among the provided choices.

This question demonstrates the concept of the so-called tower of extensions. Suppose
we want to build an extension field Fp4. Of course, we can find some irreducible polynomial
p(X) of degree 4 over Fp and build Fp4 as Fp[X]/(p(X)). However, this method is very
inconvenient since implementing the full 4-degree polynomial arithmetic is inconvenient.
Moreover, if we were to implement arithmetic over, say, Fp24, that would make the matters
worse. For this reason, we will build Fp4 as Fp2[j ]/(q(j)) where q(j) is an irreducible
polynomial of degree 2 over Fp2, which itself is represented as Fp[i ]/(r(i)) for some
suitable irreducible quadratic polynomial r(i). This way, we can first implement Fp2, then
Fp4, relying on the implementation of Fp2 and so on.

For illustration purposes, let us pick p := 5. As noted above, we want to build F52 first.
A valid way to represent F52 would be to set F52 := 4 . Given this representation, the
zero of a linear polynomial f (x) = ix − (i + 3), defined over F52, is 5 .

Now, assume that we represent F54 as F52[j ]/(j2−ξ) for ξ = i+1. Given such representa-
tion, the value of j4 is 6 . Finally, given c0+ c1j ∈ F54 we call c0 ∈ F52 a real part, while
c1 ∈ F52 an imaginary part. For example, the imaginary part of number j3 + 2i2ξ is 7 ,
while the real part of (a0 + a1j)b1j is 8 . Similarly to complex numbers, it motivates us
to define the number’s conjugate: for z = c0+c1j , define the conjugate as z := c0−c1j .
The expression zz is then 9 .

Exercise 4.
a) F5[i ]/(i2 + 1)
b) F5[i ]/(i2 + 2)
c) F5[i ]/(i2 + 4)
d) F5[i ]/(i2 + 2i + 1)
e) F5[i ]/(i2 + 4i + 4)

Exercise 5.
a) 1 + i
b) 1 + 2i
c) 1 + 4i
d) 2 + 3i
e) 3 + i

Exercise 6.
a) 4 + 2i
b) 4i
c) 1
d) 1 + 2i
e) 2 + 4i

Exercise 7.
a) equal to zero.
b) equal to one.
c) equal to the real part.
d) 2(1 + i)
e) −4

Exercise 8.
a) a1b1
b) a1b1ξ
c) a0b1
d) a0b1ξ
e) a0a1

Exercise 9.
a) c20 + c

2
1

b) c20 − c21ξ
c) c20 + c

2
1ξ
2

d) (c20 + c
2
1ξ)j

e) (c20 − c21 )j

Elliptic Curves
Exercise 10. Suppose that elliptic curve is defined as E/F7 : y 2 = x3 + b. Suppose (2, 3)

lies on the curve. What is the value of b?
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Exercise 11. Sum of which of the following pairs of points on the elliptic curve E/F11 is
equal to the point at infinity O for any valid curve equation?

a) P = (2, 3), Q = (2, 8).
b) P = (9, 2), Q = (2, 8).
c) P = (9, 9), Q = (5, 7).
d) P = O, Q = (2, 3).
e) P = [10]G,Q = G where G is a generator.
Exercise 12. Consider an elliptic curve E over F1672. Denote by r the order of the group of

points on E (that is, r = |E|). Which of the following can be the value of r?
a) 1672 − 5
b) 1672 − 1000
c) 1672 + 5 · 167
d) 1702

e) 1602

Exercise 13. Suppose that for some elliptic curve E the order is |E| = qr where both q and
r are prime numbers. Among listed, what is the most optimal complexity of algorithm to solve
the discrete logarithm problem on E?

a) O(qr)
b) O(

√
qr)

c) O(
√
max{q, r})

d) O(
√
min{q, r})

e) O(max{q, r})
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4 Projective Coordinates and Pairing
4.1 Relations

Before delving into the projective coordinates and further zero-knowledge topics, let us first
discuss the concept of relations, which will be intensively used from now on. Now, what is a
relation? The definition is incredibly concise.

Definition 4.1. Let X ,Y be some sets. Then, R is a relation if

R ⊂ X × Y = {(x, y) : x ∈ X , y ∈ Y} (55)

Interpretation is approximately the following: suppose we have sets X and Y. Then, relation
R gives a set of pairs (x, y), telling that x ∈ X and y ∈ Y are related.

Example. Let X = {Oleksandr,Phat,Anton} and Y = {Backend,Frontend,Research}. De-
fine the following relation of “person x works in field y ”:

R = {(Oleksandr,Research), (Phat,Frontend), (Anton,Backend)} (56)

Obviously, R ⊂ X × Y, so R is a relation.

Remark. There are many ways to express that (x, y) ∈ R. Most common are xRy and
x ∼ y . Also, sometimes, one might encounter relation definition as a boolean function
R : X × Y → {0, 1}, where R(x, y) is 1 if (x, y) is in the relation, and 0 otherwise.
Further, we will use notation x ∼ y to denote that (x, y) ∈ R.

Example. Let E be a cyclic group of points on the Elliptic Curve of order r ≥ 2 with a
generator ⟨G⟩ = E. Let X = Zr and Y = E. Define a relation R ⊂ X × Y by:

R = {(α, P ) ∈ Zr × E : [α]G = P} (57)

Essentially, such a relation is a set of secret keys α and corresponding public keys P . In this
case, for example, 0RO and 1RG or 0 ∼ O and 1 ∼ G.

Remark. When we say that ∼ is a relation on a set X , we mean that ∼ is a relation R on
the following Cartesian product: R ⊂ X ×X .

Remark. The provided example is relevant in most cases (ecdsa, eddsa, schnorr signatures
etc.). But for some algorithms, the relation between secret key α and public key P can be
defined as:

R = {(α, P ) ∈ Zr × E : ⊖[α]G = P} (58)

for DSTU 4145 standard or even:

R = {(α, P ) ∈ Zr × E : [α−1]G = P} (59)

for twisted ElGamal algorithm.
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Now, let us formally define the term equivalence relation.

Definition 4.2. Let X be a set. A relation ∼ on X is called an equivalence relation if it
satisfies the following properties:

1. Reflexivity: x ∼ x for all x ∈ X .
2. Symmetry: If x ∼ y , then y ∼ x for all x, y ∈ X .
3. Transitivity: If x ∼ y and y ∼ z , then x ∼ z for all x, y , z ∈ X .

Example. Let X be the set of all people. Define a relation ∼ on X by x ∼ y if x, y ∈ X
have the same birthday. Then ∼ is an equivalence relation on X . Let us demonstrate that:

1. Reflexivity: x ∼ x since x has the same birthday as x .
2. Symmetry: If x ∼ y , then y ∼ x since x has the same birthday as y .
3. Transitivity: If x ∼ y and y ∼ z , then x ∼ z since x has the same birthday as y and
y has the same birthday as z .

Example. Suppose X = Z and n is some fixed integer. Let a ∼ b mean that a ≡ b (mod n).
It is easy to verify that ∼ is an equivalence relation:

1. Reflexivity: a ≡ a (mod n), so a ∼ a.
2. Symmetry: If a ≡ b (mod n), then b ≡ a (mod n), so b ∼ a.
3. Transitivity: If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n). It is not

that obvious, so we can prove it: from the first equality we have ∃q ∈ Z : a− b = nq.
From the second, ∃r ∈ Z : b−c = nr . Adding both we get (a−b)+(b−c) = n(r+q)
or, equivalently, a − c = n(r + q), meaning a ≡ c (mod n).

The example below is less obvious with a bit more difficult proof, which we will skip. Yet, it
is quite curious, so here it is.

Example. Let G be the set of all possible groups. Define a relation ∼ on G by G ∼ H if
G ∼= H (in other words, G and H are isomorphic). Then ∼ is an equivalence relation.

Now, suppose I give you a set X with some equivalence relation ∼ (say, X = Z and a ≡ b
(mod n)). Notice that you can find some subset X ′ ⊂ X in which all elements are equivalent
(and any other element from X\X ′ is not). In the case of modulo relation above, X ′ could be the
set of all integers that are congruent to 1 modulo n, so X ′ = {. . . ,−n+1, 1, n+1, 2n+1, . . . }.
This way, we can partition the set X into disjoint subsets, where all elements in each subset are
equivalent. Such subsets are called equivalence classes. Now, let us give a formal definition.

Definition 4.3. Let X be a set and ∼ be an equivalence relation on X . For any x ∈ X , the
equivalence class of x is the set

[x ] = {y ∈ X : x ∼ y} (60)

The set of all equivalence classes is denoted by X/∼ (or, if the relationR is given explicitly,
then X/R), which is read as “X modulo relation ∼”.
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Example. Let X = Z and n be some fixed integer. Define ∼ on X by x ∼ y if x ≡ y

(mod n). Then the equivalence class of x is the set

[x ] = {y ∈ Z : x ≡ y (mod n)} (61)

For example, [0] = {. . . ,−2n,−n, 0, n, 2n, . . .} while [1] = {. . . ,−2n + 1,−n + 1, 1, n +
1, 2n + 1, . . .}.

Now, as we have said before, a set of all equivalence classes form a partition of the set
X . This means that any element x ∈ X belongs to exactly one equivalence class. This is a
very important property, which we will use in the next section. Formally, we have the following
lemma.

Lemma 4.4. Let X be a set and ∼ be an equivalence relation on X . Then,
1. For each x ∈ X , x ∈ [x ] (quite obvious, follows from reflexivity).
2. For each x, y ∈ X , x ∼ y if and only if [x ] = [y ].
3. For each x, y ∈ X , either [x ] = [y ] or [x ] ∩ [y ] = ∅.

Example. Let n ∈ N and, again, X = Z with a “modulo n” equivalence relation Rn. Define
the equivalence class of x by [x ]n = {y ∈ Z : x ≡ y (mod n)}. Then,

Z/Rn = {[0]n, [1]n, [2]n, . . . , [n − 2]n, [n − 1]n} (62)

forms a partition of Z, that is
n−1⋃
i=0

[i ]n = Z, (63)

and for all i , j ∈ {0, 1, . . . , n − 1}, if i ̸= j , then [i ]n ∩ [j ]n = ∅. Commonly, we denote the
set of all equivalence classes as Z/nZ or, as we got used to, Zn. Moreover, we can naturally
define the addition as:

[x ]n + [y ]n = [x + y ]n (64)

Then, the set (Z/nZ,+) with the defined addition is a group.

The primary reason we considered equivalence relations is that we will define the projective
space as a set of equivalence classes. Besides this, when defining proofs of knowledge, argument
of knowledge and zero-knowledge protocols, we will use the concept of relations and equivalence
relations intensively.

4.2 Elliptic Curve in Projective Coordinates
4.2.1 Projective Space

Recall that we defined the elliptic curve as

E(Fp) := {(x, y) ∈ A2(Fp) : y 2 = x3 + ax + b} ∪ {O} (65)

The above definition is the definition of the elliptic curve in the affine space. However, notice
that in this case we need to append a somewhat artificial point O to the curve. This is done
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to make the curve a group since without this point it is unclear how to define addition of two,
say, negative points on the curve (since the resultant vertical line does not intersect the curve
at any other point). The way to unify all the points E/Fp with this magical point at infinity O
is to use the projective space.

Essentially, instead of working with points in affine n-space (in our case, with two-dimensional
points A2(K)), we work with lines that pass through the origin in (n+1)-dimensional space (in
our case, 3-dimensional space A3(K)). We say that two points from this (n + 1)-dimensional
space are equivalent if they lie on the same line that passes through the origin (we will show
the illustration a bit later).

It seems strange that we need to work with 3-dimensional space to describe 2-dimensional
points, but this is the way to unify all the points on the curve. Because, in this case, the point
at infinity is represented by a set of points on the line that passes through the origin and is
parallel to the y -axis. We will get to understanding how to interpret that. Moreover, by defining
operations on the projective space, we can make the operations on the curve more efficient.

Now, to the formal definition.

Definition 4.5. Projective coordinate, denoted as P2(K) (or sometimes simply KP2) is a
triple of elements (X : Y : Z) from A3(K) \ {0} modulo the equivalence relationa:

(X1 : Y1 : Z1) ∼ (X2 : Y2 : Z2) iff ∃λ ∈ K : (X1 : Y1 : Z1) = (λX2 : λY2 : λZ2) (66)

aAlthough we specify the definition for n = 2, the definition can be generalized to any Pn(K).

This definition on itself might be a bit too abstract, so let us consider the concrete example
for projective space P2(R).

Example. Consider the projective space P2(R). Then, two points (x1, y1, z1), (x2, y2, z2) ∈
R3 are equivalent if there exists λ ∈ R such that (x1, y1, z1) = (λx2, λy2, λz2). For example,
(1, 2, 3) ∼ (2, 4, 6) since (1, 2, 3) = 0.5(2, 4, 6).
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Example. Now, how to geometrically interpret P2(R)? Consider the Figure below.

Illustration: Geometric interpretation of P2(R), the same scene from different perspectives. The red line is represented by
equation (2t, 3t, t), blue line by (−2t, 3t, 3t), and green line is represented by (t,−2t, 5t) for parameter t ∈ R.

Here, the figure demonstrates three equivalence classes, being a set of points on the red,
blue, and green lines (except for the origin).
The reason why geometrically the set of equivalence classes lie on the same line that passes
through the origin is following: suppose we have a point v⃗0 = (x0, y0, z0) ∈ R3, represented
as a vector. Then, the set of all points that are equivalent to (x0, y0, z0) is the set of all
points (λx0, λy0, λz0) = λv⃗0 for λ ∈ R \ {0}. So v⃗0 is the representative of equivalence
class [v⃗0] = {λv⃗0 : λ ∈ R, λ ̸= 0}. Now notice, that this is a parametric equation of a line
that passes through the origin and the point v⃗0: notice that for λ = 0 (if we assume that
expression is also defined for zero λ) we have the origin 0⃗, while for λ = 1 we have the point
v⃗0. Then, any other values of λ in-between [0, 1] or outside define the set of points lying on
the same line.

Now, projective coordinates are not that useful unless we can come back to the affine space.
This is done by defining the map φ : P2(K)→ A2(K) as follows: φ : (X : Y : Z) 7→ (X/Z, Y/Z).
If, in turn, we want to go from the affine space to the projective space, we can define the map
ψ : A2(K)→ P2(K) as follows: ψ : (x, y) 7→ (x : y : 1). Geometrically, map φ means that we
take a point (X : Y : Z) and project it onto the plane Z = 1.
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Example. Again, consider three lines from the previous example. Now, we additionally draw
a plane π : z = 1 in our 3-dimensional space (see Illustration below).

Illustration: Geometric interpretation of converting projective form to the affine form.

By using the map (X : Y : Z) 7→ (X/Z, Y/Z), all points on the line get mapped to the
itersection of the line with the plane π : z = 1. This way, for example, points on the red line
ℓred get mapped to the point A′ = (2, 3, 1), corresponding to (2, 3) in affine coordinates. So,
for example, point (6, 9, 3) ∈ ℓred, lying on the same line, gets mapped to (6/3, 9/3) = (2, 3).
Similarly, all blue line points get mapped to the point B′ = (−2/3, 1, 1), while all green line
points get mapped to the point C ′ = (0.2,−0.4, 1)a.

aOne can verify that based on the equations provided from the previous example

4.2.2 Elliptic Curve Equation in Projective Form
Now, quite an interesting question is following: how to represent (basically, rewrite) the

“affine” elliptic curve equation9

EA(Fp) : y 2 = x3 + ax + b, a, b ∈ Fp (67)

in the projective form? Since currently, we defined the curve as the 2D curve, but now we are
working in 3D space! The answer is following: recall that if (X : Y : Z) ∈ P2(Fp) lies on the
curve, so does the point (X/Z, Y/Z). The condition on the latter point to lie on EA(Fp) is
following: (

Y

Z

)2
=

(
X

Z

)3
+ a ·

X

Z
+ b (68)

But now multiply both sides by Z3 to get rid of the fractions:

EP(Fp) : Y 2Z = X3 + aXZ2 + bZ3 (69)

This is an equation of the elliptic curve in projective form.

9Further, we will use notation EA to represent the elliptic curve equation in the affine form, and EP to represent
the elliptic curve in the projective form.

Page 54



Distributed Lab ZKDL Camp

Now, one of the motivations to work with the projective form was to unify affine points
EA/Fp and the point at infinity O, which acted as an identity element in the group EA(Fp). So
how do we encode the point at infinity in the projective form?

Well, notice the following observation: all points (0 : λ : 0) always lie on the curve EP(Fp).
Moreover, the map from the projective form to the affine form is ill-defined for such points,
since we would need to divide by zero. So, we can naturally make the points (0 : λ : 0) to be
the set of points at infinity. This way, we can define the point at infinity as O = (0 : 1 : 0).

Finally, let us summarize what we have observed so far.

Definition 4.6. The homogenous projective form of the elliptic curve EP(Fp) is defined
as the set of all points (X : Y : Z) ∈ P2(Fp) in the projective space that satisfy the equation

EP(Fp) : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Fp, (70)

where the point at infinity is encoded as O = (0 : 1 : 0).

Example. Consider the BN254 curve y 2 = x3 + 3 over reals R. Its projective form is given
by the equation Y 2Z = X3 + 3Z3, which gives a surface, depicted below.

Illustration: BN254 Curve Elliptic Curve in Projective Form over R. In gray is the surface, while red points are the points on the
affine curve (lying on the plane π : z = 1).

Points P ′ ≈ (0 : 2.165 : 1.25) and P ′′ ≈ (0 : 1.3 : 0.75) in projective form both lie on the
curve and get mapped to the same point P ≈ (0, 1.732) in affine coordinates.

4.2.3 General Projective Coordinates
Hold on, but why did we use the term homogenous? The reason why is because we defined

equivalence as follows: (X : Y : Z) ∼ (λX : λY : λZ) for some λ ∈ K, called homogenous
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coordinates. However, this is not the only way to define equivalence. Consider a more general
form of equivalence relation:

(X : Y : Z) ∼ (X ′ : Y ′ : Z ′) iff ∃λ ∈ K : (X, Y, Z) = (λnX ′, λmY ′, λZ ′) (71)

In this case, to come back to the affine form, we need to use the map φ : (X : Y : Z) 7→
(X/Zn, Y/Zm).

Example. The case n = 2, m = 3 is called the Jacobian Projective Coordinates. An
Elliptic Curve equation might be then rewritten as:

Y 2 = X3 + aXZ4 + bZ6 (72)

The reason why we might want to use such coordinates is that they can be more efficient
in some operations, such as point addition. However, we will not delve into this topic much
further.

Example. Consider the BN254 curve y 2 = x3+3 over reals R, again. Its Jacobian projective
form is given by the equation Y 2 = X3 + 3Z6, which gives a surface, depicted below.

Illustration: BN254 Curve Elliptic Curve in Jacobian Projective Form over R. In gray is the surface, while red points are the
points on the affine curve (lying on the plane π : z = 1).

Notice that now, under the map (X : Y : Z) 7→ (X/Z2, Y/Z3), points in the same equivalence
class (in R3) do not lie on the same line, but rather on the same curve. Namely, equivalence
class has a form [(x0, y0, z0)] = {t2x0, t3y0, tz0 : t ∈ R \ {0}}.

4.2.4 Fast Addition
Let us come back to the affine case and assume that the underlying field is the prime field Fp.

Recall that for adding two points P = (xP , yP ) and Q = (xQ, yQ) to get R = (xR, yR)← P ⊕Q
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one used the following formulas (there is no need to understand the derivation fully, just take
it as a fact):

xR ←
(
yQ − yP
xQ − xP

)2
− xP − xQ, yR ←

(
yQ − yP
xQ − xP

)
(xP − xR)− yP (73)

Denote by M the cost of multiplication, by S the cost of squaring, and by I the cost of inverse
operation in Fp. Note that we do not count addition/inverse costs as they are significantly lower
than operations listed. Then, the cost of additing two points using above formula is 2M+1S+1I.
Indeed, our computation can proceed as follows:

1. Calculate t1 ← (xQ − xP )−1, costing 1I.
2. Calculate λ← (yQ − yP )t1, costing 1M.
3. Calculate t2 ← λ2, costing 1S.
4. Calculate xR ← t2 − xP − xQ, costing almost nothing.
5. Calculate yR ← λ(xP − xR)− yP , costing 1M.
Well, there are just 4 operations in total, so what can go wrong? The problem is that we

need to calculate the inverse of (xQ−xP ), which is a very, very costly operation. In fact, typically
1I≫ 20M or even worse, the ratio might reach 80 in certain cases.

Now imagine we want to add 4 points, say P1⊕ P2⊕ P3⊕ P4: this costs 6M+3S+3I. Now
we have 3 inverses, which is a lot. Finally, if we are to add much larger number of points (for
example, when finding the scalar product), this gets even worse.

Projective coordinates is a way to solve this problem. The idea is to represent points in the
projective form (X : Y : Z), so when adding two numbers in projective form, you still get a
point in a form (X : Y : Z). Then, after conducting a series of additions, you can convert the
point back to the affine form.

But why adding two points, say, (XP : YP : ZP ) and (XQ : YQ : ZQ), in the projective form is
more efficient? We will not derive the formulas, but trust us that they have the following form:

XR = (XPZQ −XQZP )(ZPZQ(YPZQ − YQZP )2 − (XPZQ −XQZP )2(XPZQ +XQZP ));
YR = ZPZQ(XQYP −XPYQ)(XPZQ −XQZP )2 − (YPZQ − YQZP )((YPZQ − YQZP )2ZPZQ

−(XPZQ +XQZP )(XPZQ −XQZP )2);
ZR = ZPZQ(XPZQ −XQZP )3.

(74)
Do not be afraid, you do not need to understand how this formula is derived. But notice

that despite the very scary look, there is no inversions involved! Moreover, this formula can be
calculated in only 12M+ 2S! So all in all, this is much more effective than 2M+ 1S+ 1I.

The only inversion which is unavoidable in the projective form is the inversion of Z since after
all additions (and doublings) have been made, we need to use map (X : Y : Z) 7→ (X/Z, Y/Z)
to return back to the affine form. However, this inversion is done only once at the end of the
computation, so it is not that costly.
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Proposition 4.7. To conclude, typically, when working with elliptic curves, one uses the
following strategy:

1. Convert affine points to projective form using the map (x, y) 7→ (x, y , 1).
2. Perform all operations in the projective form, which do not involve inversions.
3. Convert the result back to the affine form using the map (X : Y : Z) 7→ (X/Z, Y/Z).

This is illustrated in the Figure below.

Affine Space

Projective Space
Complex 

Algorithm
Illustration: General strategy when performing operations over Elliptic Curves.

4.2.5 Scalar Multiplication Basic Implementation
Now, the question is: how do we implement the scalar multiplication [k ]P for the given scalar

k ∈ Zr and point P ∈ E(Fq)?
First idea: let us simply add P to itself k times. Well, the complexity would be O(k) in this

case, which is even harder than solving the discrete logarithm problem (recall that the discrete
logarithm problem has a complexity of O(

√
k)). Yikes.

So there should be a better way. In this section we will limit ourselves to the double-and-add
method, but the curious reader can look up the NAF (Non-Adjacent Form) method, windowed
methods, GLV scalar decomposition and many other methods, which we are not going to cover
in this course.

The idea of the double-and-add method is following: we represent the N-bit scalar k in
binary form, say k = (kN−1, kN−2, . . . , k0)2, then we calculate P, [2]P, [4]P, [8]P, . . . , [2N−1]P
(which is simply applying the doubling multple times) and then add the corresponding points
(corresponding to positions where ki = 1) to get the result. Formally, we specify the Algorithm 1.

Algorithm 1: Double-and-add method for scalar multiplication
Input : P ∈ E(Fq) and k ∈ Zr
Output: Result of scalar multiplication [k ]P ∈ E(Fq)

1 Decompose k to the binary form: (k0, k1, . . . , kN−1)
2 R← O
3 T ← P

4 for i ∈ {0, . . . , N − 1} do
5 if ki = 1 then
6 R← R ⊕ T
7 end
8 T ← [2]T
9 end

Return : Point R

Good news: now we have a complexity of O(N) = O(log k), which is way much better that
a linear one. In fact, many more optimized methods have the same assymptotic complexity
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(meaning, a logarithmic one), so it turns out that we cannot do much better than that. However,
the main advantages of other, more optimized methods is that we can avoid making too many
additions (here, in the worst case, we have to make N additions), which is a costly operation
(and more expensive than doubling).

Moreover, here we can use projective coordinates to make the addition and doubling operation
more efficient! After all, typically the number of operations is even more than 300, so making
300 inversions in affine form is not an option.

4.3 Elliptic Curve Pairing
Pairing is the core object used in threshold signatures, zk-SNARKs constructions, and other

cryptographic applications.
Consider the Decisional Diffie-Hellman problem which we described in Section 2 (based

on gα, gβ and gγ, decide whether γ = αβ). Turns out that for curves where the so-called
embedding degree10 is small enough, this problem is easy to solve. This might sound like a
quite bad thing, but it turns out that although some information about the discrete logarithm is
leaked, it is not enough to break the security of the system (basically, solve the Computational
Diffie-Hellman problem). Pairings is the exact object that allows us to solve the Decisional
Diffie-Hellman problem.

However, a more interesting use-case which we are going to use in SNARKs is that pairings
allows us to check quadratic conditions on scalars using their corresponding elliptic curve
representation. For example, just given u = gα, v = gβ we can check whether αβ + 5 = 0
(which is impossible to check without having a pairing).

So what is pairing?

4.3.1 Definition

Definition 4.8. Pairing is a bilinear, non-degenerate, efficiently computable map e : G1 ×
G2 → GT , where G1,G2 are two groups (typically, elliptic curve groups) and GT is a target
group (typically, a set of scalars). Let us decipher the definition:

• Bilinearity means essentially the following:

e([a]P , [b]Q) = e([ab]P ,Q) = e(P , [ab]Q) = e(P ,Q)ab.

• Non-degeneracy means that e(G1, G2) ̸= 1 (where G1, G2 are generators of G1,G2,
respectively). This property basically says that the pairing is not trivial.

• Efficient computability means that the pairing can be computed in a reasonable time.
The definition is illustrated in Figure 8.

10We will mention what that is is later, but still this term is quite hard to define.

Page 59



Distributed Lab ZKDL Camp

Figure 8: Pairing illustration. It does not matter what we do first: (a) compute [a]P and [b]Q
and then compute e([a]P, [b]Q) or (b) first calculate e(P,Q) and then transform it to e(P,Q)ab.
Figure taken from “Pairings in R1CS” talk by Youssef El Housni

Example. Suppose G1 = G2 = GT = Zr are scalars. Then, the map e : G1 × G2 → GT ,
defined as:

e(x, y) = 2xy (75)

is pairing. Indeed, it is bilinear. For example, e(ax, by) = 2abxy = (2xy)ab = e(x, y)ab or
e(ax, by) = 2abxy = 2(x)(aby) = e(x, aby). Moreover, it is non-degenerate, since e(1, 1) =
2 ̸= 1. And finally, it is obviously efficiently computable.
However, this is a quite trivial example since working over integers is typically not secure.
For example, the discrete logarithm over Zr can be solved in subexponential time. For that
reason, we want to build pairings over elliptic curves.

Example. Pairing for BN254. For BN254 (with equation y 2 = x3+3), the pairing function
e : G1 ×G2 → GT is defined over the following groups:

• G1 — points on the regular curve E(Fp).
• G2 — r -torsion points on the twisted curve E ′(Fp2) over the field extension Fp2 (with

equation y 2 = x3 + 3
ξ

for ξ = 9 + u ∈ Fp2).
• GT — r th roots of unity Ωr ⊂ F×p12.

Well, this one is quite intense and even understanding the input and output parameters is
quite hard. So let us decipher some components:

• r -torsion subgroup on the curve E(Fpm) is simply a set of points, which multiplied by
r give the point at infinity (that is, [r ]P = O). Formally, E(Fpm)[r ] = {P ∈ E(Fpm) :
[r ]P = O}. Of course, for the curve E(Fp), the r -torsion subgroup is simply the whole
curve, but that is generally not the case for the twisted curve over the extension field.

• rth roots of unity is a set of elements Ωr = {z ∈ F×p12 : z
r = 1}. This is a group

under multiplication, and it has exactly r elements.
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Remark. One might a reasonable question: where does this 12 come from? The answer is
following: the so-called embedding degree of BN254 curve is k = 12. This number is the
key to understanding why we are working over such large extensions when calculating the
pairing. The formal description is quite hard, but the intuition is following: the embedding
degree is the smallest number k such that all the r th roots of unity lie inside the extended
field Fpk . If k was smaller, the output of pairing would contain less that r points and some
points would be missing, which would make the pairing more trivial. For that reason, we
need to have Ωr ⊂ Fpk .

Definition 4.9. The following conditions are equivalent definitions of an embedding degree
k of an elliptic curve E(Fp):

• k is the smallest positive integer such that r | (pk − 1).
• k is the smallest positive integer such that Fpk contains all of the r -th roots of unity

in Fp, that is Ωr ⊂ Fpk .
• k is the smallest positive integer such that E(Fp)[r ] ⊂ E(Fpk )

Pretty obvious observation: lower embedding degree is faster to work with, since it allows
us to work over smaller fields. But usually, this embedding degree is quite large and we need
to craft elliptic curves specifically to have a small embedding degree. For example, a pretty
famous curve secp256k1 has an embedding degree

k = 0x2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa74727a26728c1ab49ff8651778090ae0,

which is 254-bit long. For that reason, it is natural to define the term pairing-friendly elliptic
curve.

Definition 4.10. An elliptic curve is called pairing-friendly if it has a relatively small em-
bedding degree k (typically, k ≤ 16).

Remark. One might ask why usually, when dealing with pairings, we do not get to work with
field extensions that much (most likely, if you were to write groth16 from scratch using
some mathematical libraries, you will not need to work with Fp12 arithmetic specifically).
The reason is that typically, libraries implement the following abstraction: given a set of
points {(Pi , Qi)}ni=1 ⊂ Gn1 ×Gn2, the function checks whether

n∏
i=1

e(Pi , Qi) = 1 (76)

Note that in this case, we do not need to work with Fp12 arithmetic, but rather checking the
equality in the target group GT .
Interesting fact: this condition is specified in the ecpairing precompile standard used in
Ethereum.

4.3.2 Case Study: BLS Signature
One of the most elegant applications of pairings is the BLS Signature scheme. Compared

to ECDSA or other signature schemes, BLS can be formulated in three lines.
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Suppose we have pairing e : G1 × G2 → GT (with generators G1, G2, respectively), and a
hash function H, mapping message spaceM to G1.

Definition 4.11. BLS Signature Scheme consists of the following algorithms:

• Gen(1λ): Key generation. sk
R←− Zq, pk← [sk]G2 ∈ G2.

• Sign(sk, m). Signature is σ ← [sk]H(m) ∈ G1.
• Verify(pk, m, σ). Check whether e(H(m), pk) = e(σ,G2).

Let us check the correctness:

e(σ,G2) = e([sk]H(m), G2) = e(H(m), [sk]G2) = e(H(m), pk) (77)

As we see, the verification equation holds.

Remark. G1 and G2 might be switched: public keys might live instead in G1 while signatures
in G2.

This scheme is also quite famous for its aggregation properties, which we are not going to
consider today.

4.3.3 Case Study: Verifying Quadratic Equations

Example. Suppose Alice wants to convince Bob that he knows such α, β such that α+β = 2,
but she does not want to reveal α, β. She can do the following trick:

1. Alice computes P ← [α]G,Q← [β]G — points on the curve.
2. Alice sends (P,Q) to Bob.
3. Bob verifies whether P ⊕Q = [2]G.

It is easy to verify the correctness of the scheme: suppose Alice is honest and she sends the
correct values of α, β, satisfying α+β = 2. Then, P ⊕Q = [α]G⊕ [β]G = [α+β]G = [2]G.
Moreover, Bob cannot learn α, β since the computational discrete logarithm problem is hard.

Example. Well, now suppose I make the problem just a bit more complicated: Alice wants
to convince that she knows α, β such that αβ = 2. And it turns out that elliptic curve
points on their own are not enough to verify this. However, using pairings, we can do the
following trick: assume we have a pairing e : G1 ×G2 → GT , where G1 is generated by G1
and G2 is generated by G2. Then, Alice can do the following:

1. Alice computes P ← [α]G1 ∈ G1, Q← [β]G2 ∈ G2 — points on two curves.
2. Alice sends (P,Q) ∈ G1 ×G2 to Bob.
3. Bob checks whether: e(P,Q) = e(G1, G2)2.

Remark. The last verification can be also rewritten as e(P,Q)e(G1, G2)−2 = 1, which is
more frequently used in practice.
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Example. Finally, let us prove something more interesting. Like, based on (x1, x2), whether

x21 + x1x2 = x2 (78)

Alice can calculate P1 ← [x1]G1 ∈ G1, P2 ← [x1]G2 ∈ G2, Q ← [x2]G2 ∈ G2. Then, the
condition can be verified by checking whether

e(P1, P2 ⊕Q)e(G1,⊖Q) = 1 (79)

Let us see the correctness of this equation:

e(P1, P2 ⊕Q)e(G1,⊖Q) = e([x1]G1, [x1 + x2]G2)e(G1, [x2]G2)−1

= e(G1, G2)
x1(x1+x2)e(G1, G2)

−x2 = e(G1, G2)
x21+x1x2−x2 (80)

Now, if this is 1, then x21 + x1x2 = x2, which was exactly what we wanted to prove.

4.4 Exercises
Exercise 1. What is not a valid equivalence relation ∼ over a set X?

(A) a ∼ b iff a + b < 0, X = Q.
(B) a ∼ b iff a = b, X = R.
(C) a ∼ b iff a ≡ b (mod 5), X = Z.
(D) a ∼ b iff the length of a = the length of b, X = R2.
(E) (a1, a2, a3) ∼ (b1, b2, b3) iff a3 = b3, X = R3.
Exercise 2. Suppose that over R we define the following equivalence relation: a ∼ b iff

a − b ∈ Z (a, b ∈ R). What is the equivalence class of 1.4 (that is, [1.4]∼)?
(A) A set of all real numbers.
(B) A set of all integers.
(C) A set of reals x ∈ R with the fractional part of x equal to 0.4.
(D) A set of reals x ∈ R with the integer part of x equal to 1.
(E) A set of reals x ∈ R with the fractional part of x equal to 0.6.
Exercise 3. Which of the following pairs of points in homogeneous projective space P2(R)

are not equivalent?
(A) (1 : 2 : 3) and (2 : 4 : 6).
(B) (2 : 3 : 1) and (6 : 9 : 3).
(C) (5 : 5 : 5) and (2 : 2 : 2).
(D) (4 : 3 : 2) and (16 : 8 : 4).

Exercise 4. The main reason for using projective coordinates in elliptic curve cryptography
is:
(A) To reduce the number of point additions in algorithms involving elliptic curves.
(B) To make the curve more secure against attacks.
(C) To make the curve more efficient in terms of memory usage.
(D) To reduce the number of field multiplications when performing scalar multiplication.
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(E) To avoid making too many field inversions in complicated algorithms involving elliptic
curves.

Exercise 5. Suppose k = 19 is a scalar and we are calculating [k ]P using the double-and-add
algorithm. How many elliptic curve point addition operations will be performed?
(A) 0.
(B) 1.
(C) 2.
(D) 3.
(E) 4.
Exercise 6. What is the minimal number of inversions needed to calculate the value of

expression (over Fp)
a − b
(a + b)4

+
c

a + b
+

d

a2 + c2
,

for the given scalars a, b, c, d ∈ Fp?
(A) 1.
(B) 2.
(C) 3.
(D) 4.
(E) 5.
Exercise 7. Given pairing e : G1 × G2 → GT with G1 — generator of G1 and G2 ∈ G2 —

generator of G2, which of the following is not equal to e([3]G1, [5]G2)?
(A) e([5]G1, [3]G2).
(B) e([4]G1, [4]G2).
(C) e([15]G1, G2).
(D) e([3]G1, G2)e(G1, [12]G2).
(E) e(G1, G2)15.
Exercise 8*. Unit Circle Proof. Suppose Alice wants to convince Bob that she knows a point

on the unit circle x2 + y 2 = 1. Suppose we are given a symmetric pairing e : G1 × G2 → GT
for G1 = G2 = ⟨G⟩ and Alice computes P ← [x ]G,Q ← [y ]G. She then proceeds to sending
(P,Q) to Bob. Which of the following checks should Bob perform to verify that Alice indeed
knows a point on the unit circle?
(A) Check if e(P,Q)e(Q,P ) = 1.
(B) Check if e([2]P, [2]Q) = e(G,G).
(C) Check if e([2]P,Q)e(Q, [2]P ) = 1.
(D) Check if e(P, P ) + e(Q,Q) = 1.
(E) Check if e(P, P )e(Q,Q) = e(G,G).
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5 Commitment Schemes
5.1 Commitments
Definition 5.1. A cryptographic commitment scheme allows one party to commit to a chosen
statement (such as a value, vector, or polynomial) without revealing the statement itself.
The commitment can be revealed in full or in part at a later time, ensuring the integrity and
secrecy of the original statement until the moment of disclosure.

Before delving into the details, here is the intuition of cryptographic commitments.
Imagine putting a letter with some message into a box and locking it with your key. You

then give that box to your friend, who cannot open it without the key. In this scenario, you
have made a commitment to the message inside the box. You cannot change the content of
the letter, as it is in your friend’s possession. At the same time, your friend cannot access the
letter since they do not have the key to unlock the box.

Figure 9: Commitment scheme

Definition 5.2 (Commitment Scheme). Commitment Scheme Πcommitment is a tuple of three
algorithms: Πcommitment = (Setup,Commit,Verify).

1. Setup(1λ): returns public parameter pp for both comitter and verifier;
2. Commit(pp, m): returns a commitment c to the message m using public parameters

pp and, optionally, a secret opening hint r ;
3. Open(pp, c,m, r): verifies the opening of the commitment c to the message m with

an opening hint r .
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Definition 5.3 (Commitment Scheme). Properties of commitment schemes:
1. Hiding: verifier should not learn any information about the message given only the

commitment c . To put it formally, we define a game:
(a) Adversary chooses two messages m1, m2 and sends to the challenger.
(b) Challenger chooses a random bit b, commits to both messages:

c1 ← Commit(pp,m1), c2 ← Commit(pp,m2), and sends cb to the adversary.
(c) Adversary guesses a bit b̂.

We define the hiding advantage of a PPT adversary A as

HideAdv[A,Πcommitment] :=

∣∣∣∣Pr[b = b̂]−
1

2

∣∣∣∣ (81)

We say that the commitment scheme Πcommitment is hiding if for any adversary, the
aforementioned advantage is negligible.

2. Binding: prover could not find another message m1 and open the commitment c
without revealing the commited message m. To put it formally, we define a game:
(a) Adversary chooses five values: commitment c and two distinct pairs (m0, r0) and
(m1, r1).

(b) Adversary computes bj ← Open(pp, c,mj , rj).
Define the advantage in the binding game as:

BindAdv[A,Πcommitment] = Pr[b0 = b1 ̸= 0 ∧m0 ̸= m1] (82)

We say that the commitment scheme is binding if for any adversary, such advantage
is negligible.

5.1.1 Hash-based commitments
As the name implies, we are using a cryptographic hash function H in such scheme.
1. Prover selects a message m from a message space M which he wants to commit to:
m ←M

2. Prover samples random value r (usually called blinding factor) from a challange space
C ⊂ Z: r R←− C

3. Both values will be concatenated and hashed with the hash function H to produce the
commitment: c = H(m ∥ r)

Commitment should be shared with a verifier. During the opening stage, prover reveals (m, r)
to the Verifier. To check the commitment, verifier computes: c1 = H(m ∥ r).

If c1 = c , prover has revealed the correct pair (m, r).
It should be noted that a cryptographic hash function aims to provide collision resistance,

meaning that the probability two different messages will result in one output is negligible.
Because the Verifier knows the hash function digest c before the Prover reveals m and r ,
the Prover would need to find a collision H(m′ ∥ r ′) = H(m ∥ r) to be able to convince the
Verifier that m′ value was committed.

However, due to the collision resistance, finding such m′ and r ′ is computationally infeasible.
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Which means the Prover won’t be able to convince the Verifier that the commitment was done
to another value providing a binding property.

A cryptographically secure hash function is a one-way function, which means that finding the
hash preimage is almost as hard as bruteforcing all possibile input values. Given large challenge
space, the probability of the Verifier of finding (m, r) such that H(m, r) = c is negligible, which
ensures hiding property of the commitment scheme.

5.1.2 Pedersen commitments
Pedersen commitments allow us to represent arbitrarily large vectors with a single elliptic

curve point, while optionally hiding any information about the vector. Pedersen commitment
uses a public group G of order q and two random public generators G and U: U = [u]G. Secret
parameter u should be unknown to anyone, otherwise the Binding property of the commitment
scheme will be violated. EC point U is chosen randomly using “Nothing-up-my-sleeve“ to assure
no one knows the discrete logarithm of a selected point.

Remark. Transparent random points generation
User can pick the publicly chosen random number (like a hash of project name, first numbers
of π, etc), and hash that result to obtain another value. If that results in an x value that lies
on the elliptic curve, use that as the random point and hash the (x, y) pair again (to obtain
the next one, it needed). Otherwise, if the x-value does not land on the curve, increment
x until it does. Because the committer is not generating the points, they don‘t know their
discrete log.

Pedersen commitment scheme algorithm:
1. Prover and Verifier agrees on G and U points in a elliptic curve point group G, q is the

order of the group.

2. Prover selects a value m to commit and a blinder factor r : m ← Zq, r
R←− Zq

3. Prover generates a commitment and sends it to the Verifier: c ← [m]G + [r ]U
During the opening stage, prover reveals (m, r) to the verifier. To check the commitment,

verifier computes: c1 = [m]G + [r ]U.
If c1 = c , prover has revealed the correct pair (m, r).

Remark. In case the discrete logarithm of U is leaked, the binding property can be violated
by the Prover :

c = [m]G + [r ]U = [m]G + [r · u]G = [m + r · u]G

For example, (m + u, r − 1) will have the same commitment value:

[m + u + (r − 1) · u]G = [m + u − u + r · u]G = [m + r · u]G

Commitment aggregation
Pedersen commitment have some advantages compared to hash-based commitments. Ad-

ditively homomorphic property allows to accumulate multiple commitments into one. Consider
two pairs: (m1, r1), (m2, r2).

c2 = [m1]G + [r1]U,
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c2 = [m2]G + [r2]U,
ca = c1 + c2 = [m1 +m2]G + [r1 + r2]U

This works for any number of commitments, so we can encode as many points as we like
in a single one. For example, if a set of balances is committed, the sum of any subset can be
proven without revealing the exact value of each balance. This is achieved by disclosing the
sum of the balances and the corresponding sum of the blinding factors.

5.1.3 Vector commitments
Vector commitment schemes allows to commit to a vector of values rather than a value and

a blinding term.

Pedersen Vector Commitments
Suppose we have a set of random elliptic curve points (G1, . . . , Gn) of cyclic group G (that

we do not know the discrete logarithm of), a vector (m1, m2 . . . mn) and a random value r . We
can do the following:

c = [m1]G1 + [m2]G2 . . .+ [mn]Gn + [r ]Q

Since the Prover does not know the discrete logarithm of the generators, they don‘t know
the discrete logarithm of [C]. Hence, this scheme is binding: they can only reveal (v1, . . . , vn)
to produce [C] later, they cannot produce another vector.

Prover can later open the commitment by revealing the vector (m1, m2 . . . mn) and a blinding
term r .

Merkle Tree based Vector Commitments
A naive approach for a vector commitment would be hash the whole vector. More so-

phisticated scheme uses divide-and-conquer approach by building a binary tree out of vector
elements.

Figure 10: Merkle Tree structure
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A Merkle Tree is a data structure to efficiently and securely verify the commiments to a
vector of data. It is a binary tree where each leaf node represents a hash of a data block, and
each non-leaf node is a hash of its child nodes’ concatenated hashes. The top node, called the
root hash or Merkle root, uniquely represents the entire data set. By comparing this root with
a known valid root, one can quickly verify the authenticity and integrity of the data without
needing to examine the entire dataset.

To prove the inclusion of element into the tree, a corresponding Merkle Branch is used. On
the example below, M1 inclusion is proved, and (M2, H(M3 ∥ M4), H(H(M5 ∥ M6) ∥ H(M7 ∥
M8))) is an inclusion branch vector.

Figure 11: Merkle Tree inclusion proof branch

One of Merkle tree key advantages is that it allows for the selective disclosure of specific
elements within the data set without revealing the rest.

5.1.4 Polynomial commitment
Polynomial commitment can be used to prove that the commited polynomial satisfies certain

properties P (x1, x2, . . . , xn) = y , without revealing what the polynomial is. The commitment is
generally succint, which means that it is much smaller than the polynomial it represents.

The KZG polynomial commitment scheme

The KZG (Kate-Zaverucha-Goldberg) is a polynomial commitment scheme:
1. One-time “Powers-of-tau“ trusted setup stage. During trusted setup a set of elliptic curve

points is generated. Let G be a generator point of some pairing-friendly elliptic curve group
G, s some random value in the order of the G point and d be the maximum degree of the
polynomials we want to commit to. Public parameters of a trusted setup are calculated
as:

[τ0]G, [τ1]G, . . . , [τd ]G
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Parameter τ should be deleted after the ceremony. If it is revealed, the binding property
of the commitment scheme can be broken. This parameter is usually called the toxic
waste.

2. Commit to polynomial. Given the polynomial p(x) =
∑d
i=0 pix

i , compute the com-
mitment c = [p(τ)]G using the trusted setup. Although the committer cannot com-
pute p(τ) directly since the value of τ is unknown, he can compute it using values
([τ0]G, [τ1]G, . . . , [τd ]G):

[p(τ)]G = [
∑d
i=0 piτ

i ]G =
∑d
i=0 pi [τ

i ]G

3. Prove an evaluation. To prove that at some point x0 polynomial equals y0 (p(x0) = y0),
compute polynomial

q(x) = p(x)−y0
x−x0 .

Polynomial q(x) is called “quotient polynomial“ and only exists if and only if p(x0) = y0:
(a) If p(x0) = y0, we define r(x) := p(x)− y0;
(b) r(x) has x0 as a root, as r(x0) = 0 by the definition. That is why there exists q(x),

such that r(x) = q(x) · (x − x0);
(c) Hence, the expression q(x) = p(x)−y0

x−x0 is a polynomial.
The existance of this quotient polynomial serves as a proof of the evaluation. Prover
calculates proof π = [q(τ)]G and sends it to the Verifier.

4. Verify the proof. Given a commitment c = [p(τ)]G, an evaluation p(x0) = y0 and a proof
[q(τ)]G, we need to ensure that q(τ) · (τ − x0) = p(τ) − y0. This can be done using
trusted setup without knowledge of τ using bilinear mapping:

e([q(τ)]G1, [τ ]G2 − [x ′]G2) = e([p(τ)]G1 − [y ]G1, G2)

Polynomial commiment schemes such as KZG are used in zero knowledge proof system
to encode circuit constraints as a polynomial, so that verifier could check random points
to ensure that the constraints are met.

5.2 Exercises
Exercise 1. Dmytro and Denis were watching a horse race. Confident in his ability to predict

the outcome, Dmytro decided to commit to his prediction. However, in his haste, he forgot
to use a blinding factor. Now, Dmytro is concerned that Denis might discover his prediction
before the race ends, which would defeat the purpose of his commitment.

We define a dummy hash function H(a) = (a ·13+17) (mod 41). Dmytro used a hash-based
commitment and H as a hash function. Set of race horse numbers is (3, 5, 8, 15). Help Denis to
find out the horse number Dmytro have made a commitment to, if commitment equals C = 39.
(A) 3.
(B) 5.
(C) 8.
(D) 15.

Exercise 2. Denis made a setup (points G and U) for a Pedersen commitment scheme and
commited values (m, r) = (3, 7) to Dmytro by sending him C = [3]G + [7]U. Dmytro did not

Page 70



Distributed Lab ZKDL Camp

verify the setup. Turns out that Denis knows that U = [6]G. Denis is planning to send a
different message from the one he originally committed to to m2 = 15. Which values (m2, r2)
should he send to Dmytro at the opening stage?
(A) (15, 5)
(B) (15, 7)
(C) (15, 4)
(D) (3, 5)

Exercise 3. We define a dummy hash function H(a, b) = (a · 3+ b · 7) (mod 41). You have
a Merkle tree built with depth 4 using hash function H with root equal 37. Which inclusion
proof is valid for element 3? Position defines how leaves should be hashed:

- if lef t → hi = Hash(hi−1, branch[i ])

- if r ight → hi = Hash(branch[i ], hi−1)

(A) branch: [4, 16, 13], position: [lef t, r ight, lef t]
(B) branch: [1, 40, 3], position: [lef t, lef t, lef t]
(C) branch: [5, 12, 13], position: [r ight, r ight, lef t]
(D) branch: [4, 17, 13], position: [lef t, r ight, lef t]

Exercise 4. Given a polynomial p(x) = x3 − 10x2 + 31x − 30, Oleksandr wants to prove
that p(2) = 0. To do that, according to the KZG commitment scheme, he constructs the
quotient polynomial q(x) and wants to show that q(τ) · (τ − 2) = p(τ). Assuming Oleksandr
has conducted these steps correctly, what value of q(x) has Oleksandr calculated?
(A) q(x) = 2x2 + 4x − 6
(B) q(x) = x3 − 10x2 + 30x − 28
(C) q(x) = x2 − 8x + 15
(D) q(x) = x2 + 5x + 18
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6 Introduction to Zero-Knowledge Proofs
6.1 Motivation

Finally, we came to the most interesting part of the course: zero-knowledge proofs. Before
we start with SNARKs, STARKs, Bulletproofs, and other zero-knowledge proof systems, let
us first define what the zero-knowledge is. But even before that, we need to introduce some
formalities. For example, what are “proof”, “witness”, and “statement” — terms that are so
widely used in zero-knowledge proofs.

Let us describe the typical setup. We have two parties: prover P and a verifier V. The
prover wants to convince the verifier that some statement is true. Typically, the statement is
not obvious (well, that is the reason for building proofs after all!) and therefore there might
be some “helper” data, called witness, that helps the prover to prove the statement. The
reasonable question is whether the prover can simply send witness to verifier and call it a day.
Of course since you are here, reading this lecture, it is obvious that the answer is no. More
specifically, by introducing zk-SNARKs, STARKs, and other proving systems, we will try to
mitigate the following issues:

• Zero-knowledge: The prover wants to convince the verifier that the statement is true
without revealing the witness.

• Argument of knowledge: Moreover, typically we want to make sure that the verifier,
besides the statement correctness, ensures that the prover knows such a witness related
to the statement.

• Succinctness: The proof should be short, ideally logarithmic in the size of the statement.
This is crucial for practical applications, especially in the blockchain space where we cannot
allow to publish long proofs on-chain. Moreover, verification should be efficient as well.

Example. Suppose, given a hash functiona H : {0, 1}∗ → {0, 1}ℓ, the prover P wants to
convince the verifier V that he knows the preimage x ∈ {0, 1}∗ such that H(x) = y for some
given public value y ∈ {0, 1}ℓ. The properties listed above are interpreted as follows:

• Zero-knowledge: The prover P does not want to reveal anything about the pre-image
x to the verifier V.

• Argument of knowledge: Given a string y ∈ {0, 1}ℓ it is not sufficient for a prover
to merely state that y has a pre-image. The prover P must demonstrate to a verifier
V that he knows such a pre-image x ∈ {0, 1}∗.

• Succinctness: If the hash function takes n operations to computeb, the proof should
be much shorter than n operations. State-of-art solutions can provide proofs that are
O((log n)c) (polylogarithmic) is size! Moreover, verification time of such proof is also
typically polylogarithmic (or even O(1) in some cases).

aThe notation {0, 1}∗ means binary strings of arbitrary length
bNote that “number of operations” is very vague term. One way to measure the “size” of some computa-

tional problem is specifying the number of gates in the arithmetical circuit C(x, w), representing the computation
of this problem (denoted as |C|, respectively).
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6.2 Relations and Languages
Recall that relation R is just a subset of X × Y for two arbitrary sets X and Y. Now, we

are going to introduce the notion of a language of true statements based on R.

Definition 6.1 (Language of true statements). Let R ⊆ X ×Y be a relation. We say that a
statement x ∈ X is a true statement if (x, y) ∈ R for some y ∈ Y, otherwise the statement
is called false. We define by LR (the language over relationR) the set of all true statements,
that is:

LR = {x ∈ X : ∃y ∈ Y such that (x, y) ∈ R}.

Now, what is the purpose of introducing relations and languages? The idea is that relation
is a natural way to formalize the notion of a statement and witness. Namely, we denote the
elements of X as statements and the elements of Y as witnesses.

Further, we denote by w the witness for the statement x ∈ LR. Oftentimes, one might also
encounter notation φ to denote the statement, but we will stick to x for simplicity.

Example. Suppose we want to prove the following claim: number n ∈ N is the product of
two large prime numbers (p, q) ∈ N× N. Here, the relation is the following:

R = {(n, p, q) ∈ N3 : n = p · q where p, q are primes}

In this particular case, the language of true statements is defined as

LR = {n ∈ N : ∃p, q are primes such that n = pq}

Therefore, our initial claim we want to prove is n ∈ LR. The witness for this statement is
the pair (p, q), where p and q are prime numbers such that n = p · q and typically (but not
always) we want to prove this without revealing our witness: p and q. For example, one
valid witness for n = 15 is (3, 5), while n = 16 does not have any valid witness, so 16 ̸∈ LR.

Example. Another example of claim we want to prove is the following: number x ∈ Z×Na

is a quadratic residue modulo N, meaning there exists some w ∈ Z×N such that x ≡ w 2

(mod N) (naturally, w is called a square root of x). The relation in this case is:

R = {(x, w) ∈ (Z×N)
2 : x ≡ w 2 (mod N)}

In this case, LR = {x ∈ Z×N : ∃w ∈ Z
×
N such that x ≡ w 2 (mod N)}. Here, our square root

of x modulo N, that is w , is the witness for the statement x ∈ LR. For example, for N = 7
we have 4 ∈ LR since 5 is a valid witness: 52 ≡ 4 (mod 7), while 3 ̸∈ LR since there is no
valid witness for 3.

aBy Z×N we denote the multiplicative group of integers modulo N. In other words, this is a set of integers
{x ∈ ZN : gcd{x, N} = 1}.

However, we want to limit ourselves to languages that has reasonably efficient verifier (since
otherwise the problem is not really practical and therefore of little interest to us). For that
reason, we define the notion of a NP Language and from now on, we will be working with such
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languages.

Definition 6.2 (NP Language). A language LR belongs to the NP class if there exists a
polynomial-time verifier V such that the following two properties hold:

• Completeness: If x ∈ LR, then there is a witness w such that V(x, w) = 1 with
|w | = poly(|x |). Essentially, it states that true claims have shorta proofs.

• Soundness: If x ̸∈ LR, then for any w it holds that V(x, w) = 0. Essentially, it states
that false claims have no proofs.

a“Short” is a pretty relative term which would further differ based on the context. Here, we assume that
the proof is “short” if it can be computed in polynomial time. However, in practice, we will want to make the
proofs even shorter: see SNARKs and STARKs.

However, this construction on its own is not helpful to us. In particular, without having any
randomness and no interaction, building practical proving systems is very hard. Therefore, we
need some more ingredients to make proving NP statements easier.

6.3 Interactive Probabilistic Proofs
As mentioned above, we will bring two more ingredients to the table: randomness and

interaction:
• Interaction: rather than simply passively receiving the proof, the verifier V can interact

with the prover P by sending challenges and receiving responses.
• Randomness: verifier can send random coins (challenges) to the prover, which the prover

can use to generate responses.

Remark. For those who have already worked with SNARKs, the above introduction might
seem very confusing. After all, what we are aiming for is to build non-interactive zero-
knowledge proofs. However, as it turns out, there are a plenty of ways to make some
interactive proofs non-interactive. We will discuss this in more detail later.

Now, one of the drastic changes is the following: if x ̸∈ LR, then the verifier V should reject
the claim with overwhelming11 probability (in contrast to strict probability of 1). Let us consider
the concrete example.

6.3.1 Example: Quadratic Residue Test
Again, suppose for relation R = {(x, w) ∈ (Z×N)2 : x ≡ w 2 (mod N)} and corresponding

language LR = {x ∈ Z×N : ∃w ∈ Z
×
N such that x ≡ w 2 (mod N)} the prover P wants to

convince the verifier that the given x is in language LR. Again, sending w is not an option, as
we want to avoid revealing the witness. So how can we proceed? The idea is that the prover
P should prove that he could prove it if he felt like it.

So here how it goes. The prover P can first sample a random r
R←− Z×N, calculate a ← r 2

(mod N) and say to the verifier V:
• Hey, I could give you the square roots of both a and ax (mod N) and that would convince

11Some technicality: as you know from the Lecture 2, the value ε = negl(λ) is called negligible since it is very
close to 0. In turn, the value 1− ε is called overwhelming since it is close to 1.
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Prover P Verifier V

r
R←− Z×N

a← r 2 (mod N)

Send a

I am choosing a bit!
b
R←− {0, 1}

Send b

If b = 0, send z ← r

If b = 1, send z ← w × r (mod N)

Send z

Verify z2 ≡ a × xb (mod N)

Figure 12: The interactive protocol between prover P and verifier V for the quadratic residue
test.

you that the statement is true! But in this case, you would know w 12.
• So instead of providing both values simultaneously, you will choose which one you want

to see: either r or r × w (mod N). This way, after a couple of such rounds, you will not
learn w but you will be convinced that I know it.

That being said, formally the interaction between prover P and verifier V can be described
as follows:

1. P samples r R←− Z×N and sends a← r 2 (mod N) to V.

2. V sends a random bit b R←− {0, 1} to P.
3. If b = 0, the prover sends z ← r , otherwise, if b = 1, he sends z ← rw (mod N).
4. The verifier checks whether z2 ≡ a × xb (mod N).
5. Repeat the process for λ ∈ N rounds.
Now, let us show that the provided protocol is indeed complete and sound.

12If verifier gets both r and rw (mod N), he can divide the latter by former and get w
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Completeness. Suppose the verifier chose b = 0 and thus the prover has sent z = r . The
check would be r 2 ≡ a × x0 (mod N) which is equivalent to r 2 ≡ a (mod N). This obviously
holds.

If, in turn, the verifier chose b = 1 and the prover sent rw , the check would be (rw)2 ≡ ax1−0
(mod N) which is equivalent to r 2w 2 ≡ ax (mod N). Since a = r 2 (mod N) and x = w 2

(mod N), this check also obviously holds.
Soundness. Here, we need to prove that for any dishonest prover who does not know w , the

verifier will reject the claim with overwhelming probability. One can show the following, which
we are not going to prove (yet, this is quite easy to show):

Proposition 6.3. If x ̸∈ LR, then for any prover P, the verifier V will reject the claim with
probability at least 1/2.

By making λ rounds, the probability of rejection is
(
1
2

)λ
= negl(λ) and therefore the verifier

can be convinced that x ∈ LR with overwhelming probability of 1− 2−λ.
To denote the interaction between algorithms P and V on the statement x , we use notation

⟨P,V⟩(x). Finally, now we are ready to define the notion of an interactive proof system.

Definition 6.4. A pair of algorithms (P,V) is called an interactive proof for a language LR
if V is a polynomial-time verifier and the following two properties hold:

• Completeness: For any x ∈ LR, Pr[⟨P,V⟩(x) = accept] = 1.
• Soundness: For any x ̸∈ LR and for any prover P∗, we have

Pr[⟨P∗,V⟩(x) = accept] ≤ negl(λ)

Definition 6.5. Besides classes P and NP, we now have one more class: the class of
interactive proofs (IP):

IP = {L : there is an interactive proof (P,V) for L}.

6.4 Zero-Knowledge
Turns out that defining the zero-knowledge to even such a simplistic interactive proof system

is not that easy. Informally, we give the following definition.

Definition 6.6. An interactive proof system (P,V) is called zero-knowledge if for any
polynomial-time verifier V∗ and any x ∈ LR, the interaction ⟨P,V∗⟩(x) gives nothing new
about the witness w .

Definition 6.7. The pair of algorithms (P,V) is called a zero-knowledge interactive pro-
tocol if it is complete, sound, and zero-knowledge.

Basically, the specified interaction is a proof! The prover P can convince the verifier V that
the statement is true without revealing the witness – that is what we need (quite of).
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Remark. The above definition is very informal and, for the most part, complete for the
purposes of this course. If you do not want to dive into the formalities, you can skip the
next part of this section. However, if you are curious about some technicalities, feel free to
continue reading.

6.4.1 The Verifier’s View
Suppose that the interaction between V and P has ended with the successful verification.

What has V learned? Well, first things first, he has learned that the statement is true, that is
x ∈ LR. However, he has also learned something more: he has learned the transcript of the
interaction, that is the sequence of messages between P and V.

Definition 6.8. Interaction between P and V consists of prover’s messages (e.g., commit-
ments and responses) (m1, m2, . . . , mℓ), verifier’s queries (q1, q2, . . . , qℓ), and V’s random
coins (r1, r2, . . . , rℓ). The view of the verifier V, denoted as viewV(P,V)[x ], is a random vari-
able (m1, r1, q1, m2, r2, q2, . . . , mℓ, rℓ, qℓ) that is determined by the random coins of V and
the messages of P after the interaction with the statement x . See Figure below.

Prover P Verifier V

Send m1

Toss coin r1 and send query q1

Send m2

Toss coin r2 and send query q2

Send mℓ

Toss coin rℓ and send query qℓ

Figure 13: The interactive protocol between prover P and verifier V. Prover’s messages consist
of messages {mk}ℓk=1, verifier’s messages consist of queries {qk}ℓk=1, and additionally verifier
samples random coins {rk}ℓk=1.
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Example. Suppose that for the aforementioned protocol with N = 3× 230 + 1, the conver-
sation between the prover P, who wants to convince that 1286091780 ∈ LR, and V is the
following:

1. During the first round, P sends 672192003 to V.
2. V sends b = 0 to P.
3. P sends 2606437826 to V.
4. V verifies that indeed 26064378262 ≡ 672192003 (mod N).
5. During the second round, P sends 2619047580 to V.
6. V chooses b = 1 and sends to P.
7. P sends 1768388249 to V.
8. V verifies that indeed 17683882492 ≡ 2619047580× 1286091780 (mod N).
9. Conversation ends.

The view of the verifier V is the following:

viewV(V,P)[1286091780] = (672192003, 0, 2606437826, 2619047580, 1, 1768388249)

Essentially, the view that you currently has witnessed is the same as one that V has seen.
After this interaction, you have not learned anything about the witness w that prover P
knows and which we, as of now, has not revealed to you.
In fact, you can verify by yourself, that the witness was w = 3042517305 and two random-
nesses were r1 = 2606437826 and r2 = 3023142760.
One final note that is essential for the further discussion: variable viewV(P,V)[x ] is a random
variable. For example, for our particular case, both bits could be 0 or both bits could be 1.

6.4.2 The Simulation Paradigm
The key idea is the following: viewV(V,P)[x ] gives nothing new to the verifier V about

the witness w . But it gives nothing new, if he could have simulated this view on his own,
without even running the interaction. In other words, the “simulated” and “real” views should
be computationally-indistinguishable. But let us define the computational indistinguishability
first.
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Definition 6.9 (Computational Indistinguishability). Given two random distributions D0 and
D1, define the following challenger-adversary game:

1. The challenger randomly samples x0
R←− D0, x1

R←− D1 and a bit b R←− {0, 1}.
2. The challenger sends (x0, x1, b) to the adversary.
3. The adversary A outputs a bit b̂.

We define the advantage of the adversary A in distinguishing D0 and D1 as

Indadv[A, D0, D1] =
∣∣∣∣Pr[b = b̂]−

1

2

∣∣∣∣
Distributions D0 and D1 are called computationally indistinguishable, denoted as D0 ≈ D1,
if for any polynomial-time adversary A and polynomial number of rounds in the game, the
advantage Indadv[A, D0, D1] is negligible.

Finally, we are ready to define the zero-knowledge.

Definition 6.10 (Zero-Knowledge). An interactive protocol (P,V) is zero-knowledge for a
language LR if for every poly-time verifier V∗ there exists a poly-time simulator Sim such
that for any valid statement x ∈ LR:

viewV∗(P,V∗)[x ] ≈ Sim(x)

However, the condition that verifier might be arbitrary is rather strong. Therefore, we
introduce the notion of honest-verifier zero-knowledge.

Definition 6.11. Honest-Verifier Zero-Knowledge (HVZK) An interactive protocol (P,V) is
honest-verifier zero-knowledge for a language LR if there exists a probabilistic poly-time
simulator Sim such that for any valid statement x ∈ LRa:

viewV(P,V)[x ] ≈ Sim(x)

aBelow, we assume that the verifier V is honest: he is following the protocol.

6.5 Proof of Knowledge
Now, the main issue with the above definition is that we have proven the statement correct-

ness, but we have not proven that the prover knows the witness. These are completely two
different things. Let us demonstrate why.
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Example. Suppose that the prover P wants to convince the verifier that he knows the
discrete logarithm of a given point P ∈ E(Fp) on a cyclic elliptic curve E(Fp) of order r .
This corresponds to the relation and the corresponding language:

R = {(P,α) ∈ E(Fp)× Zr : P = [α]G},
LR = {P ∈ E(Fp) : ∃α ∈ Zr such that P = [α]G}

But here is the catch: actually, LR = E(Fp) since any point P has a witness α such that
P = [α]G (recall that the curve is cyclic)! So proving that P ∈ LR is completely useless!
Rather, we want to prove that the prover knows α, not the fact that the point has a discrete
logarithm.

That is why instead of proof, we need a proof of knowledge. This leads to even another
weird paradigm used for the rigorous definition: the extractor. Basically, the knowledge of
witness means that we can extract the witness while interacting with the prover. Yet, the
extractor can do more than the verifier: he can call the prover however he wants and he can
also rewind the prover (for example, run some pieces multiple times). This sometimes is referred
to as “extractor E uses P as an oracle”.

Now, let us move to the formal definition.

Definition 6.12 (Proof of Knowledge). The interactive protocol (P,V) is a proof of knowl-
edge for LR if exists a poly-time extractor algorithm E such that for any valid statement
x ∈ LR, in expected poly-time EP(x) outputs w such that (x, w) ∈ R.

Lemma 6.13. The protocol from Section 6.3.1 is a proof of knowledge for the language LR.

Proof. Let us define the extractor E for the statement x as follows:
1. Run the prover to receive a ≡ r 2 (mod N) (r is chosen randomly from Z∗N).
2. Set verifier’s message to b = 0 to get z1 ← r .
3. Rewind and set verifier’s message to b = 1 to get z2 ← rw (mod N).
4. Output z2/z1 (mod N)
The extractor E will always output w if x ∈ LR. □

Remark. Note that extractor is given much more than the verifier: he can call the prover
multiple times and he can also rewind the prover. This is the main difference between the
verifier and the extractor.

6.6 Fiat-Shamir Heuristic
6.6.1 Random Oracle

In cryptography, one frequently encounters the term cryptographic oracle. In this section,
we are not going to dive into the technical details of what that is, yet it is useful to have a
general understanding of what it is.
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Definition 6.14 (Cryptographic Oracle). Informally, cryptographic oracle is simply a function
O that gives in O(1) an answer to some typically very hard problem.

Example. Consider the Computational Diffie-Hellman (CDH) problem on the cyclic elliptic
curve E(Fp) of prime order r with a generator G. Recall that such problem consists in
computing [αβ]G given [α]G and [β]G where α, β ∈ Zr .
Typically, it is believed that the Diffie-Hellman problem is hard (meaning, for any adversary
strategy the probability of solving the problem is negligible). However, we could assume that
such problem can be solved in O(1) by a cryptographic oracle OCDH : ([α]G, [β]G) 7→ [αβ]G.
This way, we can rigorously prove the security of some cryptographic protocols even if the
Diffie-Hellman problem is suddenly solved.

One of the most popular cryptographic oracles is the random oracle OR. Let us define how
the random oracle works.

Suppose someone is inputting x to the random oracle OR. The oracle OR does the following:
1. If x has been queried before, the oracle returns the same value as it returned before.
2. If x has not been queried before, the oracle returns a randomly uniformly sampled value

from the output space.

Remark. Of course, the sudden appearance of the random oracle is not a magic trick. In
practice, the random oracle is typically implemented as a hash function. Of course, formally,
the hash function is not a random oracle, yet it is a very good approximation and it is
reasonable to assume that the hash function behaves like a random oracle.

6.6.2 Fiat-Shamir Transformation
Now, the main issue with the interactive proofs is that they are. . .Well, interactive. Ideally, we

simply want to accumulate a proof π, publish it (say, in blockchain) so that anyone (essentially,
being the verifier) could check its validity. So we need some tools to make some interactive
protocols non-interactive. This is, of course, not always possible, but there are some ways to
achieve this.

While different protocols use different ways to achieve this, one of the most popular methods
(which, in particular, is used in STARKs) is the Fiat-Shamir heuristic. The idea is the following:
instead of verifier sending the challenges, we can replace them with the random oracle applied
to all the previous messages.

Here how it goes. Suppose we have an interactive protocol (P,V) for the statement
x . As previously defined, the interaction between P and V consists of prover’s messages
(m1, m2, . . . , mℓ), verifier’s queries (q1, q2, . . . , qℓ), and verifier’s random coins (r1, r2, . . . , rℓ).
In case all the queries are public random coins, such interactive protocol is called public-coin
protocol (or, more formally, Arthur-Merlin protocol). However, as it turns out, when all the
verifier’s queries are simply uniformly sampled random values, it is an overkill to use the interac-
tive protocol. Instead, suppose at some point the verifier got messages m1, m2, . . . , mℓ′ (ℓ′ ≤ ℓ)
from the prover. Then, instead of verifier sampling some random value rℓ′, we can simply use
the random oracle OR as follows: rℓ′ ← OR(x,m1, m2, . . . , mℓ′). Practically, instead of random
oracle OR we use the hash function H, and use: rℓ′ ← H(x ∥ m1 ∥ m2 ∥ · · · ∥ mℓ′).
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Remark. Sometimes, to simulate the “interaction” with the verifier, one uses the “Fiat-
Shamir Channel”. Its main purpose is to simulate the verifier’s queries and random coins.
For example, one might implement it as a class/struct with the following methods:

1. send_message(m): “sends” the message m to the verifier. Under the hood, the proof
stream accumulates the current state s and appends m to it.

2. sample(): returns the challenge r from the random oracle OR, applied to the current
state s.

3. get_proof(): returns the proof π, being the history of interaction, that the prover
can publish.

One can check the winterfell Rust library or a simpler non-production implementation of
the Fiat-Shamir Channel in Golang for more details.
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Prover P
Proof Stream

(with random oracle OR) Verifier V

“Send” m1

r1 ← OR(x,m1)

“Send” m2

r2 ← OR(x,m1, m2)

“Send” mℓ

rℓ ← OR(x,m1, . . . , mℓ)

Send π = (m1, r1, m2, r2, . . . , mℓ, rℓ)

Verify π

Figure 14: The non-interactive protocol between prover P and verifier V using Fiat-Shamir
Transformation. In blue we marked a non-interactive part of the protocol, being the “commu-
nication” between a prover and a proof stream. In green we marked the final proof π that is
sent to the verifier.

The process is illustrated in Figure 14. The Fiat-Shamir looks as follows:
1. First, the prover P “sends” the first message m1 to the verifier V. Here, “sending” is not

an actual sending, but rather its simulation.
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2. If we had an interactive protocol, the verifier V would send the random challenge r1 to
the prover P. Instead, we use the random oracle OR to get r1 ← OR(x,m1).

3. Then, using this challenge, prover does his part in the protocol, and sends the next message
m2.

4. Again, if we had an interactive protocol, the verifier would send the next challenge r2 to
the prover. Instead, we use the random oracle OR to get r2 ← OR(x,m1, m2), which gets
“sent” to the prover.

5. The process continues until the protocol is finished.
Note that the whole process can be done by a prover with no interaction with the “verifier”. In

this case, one of the ways to represent the proof π is to publish the transcript of the interaction
(that is, all the messages sent by the prover and challenges computed using the random oracle).
This is exactly what is done in STARKs.

The reason why such transformation works is that the random oracleOR is a random function.
Therefore, the challenges r1, r2, . . . are random values, and the prover cannot predict them (for
example, by fabricating messages to have some specific output). That being said, the following
theorem holds (which, of course, we are not going to prove since the proof is complicated).

Theorem 6.15. Suppose that (P,V) is a public-coin interactive argument of knowledge for
some language LR with a negligible soundness error. Then, the Fiat-Shamir transformation
of (POR,VOR) is a non-interactive argument for LR with negligible soundness error in the
random oracle model OR.

6.7 Exercises
Exercise 1. When dealing with RSA protocol, one frequently encounters the following rela-

tion where e is a prime number and n ∈ N:

R =
{
(w, x) ∈ Z×n × Z×n : w e = x

}
Which of the following is the language LR that corresponds to the relation R?

(A) Integers from Z×n which have a modular root of e-th degree.
(B) Integers from Z×n which are divisible by e.
(C) Integers x from Z×n with properly defined expression xe.
(D) Integers from Z×n which are prime.
(E) Integers from Z×n for which e is a primitive root.
Exercise 2. Suppose that for some interactive protocol (P,V) during one round, the proba-

bility that the verifier V accepts a false statement is 1/8. How many rounds of interaction are
needed to guarantee 120 bits of security? Assume here that n bits of security means that the
probability of accepting a false statement is at most 2−n.
(A) 30.
(B) 40.
(C) 60.
(D) 90.
(E) 120.
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Exercise 3. Recall that for relation R = {(w, x) ∈ Z×N × Z
×
N : x = w 2} we defined the

following interactive protocol (P,V) to prove that x ∈ LR:

• P samples r R←− Z×N and sends a = r 2 to V.
• V sends a random bit b ∈ {0, 1} to P.
• P sends z = r · w b to V.
• V accepts if z2 = a · xb, otherwise it rejects.
Suppose we use the protocol (P,V∗) where the “broken” verifier V∗ always outputs b = 1.

Which of the following statements is true?
(A) Both the soundness and completeness of the protocol are preserved.
(B) The soundness of the protocol is preserved, but the completeness is broken.
(C) The completeness of the protocol is preserved, but the soundness is broken.
(D) Both the soundness and completeness of the protocol are broken.

Exercise 4. What is the difference between the cryptographic proof and the proof of knowl-
edge?
(A) Cryptographic proof is a proof of knowledge that is secure against malicious verifiers.
(B) Cryptographic proof is a proof of knowledge that is secure against malicious provers.
(C) Cryptographic proof merely states the correctness of a statement, while the proof of

knowledge also guarantees that the prover knows the witness.
(D) While cryptographic proof states that witness exists for the given statement, the proof of

knowledge makes sure to make this witness unknown to the verifier.
(E) Proof of knowledge does not require verifier to know the statement, while cryptographic

proof does.
Exercise 5. What is the purpose of introducing the extractor?

(A) To introduce the algorithm that simulates the malicious verifier trying to extract the
witness from the prover.

(B) To define what it means that the prover knows the witness.
(C) To give the verifier the ability to extract the witness from the prover during the interactive

protocol.
(D) To define the security of the interactive protocol that uses a more powerful verifier that

can extract additional information from the prover.
(E) To give prover more power to extract randomness generated by the verifier.
Exercise 6. What it means that the interactive protocol (P,V) is a zero-knowledge?

(A) The verifier V cannot know whether the given statement is true or false.
(B) The verifier V cannot know whether the prover P knows the witness.
(C) View of the prover P in the protocol is indistinguishable from the view of the verifier V.
(D) Any view of any verifier V can be simulated using some polynomial-time algorithm, out-

putting computationally indistinguishable distribution from the given view.
(E) The prover P can convince the verifier V that the statement is true without knowing the

witness.
Hint: View of the participant in the protocol consists of all data he has access to during

the protocol execution. For example, verifier V’s view consists of the messages he sends and
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receives, as well as the random coins he generates.
Exercise 7. Which of the following is not true about the Fiat-Shamir heuristic?

(A) If the public-coin protocol is sound, the Fiat-Shamir transformation preserves the sound-
ness.

(B) The Fiat-Shamir heuristic does not break the completeness of the public-coin protocol it
is applied to.

(C) Practically, it allows to convert any interactive protocol into a non-interactive one.
(D) To make Fiat-Shamir transformation pratical, the function modelling the random oracle

should be hard to invert.
(E) It is reasonable to use SHA256 to model the random oracle in the Fiat-Shamir transfor-

mation.
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7 Sigma Protocols
7.1 Schnorr’s Identification Protocol

To better illustrate the Fiat-Shamir Transformation in practice, let us consider one of the
most basic Sigma protocols: non-interactive Schnorr Identification Protocol. It is a simple
and elegant protocol that allows one party to prove to another party that it knows a discrete
logarithm of a given element. It is also quite straightforward to generalize it to a signature
scheme.

Let us formalize it using theory from Section 6.2. Suppose G is a cyclic group of order q
with a generator g. Then, the relation and language being considered are:

R = {(u, α) ∈ G× Zq : u = gα}, LR = {u ∈ G : ∃α ∈ Zq : u = gα}

Now, suppose prover P has a valid statement and a witness (u, α) ∈ R and he wants to
convince the verifier V that he knows the witness α to the public statement u (that is, we are
building the proof of knowledge). Well, the easiest way how to proceed is simply giving α to
V, but this is obviously not what we want. Instead, the Schnorr protocol allows P to prove the
knowledge of α without revealing it.

First, let us start with the interactive version of the protocol.

Definition 7.1. The Schnorr interactive identification protocol ΠSch = (Gen,P,V) with
a generation function Gen and prover P and verifier V is defined as follows:

• Gen(1λ): As with most public-key cryptosystems, we take α R←− Zq and u ← gα. We
output the verification key as vk := u, and the secret key as sk := α.

• The protocol between (P,V) is run as follows:
– P computes r ← Z×q , a← gr and sends a to V.

– V sends a random challenge e R←− Zq to P.
– P computes σ ← r + αe ∈ Zq and sends σ to V.
– V accepts if gσ = a · ue, otherwise it rejects.

This protocol is illustrated in Figure 15.
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Prover P Verifier V

r
R←− Z×q

a← gr

Send a

e
R←− Zq

Send e

Compute σ ← r + αe ∈ Zq

Send σ

Verify gσ = a · ue

Figure 15: The interactive Schnorr protocol between prover P and verifier V for proof of
knowledge of discrete logarithm relation.

Definition 7.2. An interaction between P and V produces the so-called conversation
(a, e, σ) ∈ G × Zq × Zq. We call such a conversation an accepting conversation if V
accepts the proof.

Example. In case of a Schnorr protocol, the accepting conversation is such that gσ = a ·ue.

Now, one can prove the following theorem.

Theorem 7.3. The Schnorr protocol ΠSch is complete, sound, and (honest verifier) zero-
knowledge proof of knowledge.

Proof. We are not going to prove the zero-knowledge and soundness properly, but com-
pleteness and proof of knowledge are quite straightforward to show.

• Completeness. Just observe that gσ = gr+αe = gr(gα)e = a · ue.
• Proof of Knowledge. To prove that the protocol is a proof of knowledge, we need to

construct an extractor EP . We construct it as follows:
1. Extractor runs the prover and gets a, e, and σ as a response.
2. Extractor rewinds back to the verifier’s challenge step, generates a new challenge
e ′

R←− Zq and gets new prover’s response σ′ (for the same prover’s randomness r).
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3. Extractor outputs the witness α← (σ − σ′)(e − e ′)−1.
The reason why this works is following: notice that gσ = a · ue, gσ′ = a · ue ′. Therefore,
by dividing former by latter, we obtain gσ−σ

′
= ue−e

′
= gα(e−e

′). It immediately follows
that α = (σ − σ′)(e − e ′)−1.

Remark. Before considering how to make such protocol non-interactive correctly, suppose
that we instead do the following: after interaction with the verifier, the prover publishes the
conversation as a proof of knowledge. Would that be a valid non-interactive proof? In other
words, can we convince the independent observer of the interaction that the prover knows
the witness? The answer is no (and it is generally so for any interactive protocol). The
reason why is that the prover can first sample randomly e, σ R←− Zq, compute a← gσ/ue and
simply publish (a, e, σ) as a proof. This is a valid conversation since gσ = a ·ue = (gσ/ue)·ue
and thus the observer would be convinced that the prover knows the witness. However, the
prover might not know the witness at all!
Therefore, either (1) the prover needs to get a challenge e before he commits to the value
σ, or (2) challenge must be randomized. Otherwise, he can precompute σ and publish it as
a proof (or simply make a deal with the verifier to fool the observer).

Now, notice that the provided protocol is a public-coin protocol. Therefore, we can apply
the Fiat-Shamir transformation to make it non-interactive. Suppose we have a random oracle
OR : G×G→ Zq:

1. The prover P computes r ← Z×q , a← gr and sends a to the Fiat-Shamir Channel.
2. The Fiat-Shamir channel responds with the challenge e ← OR(u, a).
3. The prover P computes σ ← r + αe and sends σ to the Fiat-Shamir Channel.
4. The Fiat-Shamir channel outputs the proof π = (a, e, σ), which the verifier can check via

previously mentioned equation gσ = a · ue.
Now, notice that e might not be included in the proof since the verifier can compute it by

himself. Therefore, the final proof π can be reduced to (a, σ) ∈ G×Zq and its computation does
not need any interaction with the verifier. Moreover, it is still complete, sound, and proof of
knowledge due to the Fiat-Shamir transformation. It is also (not easy to prove) zero-knowledge.

7.2 Schnorr’s Signature Scheme
Now, turning the Schnorr’s Identification Protocol into a signature scheme is quite straight-

forward. The only modification to the non-interactive proof described in the previous section
is that we include the message m ∈ M instead of our statement u ∈ G in the computation of
the challenge e. Additionally, suppose we use the hash function H as a random oracle from the
previous section. Now, let us give a formal definition.
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Definition 7.4. The Schnorr Signature Scheme is ΣSch = (Gen, Sign,Verify), where:

• Gen(1λ): We take α R←− Zq and u ← gα. The public key is pk := u, while the secret
key as sk := α.

• Sign(m, sk): The signer computes r ← Z×q , a ← gr , e ← H(m, a), σ ← r + αe and
outputs the signature (a, σ).

• Verify((a, σ), m, pk): The verifier checks if gσ = a · ue for e ← H(m, a).

Remark. Typically, one also uses a so-called “key-prefixed” variant of the scheme, where the
challenge e is computed as e ← H(pk, m, a) for a random oracle H : G×M×G→ Zq. It
was argued that such variant has a better multi-user security bound than the classical one.

7.3 Sigma Protocols
Now, the Schnorr Protocol is just one of the many examples of a so-called Sigma Protocol.

Sigma protocols are a class of interactive proof systems that are used to prove the knowledge
of a witness to a statement. They are quite general and can be used to prove the knowledge
of a witness to any effective relation R ⊆ X ×W, where X is the set of public statements and
W is the set of witnesses. Let us define them formally.

Definition 7.5. Let R ⊂ X × W be an effective relation. A Sigma protocol for R is an
interactive protocol (P,V) that satisfies the following properties:

• In the beginning, P computes a commitment a and sends it to V.
• V chooses a random challenge c ∈ C from the challenge space C and sends it to P.
• Upon receiving c , P computes the response z and sends it to V.
• V outputs either accept or reject based on the conversation transcript (a, c, z).

Remark. The name “Sigma” protocol comes from the fact that the “shape” of the message
flow vaguely resembles the Greek letter Σ: see Figure 16.

Commitment a

Challenge c

Response z

Figure 16: Sigma Protocol Illustration: the flow of messages between prover P and verifier V
closely resembles the Greek letter Σ, which is marked in red in the Figure.
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Example. In particular, for the Schnorr Protocol, the Sigma protocol is defined over the
relation R ⊂ X ×W where:

X = G, W = Zq, R = {(u, α) ∈ G× Zq : u = gα}

Here, the challenge space C is a subset of Zq (or, typically, the whole set).

Similarly to interactive protocols, Sigma protocols also have a property called soundness.
However, there is an additional property called special soundness that simplifies the general
notion of soundness.

Definition 7.6 (Special Soundness). Let (P,V) be a Σ-protocol for R ⊆ X × Y. We that
that (P,V) is special sound if there exists a witness extractor E such that, given statement
x ∈ X and two accepting conversations (a, c, z) and (a, c ′, z ′) (where c ̸= c ′)a, the extractor
can always efficiently compute the witness w such that (x, w) ∈ R.

aNotice that initial commitments in both conversations are the same!

Example. In case of the Schnorr Protocol, the special soundness property is satisfied by the
extractor E that we have constructed in the proof of knowledge. In other words, we can
extract the discrete logarithm α = DLogG(u) given two accepting conversations (a, e, σ)
and (a′, e ′, σ′).

Now, let us consider some more examples of Sigma protocols.

7.4 More Sigma Protocol Examples
7.4.1 Okamoto’s Protocol for Representations

Again, let G be a cyclic group of prime order q with a generator g ∈ G and let h ∈ G
an arbitrary group element (for example, it might be yet another group generator). While
considering Pedersen Commitments, you already encountered form gαhβ. Now, let us generalize
this concept a bit.

Definition 7.7. For u ∈ G, a representation relative to g and h is a pair (α, β) ∈ Zq × Zq
such that u = gαhβ.

Remark. Notice that for the given u there are exactly q representations relative to g and h.
Indeed, ∀β ∈ Zq ∃!α ∈ Zq : gα = uh−β.

Now, the Okamoto’s Protocol is a Sigma protocol that allows one party to prove the knowl-
edge of a representation of a given u ∈ G relative to g and h. In other words, we are working
with the relation

R =
{
(u, (α, β)) ∈ G× Z2q : u = gαhβ

}
Now, let us describe the protocol.
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Definition 7.8 (Okamoto’s Identification Protocol). Okamoto’s Protocol consists of two
algorithms: (P,V), where the prover is assumed to know (u, (α, β)) ∈ R defined above.
The protocol is defined as follows:

1. P computes αr
R←− Zq, βr

R←− Zq, ur ← gαrhβr and sends commitment ur to V.

2. V samples the challenge c R←− Zq and sends c to P.
3. P computes αz ← αr + αc, βz ← βr + βc and sends z = (αz , βz) to V.
4. V checks whether gαzhβz = uruc and accepts or rejects the proof accordingly.

Theorem 7.9. Okamoto’s Protocol is aΣ-protocol for the relationR which is Honest-Verifier
Zero-Knowledge.

Part of the proof. Again, let us show correctness and special soundness without honest-
verifier zero-knowledge properties.

Completeness. Suppose indeed that (u, (α, β)) ∈ R. Then, the verification condition can
be written as follows:

gαzhβz = gαr+αchβr+βc = gαrgαchβrhβc = (gαrhβr )︸ ︷︷ ︸
=ur

·(gαhβ︸ ︷︷ ︸
=u

)c = uru
c

Special Soundness. Suppose we are given two accepting conversations: (ur , c, (αz , βz)) and
(ur , c

′, (α′z , β
′
z)) and we want to construct an extractor E which would give us a witness (α, β).

In this case, we have the following holding:

gαzhβz = uru
c , gα

′
zhβ

′
z = uru

c ′

We can divide the former by the latter to obtain:

gαz−α
′
zhβz−β

′
z = uc−c

′
= gα(c−c

′)hβ(c−c
′),

from which the extractor E can efficiently compute witness as follows: α← (αz−α′z)
/
(c−c ′)

and β ← (βz − β′z)
/
(c − c ′).

7.4.2 Chaum-Pedersen protocol for DH-triplets
As with previous examples, suppose we are given the cyclic group G or prime order q and

generator g ∈ G. Recall that the Diffie-Hellman Triple (or, DH-triple) is a triple (gα, gβ, gγ)
with γ = αβ. Now, this definition is not really convenient for us, so we will reformulate the
DH-triple using the proposition below.

Proposition 7.10 (Alternative DH-triple Definition). (u, v , w) is a DH-triplet iff ∃β ∈ Zq :
v = gβ, w = uβ.

Now, this makes it easier to define the relation R for the Chaum-Pedersen protocol:

R =
{
((u, v , w), β) ∈ G3 × Zq : v = gβ ∧ w = uβ

}
In other words, here we have a witness β ∈ Zq, while the statement is a triplet (u, v , w) ∈ G3.

Again, we want to convert this into a Sigma protocol. We do it as follows.
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Definition 7.11 (Chaum-Pedersen Protocol). Chaum-Pedersen Protocol consists of two
algorithms: (P,V), where the prover is assumed to know (β, (u, v , w)) ∈ R defined above.
The protocol is defined as follows:

1. P computes βr
R←− Zq, vr

R←− gβr , wr ← uβr and sends commitment (ur , wr) to V.

2. V samples the challenge c R←− Zq and sends c to P.
3. P computes βz ← βr + βc and sends βz to V.
4. V checks whether two conditions hold: gβz = vrv

c and uβz = wrw
c , and accepts or

rejects the proof accordingly.

Theorem 7.12. Chaum-Pedersen Protocol is aΣ-protocol for the relationR which is Honest-
Verifier Zero-Knowledge.

Part of the proof. As always, let us show correctness and special soundness without honest-
verifier zero-knowledge properties.

Correctness. Again, consider the expression gβz more closely:

gβz = gβr+βc = gβrgβc = gβr︸︷︷︸
=vr

( gβ︸︷︷︸
=v

)c = vrv
c

The similar reasoning can be applied to the second verification condition: indeed, here we
have uβz = uβr (uβ)c = wrw c

Special Soundness. Suppose we are given two accepting conversations: ((ur , wr), c, βz) and
((ur , wr), c

′, β′z) and we want to construct an extractor E which would give us a witness β.
Notice that the following equations hold:

gβz = vrv
c , gβ

′
z = vrv

c ′,

uβz = wrw
c , uβ

′
z = wrw

c ′.

Divide left equations by the right ones to obtain:

gβz−β
′
z = v c−c

′
, uβz−β

′
z = w c−c

′
.

Consider the first equation. Since v = gβ we derive (βz − β′z) = β(c − c ′), from which E
outputs β = βz−β′z

c−c ′ . The same value can be extracted from the second equation.

7.5 Generalizing Sigma Protocols
Now, the most interesting part! Probably, you have noticed, that all protocols above

(Schnorr, Okamoto, Chaum-Pedersen) have a similar structure. So is there any way to gener-
alize them? The answer is yes and moreover, this done in a very elegant way.

Let (H,⊕) and (T,⊗) be two finite abelian groups and suppose we have some concrete
homomorphism ψ : H → T. Moreover, we require that given t ∈ T, finding the pre-image of
t (meaning, finding some h ∈ H such that ψ(h) = t) is computationally hard. Suppose F is a
set of all homomorphisms from H to T (sometimes denoted as Hom(H,T)). Now, define the
following relation:

R = {((t, ψ), h) ∈ (T×F)×H : ψ(h) = t}
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And now the prover P wants to convince the verifier V that he knows the witness h to the
statement (t, ψ).

Proposition 7.13. Now, why does this generalize the previous protocols? Well, let us con-
sider all previous examples:

• Schnorr Protocol: Here we have H = Zq, T = G, and ψ : Zq → G is defined as
ψ(α) = gα. Moreover, here ψ is an isomorphism!

• Okamoto Protocol: Here we have H = Z2q, T = G, and ψ : Z2q → G is defined as
ψ(α, β) = gαhβ. It is also quite easy to see that ψ is a homomorphism:

ψ((α, β)+(α′, β′)) = ψ(α+α′, β+β′) = gα+α
′
hβ+β

′
= gαhβgα

′
hβ
′
= ψ(α, β)ψ(α′, β′)

• Chaum-Pedersen Protocol: Here we have H = Zq, T = G2, and ψ : Zq → G2 is
defined as ψ(β) = (gβ, uβ). Again, it is easy to see that ψ is a homomorphism.

Now, we formulate the general Sigma protocol for the relation R over homomorphism.

Definition 7.14 (Sigma Protocol for the pre-image of a homomorphism). The protocol
consists of two algorithms: (P,V), where the prover is assumed to know the witness h ∈ H
defined above. The protocol is defined as follows:

1. P computes hr
R←− H, tr ← ψ(hr) ∈ T and sends tr to the verifier V.

2. V samples the challenge c R←− C ⊂ Z from the challenge space and sends c to P.
3. P computes hz ← hr ⊕ h · c and sends hz to V.
4. V checks whether ψ(hz) = tr ⊗ tc , and accepts or rejects the proof accordingly.

7.6 Combining Sigma Protocols
Now, suppose we have the Sigma interactive protocol (P0,V0) for one relation R0 ⊆ W0×X0

and another Sigma interactive protocol (P1,V1) for another relation R1 ⊆ W1 × X1. Now, we
want to combine these two protocols into a single one. Namely, we want our prover to be able
to convince the verifier that:

1. He knows the witnesses w0, w1 to both statements x0, x1.
2. He knows the witness w ∈ W0 ∪W1 to either statement x0 or x1.
Among two, the second one is a bit more interesting since it allows us to prove the knowledge

of a witness to either of the statements. This is called the OR-composition of Sigma protocols.

7.6.1 The AND Sigma Protocol
Now, let the prover P prove the witness knowledge of the following relation:

RAND = {((x0, x1), (w0, w1)) ∈ (X0 ×X1)× (W0 ×W1) : (w0, x0) ∈ R0 ∧ (w1, x1) ∈ R1}

We define the following protocol.
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Definition 7.15 (The AND Sigma Protocol). Define a pair of algorithms (P,V) which are
run as follows:

1. The prover P runs P0(w0, x0) to get commitment a0 and runs P1(w1, x1) to get a1 and
sends the pair a = (a0, a1) to V.

2. The verifier computes the challenge c R←− C and sends it to P.
3. The prover feeds provers P0(w0, x0) and P1(w1, x1) with the challenge to get responses
z0 and z1, respectively. He then sends z = (z0, z1) to V.

4. The verifier checks whether both V0(a0, c, z0) and V1(a1, c, z1) pass.

However, such protocol is not very interesting since what we did essentially is just running
two protocols separately: one for (P0,V0), and the other for (P1,V1). The only difference is
that we use the single challenge for both protocols.

7.6.2 The OR Sigma Protocol
The less trivial example is the following: define the relation

ROR = {((x0, x1), (w, b)) ∈ (X0 ×X1)× ((W0 ∪W1)× {0, 1}) : (x, wb) ∈ Rb}

Here, the statement is x0 and x1, but the witness is the witness w to either x0 or x1, and the
bit b ∈ {0, 1}, marking to which of the statement w belongs to. That being said, w might be
from either set W0 or W1: that is why we say that w ∈ W0 ∪W1.

To make the interactive protocol work, we add one more assumption about both relations R0
and R1. Suppose that the challenge space C ⊆ {0, 1}ℓ. This assumption is not very strong as
typically C is some subspace of integers and thus decomposing some c ∈ C into the fixed-length
bit representation is a trivial task.

Now, we describe the algorithm.

Definition 7.16 (The OR Sigma Protocol). Define a pair of algorithms (P,V) for relation
ROR with b∗ := 1− b as follows:

1. The prover chooses a random challenge cb∗
R←− C and generates random commitment

and response (ab∗, zb∗) that form a valid accepting conversation (ab∗, cb∗, zb∗) (essen-
tially, the prover runs the simulator (ab∗, zb∗)

R←− Simb∗(xb∗, cb∗)). Then, P also runs
Pb(xb, w) to get a valid commitment ab and sends (a0, a1) to V.

2. The verifier sends a random challenge c R←− C ⊆ {0, 1}ℓ.
3. The prover XORs both challenges: cb ← c ⊕ cb∗. Then it feeds the challenge cb to

the prover Pb(xb, w) to get the responses zb (b ∈ {0, 1}) and sends (c0, z0, z1) to V.
4. Verifier computes c1 ← c ⊕ c0 and checks that both verifications V0(a0, c0, z0) and
V1(a1, c1, z1) pass.
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7.7 Exercises
Exercises 1-5. In search of correct Schnorr’s Identification Protocol. . .

You are given the protocol and five ways to implement it. Most of them lack the crucial
properties. For each attempt, you need to determine whether the protocol is correct and,
if not, specify which of the properties are violated.

Recall, that given the cyclic group G of order q, the prover wants to convince the verifier
that he knows the discrete logarithm α of h ∈ G with respect to the generator g ∈ G (so
that gα = h).
Here are five attempts to construct the protocol:
Attempt 1. Prover sends witness α to the verifier. Verifier checks whether h = gα.
Attempt 2. Prover chooses random r

R←− Zq and sends a← α+ r to the verifier. Verifier
checks whether h = ga.
Attempt 3. Prover chooses random r

R←− Zq, calculates a← α+ r and sends both (a, r)
to the verifier. Verifier checks whether grh = ga.
Attempt 4. Prover chooses random r

R←− Zq, calculates a ← gr , z ← α + r and sends
(a, z) to the verifier. Verifier checks whether a · h = gz .
Attempt 5. Prover chooses random r

R←− Zq, calculates a ← gr , and sends a to the

verifier. Verifier chooses e R←− Zq and sends to the prover. Prover calculates z ← αe + r

and sends to the prover. Verifier checks whether a · he = gz .

Below, mark whether the properties of completeness, soundness, and zero-knowledge
hold for each attempt.

Attempt # 1 2 3 4 5
Completeness holds? ✓/✗ ✓/✗ ✓/✗ ✓/✗ ✓/✗

Soundness holds? ✓/✗ ✓/✗ ✓/✗ ✓/✗ ✓/✗

Zero-Knowledge holds? ✓/✗ ✓/✗ ✓/✗ ✓/✗ ✓/✗
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Exercises 6-10. Non-Interactive Chaum-Pedersen Protocol.

This section explores how to make the previously considered Chaum-Pedersen protocol
non-interactive. Fill in the gaps in the following text with the correct statements.

Recall that the Chaum-Pedersen protocol allows the prover P to convince the skeptical
verifier V that the given triplet (u, v , w) ∈ G3 is a Diffie-Hellman (DH) triplet in the cyclic
group G of prime order q with a generator g ∈ G, meaning that u = gα, v = gβ, w = gαβ

for some α, β ∈ Zq. However, instead of making (α, β) as a witness, observe that β is
sufficient. Indeed, if u = gα, v = gβ, then w = 6 . Thus, the relation is:

R =
{
((u, v , w), β) ∈ G3 × Zq : 7

}
Now, we apply the Fiat-Shamir Transformation. Recall that prover, instead of getting
the random challenge c R←− C ⊂ Zq from the verifier interactively, calculates it as the
hash function from the public statement (u, v , w) and the prover’s commitment. For
that reason, define the non-interactive proof system Φ = (Gen,Verify) as follows:

• Gen: On input (u, v , w) ∈ G3,
1. Sample βr

R←− Zq and compute the commitment 8 .

2. Use the hash function 9 to get the challenge c ← 10 .
3. Compute response βz ← βr + βc and output commitment (vr , wr) and βz as

a proof π.
• Verify: Upon receiving statement (u, v , w) and a proof π = (vr , wr , βz), the verifier:

1. Recomputes the challenge c using the hash function.
2. Accepts if and only if gβz = vrv c and uβz = wrw c .

Exercise 6.
A) vβ

B) uβ

C) vu
D) v u

E) vβu

Exercise 7.
A) v = gβ and w = vu
B) v = gβ and w = vβ

C) v = gβ and w = uβ

D) u = gβ and w = uβ

E) u/w = gβ

Exercise 8.
A) (vr , wr) = (gβr , gβrβ)
B) (vr , wr) = (gβr , wβr )
C) (vr , wr) = (gβr , uβr )
D) (vr , wr) = (gβ, gβr )
E) (vr , wr) = (gβ, gβrgβ)

Exercise 9.
A) H : G3 ×G2 → C
B) H : G3× (G×Zq)→ C
C) H : G3 → C
D) H : G3 × Zq → C
E) H : G2 × Zq → C

Exercise 10.
A) H((u, v , w), (vr , wr))
B) H((u, v , w), (vr , βr))
C) H(u, v , w)
D) H((u, v , w), βr)
E) H((vr , wr), βr)
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8 Introduction to SNARKs. R1CS, QAP
8.1 What is zk-SNARK?
8.1.1 Informal Overview

Finally, we’ve reached the most interesting part of the course, where we will consider various
zk-SNARK constructions we are using on the daily basis. Again, recall that we have the presence
of two parties:

• Prover P — the party who knows the data that can resolve the given problem.
• Verifier V — the party that wants to verify the given proof.
Here, the prover wants to convince the verifier that they know the data that resolves the

problem (typically, some complex computation) without revealing the data (witness) itself. In
the previous lecture, we defined the first practical primitive: zk-NARK — a zero-knowledge
non-interactive argument of knowledge, and gave the first widely used example: non-interactive
Schnorr protocol (which is a special case of a Σ-protocol with the Fiat-Shamir transforma-
tion applied). Now, we add one more component which completely changes the game and
significantly extends the number of applications: succinctness.

Definition 8.1. zk-SNARK — Zero-Knowledge Succinct Non-interactive ARgument of
Knowledge.

Again, since this is a central question considered, we need to recall what do terms like “argu-
ment of knowledge“, “succinct“, “non-interactive“, and “zero-knowledge“ mean in this context:

• Argument of Knowledge — a proof that the prover knows the data (witness) that
resolves a certain problem, and this knowledge can be “extracted”.

• Succinctness — the proof size and verification time is relatively small relative to the com-
putation size and sometimes even does not depend on the size of the data or statement.
This will be explained with examples later.

• Non-interactiveness — to produce the proof, the prover does not need any interaction
with the verifier.

• Zero-Knowledge — the verifier learns nothing about the data used to produce the proof,
despite knowing that this data resolves the given problem and that the prover possesses
it.

In essence, zk-SNARKs allow one party to prove to another that they know a value without
revealing any information about the value itself, and do so with a proof that is both very
small and quick to verify. This makes zk-SNARKs a powerful tool for maintaining privacy and
efficiency in various cryptographic applications.

This is pretty wide defined and maybe not so obvious if you do not have any background.
Let us take a look at the example.
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Example. Imagine you are the part of a treasure hunt, and you’ve found a hidden treasure
chest. You want to prove to the treasure hunt organizer that you know where the chest is
hidden without revealing its location. Here’s how zk-SNARKs can be used in this context:

The problem: you have found a hidden treasure chest (the secret data), and you want to
prove to the organizer (the verifier) that you know its location without actually revealing
where it is.

How zk-SNARKs Help:
• Argument of Knowledge: You create a proof that demonstrates you know the exact

location of the treasure chest. This proof convinces the organizer that you have this
knowledge.

• Succinctness: The proof you provide is very small and concise. It doesn’t matter how
large the treasure map is or how many steps it took you to find the chest, the proof
remains compact and easy to check.

• Non-interactiveness: You don’t need to have a back-and-forth conversation with the
organizer to create this proof. You prepare it once. The organizer can verify it without
needing to ask you any questions.

• Zero-Knowledge: The proof doesn’t reveal any information about the actual location
of the treasure chest. The organizer knows you found it, but they don’t learn anything
about where it is hidden.

Here you can think of zk-SNARK as a golden coin from the chest where the pirates’ sign is
engraved, so the organizer can be sure you’ve found the treasure.

But the problems that we want to solve are in a slightly different format. We can’t bring a
coin to the verifier. Our goal is to prove that we’ve executed a specific program on a set of
data that resolves a specific challenge or gives us a particular result.

8.1.2 Formal Definition
In this section, we will provide a more formal definition of zk-SNARKs. In case you do not

want to dive into the technical details, you can skip this part and move to the next sections
where we will consider the arithmetic circuits and the Quadratic Arithmetic Programs.

Previously, we considered NARKs that did not require any setup procedure. However, zk-
SNARKs are more complex and require a setup phase. This setup phase is used to generate the
proving and verification keys (which we call prover parameters pp and verifier parameters vp,
respectively), which are then used to create and verify proofs. That being said, let us introduce
the preprocessing NARK.
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Definition 8.2. A preprocessing non-interactive argument of knowledge (preprocessing
NARK) ΠpreNARK = (Setup,Prove,Verify) consists of three algorithms:

• Setup(1λ) → (pp, vp) — the setup algorithm that takes the security parameter λ and
outputs the public parameters: proving and verification keys.

• Prove(pp, x, w) → π — the proving algorithm that takes the prover parameters pp,
statement x , and witness w , and outputs a proof π.

• Verify(vp, x, π)→ {accept, reject} — the verification algorithm that takes the verifica-
tion key, statement x , and proof π, and outputs a bit indicating whether the proof is
valid.

Recall, that from NARK (and now preprocessing NARK, respectively) over relation R we
require the following properties:

• Completeness — if the prover is honest and the statement is true, the verifier will always
accept the proof:

∀(x, w) ∈ R : Pr[Verify(vp, x,Prove(pp, x, w)) = accept] = 1

• Knowledge Soundness — the prover cannot (statistically) generate a false proof π that
convinces the verifier.

• Zero-knowledge — the verifier “learns nothing” about the witness w from (R, pp, vp, x, π).
While we have formally defined all the terms here, including statistical soundness, we have

not defined what knowledge soundness is. We give a brief informal definition below.

Definition 8.3 (Knowledge Soundness). ΠpreNARK is (adaptively) knowledge sound for a
relation R if for every PPT adversary A = (A0,A1), split into two algorithms, such that:

Pr

 (pp, vp)← Setup(·)
Verify(vp, x, π) = accept x ← A0(·)

π ← A1(pp, x)

 > α,

where α = α(λ) ̸= negl(λ) is a non-negligible probability, there exists a PPT extractor EA
such that

Pr
[
(x, w) ∈ R x ← A0(·), w ← EA(x)

]
> α− ϵ,

where ϵ = ϵ(λ) is a negligible function.

Remark. Informally, the aforementioned definition means that if the prover can generate a
false proof with a non-negligible probability, then there exists an extractor that can extract
the witness with a probability that is almost as high (and thus is also non-negligible).

Finally, to make zk-NARKs more universal and applicable to a wider range of problems, we
introduce the zk-SNARK by adding the succinctness property.
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Definition 8.4. A zk-SNARK (Succint NARK) is a preprocessing NARK, where the proof’s
length |π| and verification time TV are short: the verification time is sublinear in the size of
the computation C (denoted by |C|), while the proof size is sublinear in the witness size |w |:

|π| = sublinear(|w |), TV = Oλ(|x |, sublinear(|C|)).

Remark. Sublinearity means that the function f : N → R grows slower than linearly. For
example, functions f (n) = log n or f (n) =

√
n are sublinear, while f (n) = 3n + 2 is linear.

Generally, if f (n)/(c · n) −−−→
n→∞

0 for any c ∈ R \ {0}, then f (n) is sublinear.

Example. Consider the protocol where the proof size is |π| = O(
√
|w |) and TV = O( 3

√
|C|).

Such protocol is a zk-SNARK, as the proof size is sublinear in the witness size and the
verification time is sublinear in the size of the computation.

Although having a proof size and verification time lower than linear is nice, that is still not
sufficient to make zk-SNARKs practical in the wild. For that reason, typically, in practice, we
require a stricter definition of the succinctness property, where the proof size and verification
time are constant or logarithmic in the size of the computation. This is the case for most
zk-SNARKs used in practice.

Definition 8.5. A zk-SNARK is strongly succinct if the proof size and verification time are
constant or logarithmic in the size of the computation:

|π| = Oλ(log |C|), TV = Oλ(|x |, log |C|).

Example. Consider three major proving systems used in practice with N = |C| being the
complexity of a computation:

• Groth16 with |π| = Oλ(1), TV = Oλ(1) is definitely a strongly succinct zk-SNARK
since both the proof size and verification time are constant.

• STARKs with |π| = Oλ(polylog(N)) and TV = Oλ(polylog(N)) are also strongly suc-
cinct zk-SNARKs since both the proof size and verification time are logarithmic in the
size of the computation.

• Bulletproofs with |π| = Oλ(logN) and TV = Oλ(N) is not a strongly succinct zk-
SNARK since the verification time is linear in the size of the computation.

8.2 Arithmetic Circuits
8.2.1 What is Arithmetic Circuit?

The cryptographic tools we have learned in the previous lectures operate with numbers or
certain primitives above them (like finite field extensions or elliptic curves), so the first question
is: how do we convert a program into a mathematical language? Additionally, we need to do this
in a way that can be further (a) made succinct, (b) allows us to prove something about it, and
(c) be as universal as possible (to be able to prove quite general statements unlike Σ-protocols
considered in the previous lecture).

The Arithmetic Circuits can help us with these problems. Similar to Boolean Circuits, they
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consist of gates and wires: gates represent operations acting all elements, connected by wires
(see figure below for details). Yet, instead of operations AND, OR, NOT and such, in arithmetic
circuits only multiplication/addition/subtraction operations are allowed. Additionally, arithmetic
circuits manipulate over elements from some finite field F (see right figure below).

a b

AND

c

a b

OR

c

Figure 17: Boolean AND and OR Gates

a b

+

c

a b

×

c

Figure 18: Addition and Multiplication
Gates

A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

Table 1: AND Gate Truth Table

Let us come back to boolean circuits for a moment
and consider the AND gate. The AND Gate Truth Ta-
ble 1 shows us the results we receive if particular val-
ues are supplied to the gate. The main point here is
that with this table, we can verify the validity of logical
statements. Boolean circuits receive an input vector of
{0, 1} and resolve to true (1) or false (0); basically,
they determine if the input values satisfy the statement.

However, more notably, we can combine these gates
to create more complex circuits that can resolve more complex problems. For example, we
might construct a circuit depicted in Figure 19, calculating (a AND b) OR c .

a b c

AND

OR d

Figure 19: Example of a circuit evaluating d = (a AND b) OR c .

Although we can already represent very complex computations using boolean circuits13, they
are not the most convenient way to represent arithmetic operations.

13. . . such as SHA-256 hash function computation, one might take a look here: http://stevengoldfeder.
com/projects/circuits/sha2circuit.html
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That being said, we can do the same with arithmetic circuits to verify computations over
some finite field F without excessive verbosity due to a binary arithmetic, where we had to
perceive all intermediate values as binary {0, 1}.

8.2.2 More advanced examples
Let us take a look at some examples of programs and how can we translate them to the

arithmetic circuits.
Example 1: Multiplication. Consider a very simple program, where we are to simply multiply

two field elements a, b ∈ F:

def multiply(a: F, b: F) -> F:
return a * b

Since we are doing all the arithmetic in a finite field F, we denote it by F in the code. This
can be represented as a circuit with only one (multiplication) gate:

r = a × b

The witness vector (essentially, our solution vector) is w = (r, a, b), for example: (6, 2, 3).
We assume that the a and b are input values.

We can think of the “=“ in the gate as an assertion, meaning that if a× b does not equal r ,
the assertion fails, and the input values do not resolve the circuit.

Good, but this one is quite trivial. Let’s consider a more complex example.
Example 2: Multivariate Polynomial. Now, suppose we want to implement the evaluation

of the polynomial Q(x1, x2) = x31 + x
2
2 ∈ F[X1, X2] using arithmetic circuits. The corresponding

program is as follows:

def evaluate(x1: F, x2: F) -> F:
return x1**3 + x2**2

Looks easy, right? But the circuit is now much less trivial. Consider Figure 21. Notice that to
calculate x31 we cannot use the single gate: we need to multiply x1 by itself two times. For that
reason, we need three multiplication and one addition gate to represent Q(x1, x2) calculation.

x1 × ×

x2 ×
+ Q

Figure 20: Example of a circuit evaluating x31 + x
2
2 .

Example 3. if statements. Well, it is quite clear how to represent any polynomial-like
expressions. But how can we translate if statements? Consider the program below:

def if_statement_example(a: bool , b: F, c: F) -> F:
return b * c if a else b + c
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We can express this logic in mathematical terms as follows: “If a is true, compute b × c ;
otherwise, compute b + c .” However, only numerical expressions are allowed, so how can we
proceed? Assuming that true is represented by 1 and false by 0, we can transform this logic
as follows:

r = a × (b × c) + (1− a)× (b + c)
Now, what is the witness vector in this case? One might assume that w = (r, a, b, c) would

suffice. Then, examples of valid witnesses include (6, 1, 2, 3), (5, 0, 2, 3).
But, we need to verify all the intermediate steps! This can be achieved by transforming the

above equation using the simplest terms (the gates), ensuring the correctness of each step in
the program.

Below, we show to visualize the arithmetic circuit for the if statement example.

c

b

a

1

+

×

−

×

×

+ r

r1

r3

r2

r4

r5

Figure 21: Example of a circuit evaluating the if statement logic.

Corresponding equations for the circuit are:

r1 = b × c r2 = b + c

r3 = 1− a r4 = a × r1
r5 = r3 × r2 r = r4 + r5

With the witness vector: w = (r, r1, r2, r3, r4, r5, a, b, c). One example of a valid witness is
(6, 6, 5, 0, 6, 0, 1, 2, 3).

8.2.3 Circuit Satisfability Problem
Now, let us generalize what we have constructed so far. First, we begin with the arithmetic

circuit.

Definition 8.6. Arithmetic circuit C : Fn → F with n inputs over a finite field F is a directed
acyclic graph where internal nodes are labeled via +, −, and ×, and inputs are labeled
1, x1, x2, . . . , xn. By |C| we denote the number of gates in the circuit.

Example. For example, previously considered multivariate polynomial C(x1, x2) = x31+x
2
2 can

be represented as an arithmetic circuit with three multiplication and one addition gates, as
shown in Figure 21. It is defined over inputs x = (x1, x2) with n = 2 and |C| = 4.
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Now, suppose that the circuit is defined over n inputs. We can always split this input into
two parts: the first ℓ inputs are the public inputs, being our statement x ∈ Fℓ, and the remaining
n − ℓ inputs are the private inputs, being our secret witness w ∈ Fn−ℓ. The public inputs are
known to everyone, while the private inputs are known only to the prover. The goal of the
prover is to show that the circuit is satisfiable, i.e., that for the given x, he knows a witness w
that resolves the circuit. Resolving in this context means that the output of the circuit is zero.

Definition 8.7. The Circuit Satisfiability Problem is defined as follows: given an arithmetic
circuit C and a public input x ∈ Fℓ, determine if there exists a private input w ∈ Fn−ℓ such
that C(x,w) = 0. More formally, the problem is determined by relation RC and corresponding
language LC as follows:

RC = {(x,w) ∈ Fℓ × Fn−ℓ : C(x,w) = 0}, LC = {x ∈ Fℓ : ∃w ∈ Fn−ℓ, C(x,w) = 0}

Let us consider some concrete example of the Circuit Satisfiability Problem.

Example. Suppose our problem (as a prover) is to prove the verifier that we know the point
on the circle of “radius

√
ρ“a, but over the finite field F. More formally, suppose we want to

claim that for the given ρ, we have x1, x2 ∈ F such that:

x21 + x
2
2 = ρ

For that reason, define the circuit C(ρ, x1, x2) := x21 + x
2
2 − ρ. It is constructed as shown in

the Figure below.

x1

x2

×

×

+ −

ρ

C

Illustration: Arithmetic circuit for the equation x21 + x
2
2 − ρ.

Now, our statement vector is x = ρ ∈ F (so ℓ = 1) and the witness vector is w = (x1, x2) ∈ F2
(so n−ℓ = 2). The prover wants to prove that he knows the witness w such that C(x,w) = 0.
For example, for ρ = 5, the prover might have the witness w = (2, 1) that he wants to show
to the verifierb.

aNote that in the finite field the circle equation does not have the geometrical form we are used to (similarly
to Elliptic Curve equation, for instance)

bHere, F = Fp for some prime p > 5

Now, as with any other previously considered proving systems, suppose we are not concerned
about the zero-knowledge property and simply want to prove the evaluation integrity of the
circuit. Can the prover simply send the witness w to the verifier? Prover can send the witness,
but this will not be a SNARK (and, surely, not a zk-SNARK either).
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Proposition 8.8 (Trivial SNARK is not a SNARK). The protocol in which P sends the
witness w to V is not a SNARK for the Circuit Satisfiability Problem. Indeed, in this case,
the proof size is |π| = |w | (since π = w) and the verification time is TV = O(|C|) (since
C must be evaluated fully). We do not have succinctness (not even mentioning the strong
succinctness) in this case.

Proposition above motivates us to look for more advanced techniques to prove the satisfiabil-
ity of the arithmetic circuits. In the next section, we introduce the Rank-1 Constraint System,
which is a more flexible and general way to describe the arithmetic circuits, allowing to further
encode the constraints in a more succinct way.

8.3 Rank-1 Constraint System
Almost any program written in high-level programming language can be translated (compiled)

into arithmetic circuits, that are really powerfull tool. But for the ZK proof we need slightly
different format of it — Rank-1 Constraint System, where the simpliest term is constraint.
This offers a more flexible and general way to describe these parts. However, we need a bit of
Linear Algebra to be comfortable with this concept.

8.3.1 Linear Algebra Basics
Although we will not dive deep into the Linear Algebra, we need to understand some basic

concepts to be able to work with the Rank-1 Constraint System.
Similarly to group theory working with groups, the linear algebra also has a special designated

primitive — vector space. If previously we were working with the (finite) field F, now we will
work with the vector space V over this field. In many practical applications, vector space
is formed by vectors consisting of a finite fixed collection of elements from the field F. For
example, the vector space might be simply Fn: the set of all n-tuples (x1, x2, . . . , xn) of elements
from F. Yet, let us give a bit more general definition.

Definition 8.9. A vector space V over the field F is an abelian group for addition + together
with a scalar multiplication operation · from F× V to V , sending (λ, x) 7→ λx and such that
for any v,u ∈ V and λ, µ ∈ F we have:

• λ(u+ v) = λu+ λv

• (λ+ µ)v = λv + µv
• (λµ)v = λ(µv)
• 1v = v

Any element v ∈ V is called a vector, and any element λ ∈ F is called a scalar. We also
mark vector elements in boldface.
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Example. For example, V = Fn with operations defined as:

λ · (x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn)
(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

is a vector space. Similarly, the following three sets V1, V2, V3 with operations defined above
are also valid vector spaces:

V1 = {(x1, x2, . . . , xn) ∈ Fn : x1 = 0}
V2 = {(x1, x2, . . . , xn) ∈ Fn : x3 = 2}
V3 = {(x1, x2, . . . , xn) ∈ Fn : x1 + x2 + · · ·+ xn = 1}

Now, besides vectors, frequently we are working with the matrices. The matrix is a rectan-
gular array of numbers, symbols, or expressions, arranged in rows and columns. For example,
the matrix A with m rows and n columns, consisting of elements from the finite field F is
denoted as A ∈ Fm×n. Additionally, we use notation A = {ai ,j}m×ni,j=1 to denote the square matrix
A of size m × n with elements ai ,j . Now, let us define operations on matrices.

Definition 8.10. Let A,B be two matrices over the field F. The following operations are
defined:

• Matrix addition/subtraction: A±B = {ai ,j ± bi ,j}m×ni,j=1. The matrices A and B must
have the same size m × n.

• Scalar multiplication: λA = {λai ,j}1≤i ,j≤n for any λ ∈ F.
• Matrix multiplication: C = AB is a matrix C ∈ Fm×p with elements ci ,j =∑n

ℓ=1 ai ,ℓbℓ,j . The number of columns in A must be equal to the number of rows
in B, that is A ∈ Fm×n and B ∈ Fn×p.

Example. Suppose F = R. Then, consider

A =

[
1 1 2

2 2 1

]
∈ R2×3, B =

2 11 3
1 1

 ∈ R3×2
We cannot add A and B since they have different sizes. However, we can multiply them:

AB =

[
5 6

7 9

]
, BA =

4 4 57 7 5

3 3 3


To see why, for example, the upper left element of AB is 5, we can calculate it as∑3
ℓ=1 a1,ℓbℓ,1 = 1× 2 + 1× 1 + 2× 1 = 5.
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Remark. Now, we add a very important remark. It just so happens that when working with
vectors, we usually assume that they are column vectors. This means that the vector
v = (v1, v2, . . . , vn) is represented as a matrix:

v =


v1
v2
...
vn


This is a common convention in linear algebra, and we will use it in the following sections.

One important operation we will be frequently working with is the transpose of the matrix.
The transpose of a matrix is an operator that flips a matrix over its diagonal, that is, it switches
the row and column indices of the matrix by producing another matrix denoted as A⊤.

Definition 8.11 (Transposition). Given a matrix A ∈ Fm×n, the transpose of A is a matrix
A⊤ ∈ Fn×m with elements A⊤i j = Aj i .

Example. For example, consider the square matrix A =
[
1 2

3 4

]
. Then, the transpose of

A is A⊤ =
[
1 3

2 4

]
. However, we can transpose any matrix, for example, the matrix B =[

1 2 3

4 5 6

]
has the transpose B⊤ =

1 42 5
3 6

. Finally, what is probably very important to us,

the column vector v =

12
3

 has the transpose v⊤ = [1, 2, 3].

Finally, is just happens that we can construct matrix from the vectors. Therefore, let us
introduce the corresponding notation.
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Definition 8.12 (Composing Matrix from vectors). Suppose we are given n vectors
v1, v2, . . . , vn ∈ Fm. Then, we might define matrix A as a matrix with columns v1, v2, . . . , vn
as follows:

A =
[
v1 v2 . . . vn

]
=


v1,1 v2,1 . . . vn,1
v1,2 v2,2 . . . vn,2
...

... . . . ...
v1,m v2,m . . . vn,m


Alternatively, vectors might be represented as rows, and the matrix A might be defined as a
matrix with rows v1, v2, . . . , vn:

A =


v⊤1
v⊤2
...
v⊤n

 =

v1,1 v1,2 . . . v1,m
v2,1 v2,2 . . . v2,m
...

... . . . ...
vn,1 vn,2 . . . vn,m


Example. For example, consider the vectors v1 = (1, 2, 3) and v2 = (4, 5, 6). Then, the
matrix A with columns v1 and v2 is:

A =
[
v1 v2

]
=

1 42 5
3 6


Similarly, the matrix B with rows v1 and v2 is:

B =

[
v⊤1
v⊤2

]
=

[
1 2 3

4 5 6

]
We might go on with the vector spaces and define the linear independence and basis

concepts, but for now we will skip them and move to the more important concept for us — the
inner and dot products. Although inner product is typically introduced for ordered fields, we
give a definition for our finite field F.

Definition 8.13. Consider the vector space Fn. The inner product is a function ⟨·, ·⟩ :
Fn × Fn → F satisfying the following conditions for all u, v,w ∈ Fn:

• ⟨u+ v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩.
• ⟨u, v +w⟩ = ⟨u, v⟩+ ⟨u,w⟩.
• ⟨u, v⟩ = 0 for all u ∈ Fn iff v = 0.
• ⟨u, v⟩ = 0 for all v ∈ Fn iff u = 0.

Plenty of functions can be built that satisfy the inner product definition, we will use the one
that is usually called dot product.
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Definition 8.14. Consider the vector space Fn. The dot product on Fn is a function ⟨·, ·⟩ :
V× V→ F, defined for every u, v ∈ Fn as follows:

⟨u, v⟩ := u⊤v =
n∑
i=1

uivi

Alternatively, the dot product can also be denoted using the dot notation as u · v. That is
why it is called the “dot“ product.

Example. Let u, v are vectors over the real number R, where

u = (1, 2, 3), v = (2, 4, 3)

Then:

⟨u, v⟩ =
3∑
i=1

uivi = 2 · 1 + 2 · 4 + 3 · 3 = 2 + 8 + 9 = 19

Yet another product we are going to use is the Hadamard product. Let us see how it works.

Definition 8.15. Suppose A,B ∈ Fm×n. The Hadamard product A ⊙ B gives a matrix C
such that Ci ,j = Ai ,jBi ,j . Essentially, we multiply elements elementwise.

Example. Consider A =
[
1 1 2

3 0 3

]
, B =

[
3 2 1

0 2 1

]
. Then, the Hadamard product is:

A⊙ B =
[
1 · 3 1 · 2 2 · 1
3 · 0 0 · 2 3 · 1

]
=

[
3 2 2

0 0 3

]
Finally, the final ingredient is the outer product and some of its properties. So here it goes!

Definition 8.16. Given two vectors u ∈ Fn, v ∈ Fm the outer product is a the matrix whose
entries are all products of an element in the first vector with an element in the second vector:

u⊗ v := uv⊤ =


u1v1 u1v2 · · · u1vn
u2v1 u2v2 · · · u2vn

...
... . . . ...

umv1 umv2 · · · umvn


Lemma 8.17 (Properties of outer product). For any scalar c ∈ F and (u, v,w) ∈ Fn×Fm×Fp:

• Transpose: (u⊗ v) = (v ⊗ u)T

• Distributivity: u⊗ (v +w) = u⊗ v + u⊗w
• Scalar Multiplication: c(v ⊗ u) = (cv)⊗ u = v ⊗ (cu)
• Rank: the outer product u⊗ v is a rank-1 matrix if u and v are non-zero vectors

Page 109



Distributed Lab ZKDL Camp

Example. Let u, v are vectors over the real number R, where

u = (1, 2, 3), v = (2, 4, 3)

Then:

u⊗ v = uv⊤ =

12
3

 [2 4 3] =
1 · 2 1 · 4 1 · 32 · 2 2 · 4 2 · 3
3 · 2 3 · 4 3 · 3

 =
2 4 3

4 8 6

6 12 9


Additionally, as we can see the rows number 2 and 3 in the result matrix can be represented
as a linear combination of the first row, specifically by multiplying it by 2 and 3, respectively.
The same property applies to the columns. This demonstrates the property of the outer
product, that the resulting matrix has a rank of 1.

8.3.2 Constraint Definition
With knowledge of the inner product of two vectors, we can now formulate a definition of

the constraint in the context of an R1CS.

Definition 8.18. Each constraint in the Rank-1 Constraint System must be in the form:

⟨a,w⟩ × ⟨b,w⟩ = ⟨c,w⟩

Where w is a vector containing all the input, output, and intermediate variables involved
in the computation. The vectors a, b, and c are vectors of coefficients corresponding to
these variables, and they define the relationship between the linear combinations of w on the
left-hand side and the right-hand side of the equation.

Example. Consider the most basic circuit with one multiplication gate:

r = x1 × x2

Since we have 3 variables, the constraint is written as:

(a1w1 + a2w2 + a3w3)(b1w1 + b2w2 + b3w3) = c1w1 + c2w2 + c3w3

Coefficients and witness vectors are: w = (r, x1, x2), a = (0, 1, 0),b = (0, 0, 1), c = (1, 0, 0).
Therefore, our expression above reduces to:

(0w1 + 1w2 + 0w3)(0w1 + 0w2 + 1w3) = (1w1 + 0w2 + 0w3)

w2 × w3 = w1
x1 × x2 = r

The interesting thing is where to take a constants from. The solution is straightforward:
by placing 1 in the witness vector, so we can obtain any desired value by multiplying it by an
appropriate coefficient.
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Example. Now, let us consider a more complex example. Remember that we want to verify
each computational step.

def r(x1: bool , x2: F, x3: F) -> F:
return x2 * x3 if x1 else x2 + x3

We know that it can be expressed as:

r = x1 × (x2 × x3) + (1− x1)× (x2 + x3)

However, one important consideration was overlooked. If x1 is neither 0 nor 1, it implies that
something else is being computed instead of the desired program. Since we need to add a
restriction for x1: x1 × (1− x1) = 0, this effectively checks that x1 is binary.
The next constraints can be build:

x1 × x1 = x1 (binary check) (1)

x2 × x3 = mult (2)

x1 ×mult = selectMult (3)

(1− x1)× (x2 + x3) = r − selectMult (4)

For every constraint we need the coefficients vectors ai , bi , ci , but all of them have the same
witness vector w.

w = (1, r, x1, x2, x3,mult, selectMult)

The coefficients vectors:

a1 = (0, 0, 1, 0, 0, 0, 0) b1 = (0, 0, 1, 0, 0, 0, 0) c1 = (0, 0, 1, 0, 0, 0, 0)

a2 = (0, 0, 0, 1, 0, 0, 0) b2 = (0, 0, 0, 0, 1, 0, 0) c2 = (0, 0, 0, 0, 0, 1, 0)

a3 = (0, 0, 1, 0, 0, 0, 0) b3 = (0, 0, 0, 0, 0, 1, 0) c3 = (0, 0, 0, 0, 0, 0, 1)

a4 = (1, 0,−1, 0, 0, 0, 0) b4 = (0, 0, 0, 1, 1, 0, 0) c4 = (0, 1, 0, 0, 0, 0,−1)

Now, let us use some specific values to compute an example. Using the arithmetic in a large
finite field Fp, consider the following values:

x1 = 1, x2 = 3, x3 = 4

Verifying the constraints:
1. x1 × x1 = x1 (1× 1 = 1)
2. x2 × x3 = mult (3× 4 = 12)
3. x1 ×mult = selectMult (1× 12 = 12)
4. (1− x1)× (x2 + x3) = r − selectMult (0× 7 = 12− 12)

Each constraint enforces that the product of the linear combinations defined by a and b
must equal the linear combination defined by c. Collectively, these constraints describe the
computation by ensuring that every step, from inputs through intermediates to outputs, satisfies
the defined relationships, thus encoding the entire computational process in the form of a system
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of rank-1 quadratic equations.

8.3.3 Why Rank-1?
The last unresolved question is where the “rank-1“ comes from. Using the outer product we

can express the constraint in another form.

Lemma 8.19. Suppose we have a constraint ⟨a,w⟩×⟨b,w⟩ = ⟨c,w⟩ with coefficient vectors
a, b, c and witness vector w (all from Fn). Then it can be expressed in the form:

w⊤Aw + c⊤w = 0

Where A is the outer product of vectors a, b (denoted as a ⊗ b), consequently a rank-1
matrix.

Lemma proof. Consider the constraint ⟨a,w⟩ × ⟨b,w⟩ = ⟨c,w⟩, where a,b, c,w ∈ Fn. Let
us expand the inner products:(

n∑
i=1

aiwi

)
×

(
n∑
j=1

bjwj

)
=

n∑
k=1

ckwk

Combine the products into a double sum on the left side:

n∑
i=1

n∑
j=1

aibjwiwj = w
⊤(a⊗ b)w = w⊤Aw

Thus, the constraint can be written as:

w⊤Aw + c⊤w = 0

So, the rank-1 means the rank of the coefficients matrix A in one of the constraint formats.

8.4 Quadratic Arithmetic Program
8.4.1 R1CS in Matrix Form

While the Rank-1 Constraint System provides a powerful way to represent computations,
it is not succinct at all, since the number of constraints depends linearly on the complexity
of the problem being solved. In practical scenarios, this can require tens or even hundreds of
thousands of constraints, sometimes even millions. The Quadratic Arithmetic Program (QAP)
can address this issue.

Remark. Understanding polynomials and their properties is crucial for this section. If you
are not confident in this area, it is better to revisit the corresponding chapter and refresh
your knowledge. See Section 1.4.

To define a constraint in the R1CS we need four vectors: three coefficient vectors (a, b, and
c) and the witness one (w). And that’s just for one constraint. As you can imagine, many of
the values in these vectors are zeros. In circuits with thousands of inputs, outputs, and auxiliary
variables, where there are also thousands of constraints, you could end up with a millions of
zeroes.
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Remark. A matrix in which most of the elements are zero in numerical analysis is usually
called sparse matrix.

So, we need to change the way how we manage coefficients and make the representation of
such matrices and vectors succint (as required by the definition of SNARK).

Theorem 8.20. Consider a Rank-1 Constraint System (R1CS) defined by m constraints.
Each constraint is associated with coefficient vectors ai , bi , and ci , where i ∈ {1, 2, . . . , m}
and also a witness vector w consisting of n elements.
Then this system can also be represented using the corresponding matrices A, B, and C.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn

 B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

... . . . ...
bm1 bm2 . . . bmn

 C =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

... . . . ...
cm1 cm2 . . . cmn


such that all constraints can be reduced to the single equation:

Aw ⊙ Bw = Cw

In this representation:
• Each i-th row of the matrices corresponds to the coefficients of a specific constraint.
• Each column of these matrices corresponds to the coefficients associated with a par-

ticular element of the witness vector w.

Proof. Matrices defined this way can be expressed as

A =


a⊤1
a⊤2
...
a⊤m

 , B =


b⊤1
b⊤2
...
b⊤m

 , C =


c⊤1
c⊤2
...
c⊤m


Consider an expression Aw:

Aw =


a⊤1
a⊤2
...
a⊤m



w1
w2
...
wn

 =

a⊤1w

a⊤2w
...
a⊤mw


The last equality is a bit tricky to observe, so let us explain how we ended up with such

expression. Notice that since A ∈ Fm×n and w ∈ Fn, the product Aw is a vector from Fm.
Now, for j th element of such vector, based on the matrix product definition, we have (Aw)j =∑n
ℓ=1 aj,ℓwℓ which is exactly an inner product between aj and w! Therefore, we have:

Aw =


⟨a1,w⟩
⟨a2,w⟩

...
⟨am,w⟩

 , Bw =


⟨b1,w⟩
⟨b2,w⟩

...
⟨bm,w⟩

 , Cw =


⟨c1,w⟩
⟨c2,w⟩

...
⟨cm,w⟩


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Therefore, Aw ⊙ Bw = Cw is equivalent to the system of m constraints:

⟨aj ,w⟩ × ⟨bj ,w⟩ = ⟨cj ,w⟩, j ∈ {1, . . . , m}.

Example. The vectors ai from the previous examples have the form:

a1 = (0, 0, 1, 0, 0, 0, 0)

a2 = (0, 0, 0, 1, 0, 0, 0)

a3 = (0, 0, 1, 0, 0, 0, 0)

a4 = (1, 0,−1, 0, 0, 0, 0)

This corresponds to n = 7, m = 4

A =


a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7
a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7
a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

 =

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

1 0 −1 0 0 0 0


8.4.2 Polynomial Interpolation

OK, now is the time to define how we are going to build polynomials! Notice that the columns
of these matrices (say, column (a1,i , a2,i , a3,i , a4,i) in matrix A from example above) represent
the mappings from constraint number i to the corresponding coefficient of the j element in the
witness vector!

Example. Consider the witness from the previous examples:

w = (1, r, x1, x2, x3,mult, selectMult)

For element x1 we are interested in the third columns of the A, B and C matrices, as it’s
placed on the third position in the witness vector, so j = 3.
For matrix A: 

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

1 0 −1 0 0 0 0


Thus, for constraint number 4 (i = 4) the coefficient of x1 is −1:

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

1 0 −1 0 0 0 0


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Good, so now we know that for the jth element in the witness vector there are m (the number
of constraints) corresponding values in matrices A, B, and C. Now, we want to encode this
statement in a form of a polynomial. As we know from the previous chapters, such a mapping
in math can be built using the Lagrange polynomial interpolation.

Remark. As a remainder, the Lagrange interpolation polynomial for a given set of points
{(x0, y0), (x1, y1), . . . , (xn, yn)} ⊂ F× F can be built with the following formula:

L(x) =

n∑
i=0

yiℓi(x), ℓi(x) =

n∏
j=0,j ̸=i

x − xj
xi − xj

.

For a given column j ∈ {1, 2, . . . , n} in a matrix A the set of points that define the variable
polynomial Aj(x) can be defined as {(i , ai j) : i ∈ {1, 2, . . . , m}}. In other words, we want to
interpolate n polynomials Aj ∈ F[X] such that:

Aj(i) = ai ,j , i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}

The same is true for matrices B and C, resulting in 3n polynomials, n for each of the
coefficients matrices:

A1(x), A2(x), . . . , An(x), B1(x), B2(x), . . . , Bn(x), C1(x), C2(x), . . . , Cn(x)

Remark. One might a reasonable question: why do we choose x-coordinates to be the
indeces of the corresponding constraints? Actually, just for convenience purposes. We could
have assigned any unique index from F to each constraint (say, ti for each i ∈ {1, . . . , m})
and interpolate through these points:

Aj(ti) = ai ,j , i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}

As we will see in the subsequent lectures, we can define the x-coordinates in much more
clever way to reduce the workload needed for interpolation. But for now, we will stick to
this simple version.
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Example. Considering the witness vector w and matrix A from the previous example, for the
variable x1, the next set of points can be derived:

{(1, 1), (2, 0), (3, 1), (4,−1)}

We can see that it is used in the 1st, 3rd, and 4th constraints as the values of the coefficients
are not zero.
The Lagrange interpolation polynomial for this set of points can be built as follows (for the
demonstration purposes, assume we are working in the field R):

ℓ1(x) =
(x − 2)(x − 3)(x − 4)
(1− 2)(1− 3)(1− 4) = −

(x − 2)(x − 3)(x − 4)
6

,

ℓ2(x) =
(x − 1)(x − 3)(x − 4)
(2− 1)(2− 3)(2− 4) =

(x − 1)(x − 3)(x − 4)
2

,

ℓ3(x) =
(x − 1)(x − 2)(x − 4)
(3− 1)(3− 2)(3− 4) = −

(x − 1)(x − 2)(x − 4)
2

,

ℓ4(x) =
(x − 1)(x − 2)(x − 3)
(4− 1)(4− 2)(4− 3) =

(x − 1)(x − 2)(x − 3)
6

.

Thus, the polynomial is given by:

A1(x) = 1 · ℓ1(x) + 0 · ℓ2(x) + 1 · ℓ3(x) + (−1) · ℓ4(x)

= −
(x − 2)(x − 3)(x − 4)

6
−
(x − 1)(x − 2)(x − 4)

2
−
(x − 1)(x − 2)(x − 3)

6

= −
5

6
x3 + 6x2 −

79

6
x + 9

Therefore, the final Lagrange interpolation polynomial is:

A1(x) = −
5

6
x3 + 6x2 −

79

6
x + 9

As shown in Illustration below, the curve intersects all the given points. In this figure, the
x-axis represents the constraint number, and the y-axis represents the coefficients of the x1
witness element.

1 2 3 4

−2

−1

1

2
(1,1)

(2,0)

(3,1)

(4,-1)

x

A1(x)

Illustration: The Lagrange inteprolation polynomial for points {(1, 1), (2, 0), (3, 1), (4,−1)} visualized over R.
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Remark. The degree of the coefficient polynomials does not exceed m − 1, which follows
from the Lagrange interpolation properties.

8.4.3 Putting All Together!
Now, using coefficients encoded with polynomials, a constraint number X ∈ {1, . . . m}, from

a constraint system with a witness vector w can be built in the next way:

(w1A1(X) + w2A2(X) + · · ·+ wnAn(X))× (w1B1(X) + w2B2(X) + · · ·+ wnBn(X)) =
= (w1C1(X) + w2C2(X) + · · ·+ wnCn(X))

Or, written more concisely:(
n∑
i=1

wiAi(X)

)
×

(
n∑
i=1

wiBi(X)

)
=

(
n∑
i=1

wiCi(X)

)
Remark. Hold on, but why does it hold? Let us substitute any X = j into this equation:(

n∑
i=1

wiAi(j)

)
×

(
n∑
i=1

wiBi(j)

)
=

(
n∑
i=1

wiCi(j)

)
∀j ∈ {1, . . . , m}

Recall that we interpolated polynomials to have Ai(j) = aj,i . Therefore, the equation above
can be reduced to:(

n∑
i=1

wiaj,i

)
×

(
n∑
i=1

wibj,i

)
=

(
n∑
i=1

wicj,i

)
∀j ∈ {1, . . . , m}

But hold on again! Notice that
∑n
i=1 wiaj,i = ⟨w, aj⟩ and therefore we have:

⟨w, aj⟩ × ⟨w,bj⟩ = ⟨w, cj⟩ ∀j ∈ {1, . . . , m},

so we ended up with the initial m constraint equations!

Now let us define polynomials A(X), B(X), C(X) for easier notation:

A(X) =

n∑
i=1

wiAi(X), B(X) =

n∑
i=1

wiBi(X), C(X) =

n∑
i=1

wiCi(X)

Therefore, our constraint can be rewritten as A + B = C — much less scary-looking than
what we have written before. OK, but what does it give us?

Notice that if A(X) + B(X) = C(X) for all j ∈ {1, . . . , m} then polynomial, defined as
P (X) := A(X)+B(X)−C(X), has zeros at all elements from the set Ω = {1, . . . , m}. Define
the so-called vanishing polynomial on Ω as:

ZΩ(X) :=
∏
ω∈Ω

(X − ω) =
m∏
i=1

(X − i)

Now, if P (X) vanishes on all points from Ω, it means that ZΩ must divide P , so ZΩ | P .
But that means that P can be divided by ZΩ without remainder! In other words, there exists
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some polynomial H such that P = ZΩH. All in all, let us give the definition of a Quadratic
Arithmetic Program.

Definition 8.21 (Quadratic Arithmetic Program). Suppose that m R1CS constraints with a
witness of size n are written in a form

Aw ⊙ Bw = Cw, A,B, C ∈ Fm×n

Then, the Quadratic Arithmetic Program consists of 3n polynomials A1, . . . , An,
B1, . . . , Bn, C1, . . . , Cn such that:

Aj(i) = ai ,j , Bj(i) = bi ,j , Cj(i) = ci ,j , ∀i ∈ {1, . . . , m} ∀j ∈ {1, . . . , n}

Then, w ∈ Fn is a valid assignment for the given QAP and target polynomial ZΩ(X) =∏m
i=1(X − i) if and only if there exists such a polynomial H(X) such that(

n∑
i=1

wiAi(X)

)(
n∑
i=1

wiBi(X)

)
−

(
n∑
i=1

wiCi(X)

)
= ZΩ(X)H(X)

This was our final step in representing a high-level programming language to some math
primitive. We have managed to encode our computation to a single polynomial!

Remark on operations between polynomials
Remark. Some pretty obvious property should be noted. In the theorem ?? it was said
about the degree of polynomials after their multiplication or addition, but what about their
values?
Let p(x), q(x) ∈ F[x ] be two polynomials over a field F. Define the polynomial r(x) as the
sum of p(x) and q(x):

r(x) = p(x) + q(x)

Then, for any point x ∈ F, the value of r(x) is equal to the sum of the values of p(x) and
q(x) at that point. Therefore, the set of points corresponding to the polynomial r(x) is
given by:

{(x, y) ∈ F× F | x ∈ F, y = p(x) + q(x)}

The same is true for product.
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Example. Consider two polynomials p(x) and q(x) defined over the real numbers R:

p(x) = −
1

2
x2 +

3

2
x, q(x) =

1

3
x3 − 2x2 +

8

3
x + 1.

The sets of points {(0, 0), (1, 1), (2, 1), (3, 0)} and {(0, 1), (1, 2), (2, 1), (3, 0)} lie on the
graphs of p(x) and q(x), respectively.

The sum of these polynomials can be calculated as:

r(x) = (−
1

2
x2 +

3

2
x) + (

1

3
x3 − 2x2 +

8

3
x + 1)

=
1

3
x3 − 2

1

2
x2 + 4

1

6
x + 1

The resulting polynomial r(x) corresponds to the set of points {(0, 1), (1, 3), (2, 2), (3, 0)}.
As you can see (Figure 22), the values at each point for the corresponding x are the sum of
the initial polynomials’ points.

1 2 3

1

2

3

p(x)

(0, 0)

(1, 1) (2, 1)

(3, 0)

q(x)(0, 1)

(1, 2)

r(x)

(1, 3)

(2, 2)

x

A1(x)

Figure 22: Addition of two polynomials
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